| /************************************************************************** |
| * |
| * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sub license, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, |
| * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
| * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE |
| * USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| **************************************************************************/ |
| |
| #include "ttm/ttm_memory.h" |
| #include "ttm/ttm_module.h" |
| #include <linux/spinlock.h> |
| #include <linux/sched.h> |
| #include <linux/wait.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| |
| #define TTM_MEMORY_ALLOC_RETRIES 4 |
| |
| struct ttm_mem_zone { |
| struct kobject kobj; |
| struct ttm_mem_global *glob; |
| const char *name; |
| uint64_t zone_mem; |
| uint64_t emer_mem; |
| uint64_t max_mem; |
| uint64_t swap_limit; |
| uint64_t used_mem; |
| }; |
| |
| static struct attribute ttm_mem_sys = { |
| .name = "zone_memory", |
| .mode = S_IRUGO |
| }; |
| static struct attribute ttm_mem_emer = { |
| .name = "emergency_memory", |
| .mode = S_IRUGO | S_IWUSR |
| }; |
| static struct attribute ttm_mem_max = { |
| .name = "available_memory", |
| .mode = S_IRUGO | S_IWUSR |
| }; |
| static struct attribute ttm_mem_swap = { |
| .name = "swap_limit", |
| .mode = S_IRUGO | S_IWUSR |
| }; |
| static struct attribute ttm_mem_used = { |
| .name = "used_memory", |
| .mode = S_IRUGO |
| }; |
| |
| static void ttm_mem_zone_kobj_release(struct kobject *kobj) |
| { |
| struct ttm_mem_zone *zone = |
| container_of(kobj, struct ttm_mem_zone, kobj); |
| |
| printk(KERN_INFO TTM_PFX |
| "Zone %7s: Used memory at exit: %llu kiB.\n", |
| zone->name, (unsigned long long) zone->used_mem >> 10); |
| kfree(zone); |
| } |
| |
| static ssize_t ttm_mem_zone_show(struct kobject *kobj, |
| struct attribute *attr, |
| char *buffer) |
| { |
| struct ttm_mem_zone *zone = |
| container_of(kobj, struct ttm_mem_zone, kobj); |
| uint64_t val = 0; |
| |
| spin_lock(&zone->glob->lock); |
| if (attr == &ttm_mem_sys) |
| val = zone->zone_mem; |
| else if (attr == &ttm_mem_emer) |
| val = zone->emer_mem; |
| else if (attr == &ttm_mem_max) |
| val = zone->max_mem; |
| else if (attr == &ttm_mem_swap) |
| val = zone->swap_limit; |
| else if (attr == &ttm_mem_used) |
| val = zone->used_mem; |
| spin_unlock(&zone->glob->lock); |
| |
| return snprintf(buffer, PAGE_SIZE, "%llu\n", |
| (unsigned long long) val >> 10); |
| } |
| |
| static void ttm_check_swapping(struct ttm_mem_global *glob); |
| |
| static ssize_t ttm_mem_zone_store(struct kobject *kobj, |
| struct attribute *attr, |
| const char *buffer, |
| size_t size) |
| { |
| struct ttm_mem_zone *zone = |
| container_of(kobj, struct ttm_mem_zone, kobj); |
| int chars; |
| unsigned long val; |
| uint64_t val64; |
| |
| chars = sscanf(buffer, "%lu", &val); |
| if (chars == 0) |
| return size; |
| |
| val64 = val; |
| val64 <<= 10; |
| |
| spin_lock(&zone->glob->lock); |
| if (val64 > zone->zone_mem) |
| val64 = zone->zone_mem; |
| if (attr == &ttm_mem_emer) { |
| zone->emer_mem = val64; |
| if (zone->max_mem > val64) |
| zone->max_mem = val64; |
| } else if (attr == &ttm_mem_max) { |
| zone->max_mem = val64; |
| if (zone->emer_mem < val64) |
| zone->emer_mem = val64; |
| } else if (attr == &ttm_mem_swap) |
| zone->swap_limit = val64; |
| spin_unlock(&zone->glob->lock); |
| |
| ttm_check_swapping(zone->glob); |
| |
| return size; |
| } |
| |
| static struct attribute *ttm_mem_zone_attrs[] = { |
| &ttm_mem_sys, |
| &ttm_mem_emer, |
| &ttm_mem_max, |
| &ttm_mem_swap, |
| &ttm_mem_used, |
| NULL |
| }; |
| |
| static const struct sysfs_ops ttm_mem_zone_ops = { |
| .show = &ttm_mem_zone_show, |
| .store = &ttm_mem_zone_store |
| }; |
| |
| static struct kobj_type ttm_mem_zone_kobj_type = { |
| .release = &ttm_mem_zone_kobj_release, |
| .sysfs_ops = &ttm_mem_zone_ops, |
| .default_attrs = ttm_mem_zone_attrs, |
| }; |
| |
| static void ttm_mem_global_kobj_release(struct kobject *kobj) |
| { |
| struct ttm_mem_global *glob = |
| container_of(kobj, struct ttm_mem_global, kobj); |
| |
| kfree(glob); |
| } |
| |
| static struct kobj_type ttm_mem_glob_kobj_type = { |
| .release = &ttm_mem_global_kobj_release, |
| }; |
| |
| static bool ttm_zones_above_swap_target(struct ttm_mem_global *glob, |
| bool from_wq, uint64_t extra) |
| { |
| unsigned int i; |
| struct ttm_mem_zone *zone; |
| uint64_t target; |
| |
| for (i = 0; i < glob->num_zones; ++i) { |
| zone = glob->zones[i]; |
| |
| if (from_wq) |
| target = zone->swap_limit; |
| else if (capable(CAP_SYS_ADMIN)) |
| target = zone->emer_mem; |
| else |
| target = zone->max_mem; |
| |
| target = (extra > target) ? 0ULL : target; |
| |
| if (zone->used_mem > target) |
| return true; |
| } |
| return false; |
| } |
| |
| /** |
| * At this point we only support a single shrink callback. |
| * Extend this if needed, perhaps using a linked list of callbacks. |
| * Note that this function is reentrant: |
| * many threads may try to swap out at any given time. |
| */ |
| |
| static void ttm_shrink(struct ttm_mem_global *glob, bool from_wq, |
| uint64_t extra) |
| { |
| int ret; |
| struct ttm_mem_shrink *shrink; |
| |
| spin_lock(&glob->lock); |
| if (glob->shrink == NULL) |
| goto out; |
| |
| while (ttm_zones_above_swap_target(glob, from_wq, extra)) { |
| shrink = glob->shrink; |
| spin_unlock(&glob->lock); |
| ret = shrink->do_shrink(shrink); |
| spin_lock(&glob->lock); |
| if (unlikely(ret != 0)) |
| goto out; |
| } |
| out: |
| spin_unlock(&glob->lock); |
| } |
| |
| |
| |
| static void ttm_shrink_work(struct work_struct *work) |
| { |
| struct ttm_mem_global *glob = |
| container_of(work, struct ttm_mem_global, work); |
| |
| ttm_shrink(glob, true, 0ULL); |
| } |
| |
| static int ttm_mem_init_kernