| #ifndef __ASM_SYSTEM_H |
| #define __ASM_SYSTEM_H |
| |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <asm/segment.h> |
| #include <asm/cpufeature.h> |
| #include <linux/bitops.h> /* for LOCK_PREFIX */ |
| |
| #ifdef __KERNEL__ |
| |
| struct task_struct; /* one of the stranger aspects of C forward declarations.. */ |
| extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next)); |
| |
| #define switch_to(prev,next,last) do { \ |
| unsigned long esi,edi; \ |
| asm volatile("pushl %%ebp\n\t" \ |
| "movl %%esp,%0\n\t" /* save ESP */ \ |
| "movl %5,%%esp\n\t" /* restore ESP */ \ |
| "movl $1f,%1\n\t" /* save EIP */ \ |
| "pushl %6\n\t" /* restore EIP */ \ |
| "jmp __switch_to\n" \ |
| "1:\t" \ |
| "popl %%ebp\n\t" \ |
| :"=m" (prev->thread.esp),"=m" (prev->thread.eip), \ |
| "=a" (last),"=S" (esi),"=D" (edi) \ |
| :"m" (next->thread.esp),"m" (next->thread.eip), \ |
| "2" (prev), "d" (next)); \ |
| } while (0) |
| |
| #define _set_base(addr,base) do { unsigned long __pr; \ |
| __asm__ __volatile__ ("movw %%dx,%1\n\t" \ |
| "rorl $16,%%edx\n\t" \ |
| "movb %%dl,%2\n\t" \ |
| "movb %%dh,%3" \ |
| :"=&d" (__pr) \ |
| :"m" (*((addr)+2)), \ |
| "m" (*((addr)+4)), \ |
| "m" (*((addr)+7)), \ |
| "0" (base) \ |
| ); } while(0) |
| |
| #define _set_limit(addr,limit) do { unsigned long __lr; \ |
| __asm__ __volatile__ ("movw %%dx,%1\n\t" \ |
| "rorl $16,%%edx\n\t" \ |
| "movb %2,%%dh\n\t" \ |
| "andb $0xf0,%%dh\n\t" \ |
| "orb %%dh,%%dl\n\t" \ |
| "movb %%dl,%2" \ |
| :"=&d" (__lr) \ |
| :"m" (*(addr)), \ |
| "m" (*((addr)+6)), \ |
| "0" (limit) \ |
| ); } while(0) |
| |
| #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) ) |
| #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) ) |
| |
| /* |
| * Load a segment. Fall back on loading the zero |
| * segment if something goes wrong.. |
| */ |
| #define loadsegment(seg,value) \ |
| asm volatile("\n" \ |
| "1:\t" \ |
| "mov %0,%%" #seg "\n" \ |
| "2:\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "3:\t" \ |
| "pushl $0\n\t" \ |
| "popl %%" #seg "\n\t" \ |
| "jmp 2b\n" \ |
| ".previous\n" \ |
| ".section __ex_table,\"a\"\n\t" \ |
| ".align 4\n\t" \ |
| ".long 1b,3b\n" \ |
| ".previous" \ |
| : :"rm" (value)) |
| |
| /* |
| * Save a segment register away |
| */ |
| #define savesegment(seg, value) \ |
| asm volatile("mov %%" #seg ",%0":"=rm" (value)) |
| |
| /* |
| * Clear and set 'TS' bit respectively |
| */ |
| #define clts() __asm__ __volatile__ ("clts") |
| #define read_cr0() ({ \ |
| unsigned int __dummy; \ |
| __asm__ __volatile__( \ |
| "movl %%cr0,%0\n\t" \ |
| :"=r" (__dummy)); \ |
| __dummy; \ |
| }) |
| #define write_cr0(x) \ |
| __asm__ __volatile__("movl %0,%%cr0": :"r" (x)); |
| |
| #define read_cr2() ({ \ |
| unsigned int __dummy; \ |
| __asm__ __volatile__( \ |
| "movl %%cr2,%0\n\t" \ |
| :"=r" (__dummy)); \ |
| __dummy; \ |
| }) |
| #define write_cr2(x) \ |
| __asm__ __volatile__("movl %0,%%cr2": :"r" (x)); |
| |
| #define read_cr3() ({ \ |
| unsigned int __dummy; \ |
| __asm__ ( \ |
| "movl %%cr3,%0\n\t" \ |
| :"=r" (__dummy)); \ |
| __dummy; \ |
| }) |
| #define write_cr3(x) \ |
| __asm__ __volatile__("movl %0,%%cr3": :"r" (x)); |
| |
| #define read_cr4() ({ \ |
| unsigned int __dummy; \ |
| __asm__( \ |
| "movl %%cr4,%0\n\t" \ |
| :"=r" (__dummy)); \ |
| __dummy; \ |
| }) |
| |
| #define read_cr4_safe() ({ \ |
| unsigned int __dummy; \ |
| /* This could fault if %cr4 does not exist */ \ |
| __asm__("1: movl %%cr4, %0 \n" \ |
| "2: \n" \ |
| ".section __ex_table,\"a\" \n" \ |
| ".long 1b,2b \n" \ |
| ".previous \n" \ |
| : "=r" (__dummy): "0" (0)); \ |
| __dummy; \ |
| }) |
| |
| #define write_cr4(x) \ |
| __asm__ __volatile__("movl %0,%%cr4": :"r" (x)); |
| #define stts() write_cr0(8 | read_cr0()) |
| |
| #endif /* __KERNEL__ */ |
| |
| #define wbinvd() \ |
| __asm__ __volatile__ ("wbinvd": : :"memory"); |
| |
| static inline unsigned long get_limit(unsigned long segment) |
| { |
| unsigned long __limit; |
| __asm__("lsll %1,%0" |
| :"=r" (__limit):"r" (segment)); |
| return __limit+1; |
| } |
| |
| #define nop() __asm__ __volatile__ ("nop") |
| |
| #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr)))) |
| |
| #define tas(ptr) (xchg((ptr),1)) |
| |
| struct __xchg_dummy { unsigned long a[100]; }; |
| #define __xg(x) ((struct __xchg_dummy *)(x)) |
| |
| |
| #ifdef CONFIG_X86_CMPXCHG64 |
| |
| /* |
| * The semantics of XCHGCMP8B are a bit strange, this is why |
| * there is a loop and the loading of %%eax and %%edx has to |
| * be inside. This inlines well in most cases, the cached |
| * cost is around ~38 cycles. (in the future we might want |
| * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that |
| * might have an implicit FPU-save as a cost, so it's not |
| * clear which path to go.) |
| * |
| * cmpxchg8b must be used with the lock prefix here to allow |
| * the instruction to be executed atomically, see page 3-102 |
| * of the instruction set reference 24319102.pdf. We need |
| * the reader side to see the coherent 64bit value. |
| */ |
| static inline void __set_64bit (unsigned long long * ptr, |
| unsigned int low, unsigned int high) |
| { |
| __asm__ __volatile__ ( |
| "\n1:\t" |
| "movl (%0), %%eax\n\t" |
| "movl 4(%0), %%edx\n\t" |
| "lock cmpxchg8b (%0)\n\t" |
| "jnz 1b" |
| : /* no outputs */ |
| : "D"(ptr), |
| "b"(low), |
| "c"(high) |
| : "ax","dx","memory"); |
| } |
| |
| static inline void __set_64bit_constant (unsigned long long *ptr, |
| unsigned long long value) |
| { |
| __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL)); |
| } |
| #define ll_low(x) *(((unsigned int*)&(x))+0) |
| #define ll_high(x) *(((unsigned int*)&(x))+1) |
| |
| static inline void __set_64bit_var (unsigned long long *ptr, |
| unsigned long long value) |
| { |
| __set_64bit(ptr,ll_low(value), ll_high(value)); |
| } |
| |
| #define set_64bit(ptr,value) \ |
| (__builtin_constant_p(value) ? \ |
| __set_64bit_constant(ptr, value) : \ |
| __set_64bit_var(ptr, value) ) |
| |
| #define _set_64bit(ptr,value) \ |
| (__builtin_constant_p(value) ? \ |
| __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \ |
| __set_64bit(ptr, ll_low(value), ll_high(value)) ) |
| |
| #endif |
| |
| /* |
| * Note: no "lock" prefix even on SMP: xchg always implies lock anyway |
| * Note 2: xchg has side effect, so that attribute volatile is necessary, |
| * but generally the primitive is invalid, *ptr is output argument. --ANK |
| */ |
| static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size) |
| { |
| switch (size) { |
| case 1: |
| __asm__ __volatile__("xchgb %b0,%1" |
| :"=q" (x) |
| :"m" (*__xg(ptr)), "0" (x) |
| :"memory"); |
| break; |
| case 2: |
| __asm__ __volatile__("xchgw %w0,%1" |
| :"=r" (x) |
| :"m" (*__xg(ptr)), "0" (x) |
| :"memory"); |
| break; |
| case 4: |
| __asm__ __volatile__("xchgl %0,%1" |
| :"=r" (x) |
| :"m" (*__xg(ptr)), "0" (x) |
| :"memory"); |
| break; |
| } |
| return x; |
| } |
| |
| /* |
| * Atomic compare and exchange. Compare OLD with MEM, if identical, |
| * store NEW in MEM. Return the initial value in MEM. Success is |
| * indicated by comparing RETURN with OLD. |
| */ |
| |
| #ifdef CONFIG_X86_CMPXCHG |
| #define __HAVE_ARCH_CMPXCHG 1 |
| #define cmpxchg(ptr,o,n)\ |
| ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\ |
| (unsigned long)(n),sizeof(*(ptr)))) |
| #endif |
| |
| static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old, |
| unsigned long new, int size) |
| { |
| unsigned long prev; |
| switch (size) { |
| case 1: |
| __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2" |
| : "=a"(prev) |
| : "q"(new), "m"(*__xg(ptr)), "0"(old) |
| : "memory"); |
| return prev; |
| case 2: |
| __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2" |
| : "=a"(prev) |
| : "r"(new), "m"(*__xg(ptr)), "0"(old) |
| : "memory"); |
| return prev; |
| case 4: |
| __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2" |
| : "=a"(prev) |
| : "r"(new), "m"(*__xg(ptr)), "0"(old) |
| : "memory"); |
| return prev; |
| } |
| return old; |
| } |
| |
| #ifndef CONFIG_X86_CMPXCHG |
| /* |
| * Building a kernel capable running on 80386. It may be necessary to |
| * simulate the cmpxchg on the 80386 CPU. For that purpose we define |
| * a function for each of the sizes we support. |
| */ |
| |
| extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8); |
| extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16); |
| extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32); |
| |
| static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old, |
| unsigned long new, int size) |
| { |
| switch (size) { |
| case 1: |
| return cmpxchg_386_u8(ptr, old, new); |
| case 2: |
| return cmpxchg_386_u16(ptr, old, new); |
| case 4: |
| return cmpxchg_386_u32(ptr, old, new); |
| } |
| return old; |
| } |
| |
| #define cmpxchg(ptr,o,n) \ |
| ({ \ |
| __typeof__(*(ptr)) __ret; \ |
| if (likely(boot_cpu_data.x86 > 3)) \ |
| __ret = __cmpxchg((ptr), (unsigned long)(o), \ |
| (unsigned long)(n), sizeof(*(ptr))); \ |
| else \ |
| __ret = cmpxchg_386((ptr), (unsigned long)(o), \ |
| (unsigned long)(n), sizeof(*(ptr))); \ |
| __ret; \ |
| }) |
| #endif |
| |
| #ifdef CONFIG_X86_CMPXCHG64 |
| |
| static inline unsigned long long __cmpxchg64(volatile void *ptr, unsigned long long old, |
| unsigned long long new) |
| { |
| unsigned long long prev; |
| __asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3" |
| : "=A"(prev) |
| : "b"((unsigned long)new), |
| "c"((unsigned long)(new >> 32)), |
| "m"(*__xg(ptr)), |
| "0"(old) |
| : "memory"); |
| return prev; |
| } |
| |
| #define cmpxchg64(ptr,o,n)\ |
| ((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\ |
| (unsigned long long)(n))) |
| |
| #endif |
| |
| #ifdef __KERNEL__ |
| struct alt_instr { |
| __u8 *instr; /* original instruction */ |
| __u8 *replacement; |
| __u8 cpuid; /* cpuid bit set for replacement */ |
| __u8 instrlen; /* length of original instruction */ |
| __u8 replacementlen; /* length of new instruction, <= instrlen */ |
| __u8 pad; |
| }; |
| #endif |
| |
| /* |
| * Alternative instructions for different CPU types or capabilities. |
| * |
| * This allows to use optimized instructions even on generic binary |
| * kernels. |
| * |
| * length of oldinstr must be longer or equal the length of newinstr |
| * It can be padded with nops as needed. |
| * |
| * For non barrier like inlines please define new variants |
| * without volatile and memory clobber. |
| */ |
| #define alternative(oldinstr, newinstr, feature) \ |
| asm volatile ("661:\n\t" oldinstr "\n662:\n" \ |
| ".section .altinstructions,\"a\"\n" \ |
| " .align 4\n" \ |
| " .long 661b\n" /* label */ \ |
| " .long 663f\n" /* new instruction */ \ |
| " .byte %c0\n" /* feature bit */ \ |
| " .byte 662b-661b\n" /* sourcelen */ \ |
| " .byte 664f-663f\n" /* replacementlen */ \ |
| ".previous\n" \ |
| ".section .altinstr_replacement,\"ax\"\n" \ |
| "663:\n\t" newinstr "\n664:\n" /* replacement */ \ |
| ".previous" :: "i" (feature) : "memory") |
| |
| /* |
| * Alternative inline assembly with input. |
| * |
| * Pecularities: |
| * No memory clobber here. |
| * Argument numbers start with 1. |
| * Best is to use constraints that are fixed size (like (%1) ... "r") |
| * If you use variable sized constraints like "m" or "g" in the |
| * replacement maake sure to pad to the worst case length. |
| */ |
| #define alternative_input(oldinstr, newinstr, feature, input...) \ |
| asm volatile ("661:\n\t" oldinstr "\n662:\n" \ |
| ".section .altinstructions,\"a\"\n" \ |
| " .align 4\n" \ |
| " .long 661b\n" /* label */ \ |
| " .long 663f\n" /* new instruction */ \ |
| " .byte %c0\n" /* feature bit */ \ |
| " .byte 662b-661b\n" /* sourcelen */ \ |
| " .byte 664f-663f\n" /* replacementlen */ \ |
| ".previous\n" \ |
| ".section .altinstr_replacement,\"ax\"\n" \ |
| "663:\n\t" newinstr "\n664:\n" /* replacement */ \ |
| ".previous" :: "i" (feature), ##input) |
| |
| /* |
| * Force strict CPU ordering. |
| * And yes, this is required on UP too when we're talking |
| * to devices. |
| * |
| * For now, "wmb()" doesn't actually do anything, as all |
| * Intel CPU's follow what Intel calls a *Processor Order*, |
| * in which all writes are seen in the program order even |
| * outside the CPU. |
| * |
| * I expect future Intel CPU's to have a weaker ordering, |
| * but I'd also expect them to finally get their act together |
| * and add some real memory barriers if so. |
| * |
| * Some non intel clones support out of order store. wmb() ceases to be a |
| * nop for these. |
| */ |
| |
| |
| /* |
| * Actually only lfence would be needed for mb() because all stores done |
| * by the kernel should be already ordered. But keep a full barrier for now. |
| */ |
| |
| #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2) |
| #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2) |
| |
| /** |
| * read_barrier_depends - Flush all pending reads that subsequents reads |
| * depend on. |
| * |
| * No data-dependent reads from memory-like regions are ever reordered |
| * over this barrier. All reads preceding this primitive are guaranteed |
| * to access memory (but not necessarily other CPUs' caches) before any |
| * reads following this primitive that depend on the data return by |
| * any of the preceding reads. This primitive is much lighter weight than |
| * rmb() on most CPUs, and is never heavier weight than is |
| * rmb(). |
| * |
| * These ordering constraints are respected by both the local CPU |
| * and the compiler. |
| * |
| * Ordering is not guaranteed by anything other than these primitives, |
| * not even by data dependencies. See the documentation for |
| * memory_barrier() for examples and URLs to more information. |
| * |
| * For example, the following code would force ordering (the initial |
| * value of "a" is zero, "b" is one, and "p" is "&a"): |
| * |
| * <programlisting> |
| * CPU 0 CPU 1 |
| * |
| * b = 2; |
| * memory_barrier(); |
| * p = &b; q = p; |
| * read_barrier_depends(); |
| * d = *q; |
| * </programlisting> |
| * |
| * because the read of "*q" depends on the read of "p" and these |
| * two reads are separated by a read_barrier_depends(). However, |
| * the following code, with the same initial values for "a" and "b": |
| * |
| * <programlisting> |
| * CPU 0 CPU 1 |
| * |
| * a = 2; |
| * memory_barrier(); |
| * b = 3; y = b; |
| * read_barrier_depends(); |
| * x = a; |
| * </programlisting> |
| * |
| * does not enforce ordering, since there is no data dependency between |
| * the read of "a" and the read of "b". Therefore, on some CPUs, such |
| * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb() |
| * in cases like thiswhere there are no data dependencies. |
| **/ |
| |
| #define read_barrier_depends() do { } while(0) |
| |
| #ifdef CONFIG_X86_OOSTORE |
| /* Actually there are no OOO store capable CPUs for now that do SSE, |
| but make it already an possibility. */ |
| #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM) |
| #else |
| #define wmb() __asm__ __volatile__ ("": : :"memory") |
| #endif |
| |
| #ifdef CONFIG_SMP |
| #define smp_mb() mb() |
| #define smp_rmb() rmb() |
| #define smp_wmb() wmb() |
| #define smp_read_barrier_depends() read_barrier_depends() |
| #define set_mb(var, value) do { (void) xchg(&var, value); } while (0) |
| #else |
| #define smp_mb() barrier() |
| #define smp_rmb() barrier() |
| #define smp_wmb() barrier() |
| #define smp_read_barrier_depends() do { } while(0) |
| #define set_mb(var, value) do { var = value; barrier(); } while (0) |
| #endif |
| |
| #define set_wmb(var, value) do { var = value; wmb(); } while (0) |
| |
| /* interrupt control.. */ |
| #define local_save_flags(x) do { typecheck(unsigned long,x); __asm__ __volatile__("pushfl ; popl %0":"=g" (x): /* no input */); } while (0) |
| #define local_irq_restore(x) do { typecheck(unsigned long,x); __asm__ __volatile__("pushl %0 ; popfl": /* no output */ :"g" (x):"memory", "cc"); } while (0) |
| #define local_irq_disable() __asm__ __volatile__("cli": : :"memory") |
| #define local_irq_enable() __asm__ __volatile__("sti": : :"memory") |
| /* used in the idle loop; sti takes one instruction cycle to complete */ |
| #define safe_halt() __asm__ __volatile__("sti; hlt": : :"memory") |
| /* used when interrupts are already enabled or to shutdown the processor */ |
| #define halt() __asm__ __volatile__("hlt": : :"memory") |
| |
| #define irqs_disabled() \ |
| ({ \ |
| unsigned long flags; \ |
| local_save_flags(flags); \ |
| !(flags & (1<<9)); \ |
| }) |
| |
| /* For spinlocks etc */ |
| #define local_irq_save(x) __asm__ __volatile__("pushfl ; popl %0 ; cli":"=g" (x): /* no input */ :"memory") |
| |
| /* |
| * disable hlt during certain critical i/o operations |
| */ |
| #define HAVE_DISABLE_HLT |
| void disable_hlt(void); |
| void enable_hlt(void); |
| |
| extern int es7000_plat; |
| void cpu_idle_wait(void); |
| |
| /* |
| * On SMP systems, when the scheduler does migration-cost autodetection, |
| * it needs a way to flush as much of the CPU's caches as possible: |
| */ |
| static inline void sched_cacheflush(void) |
| { |
| wbinvd(); |
| } |
| |
| extern unsigned long arch_align_stack(unsigned long sp); |
| |
| #endif |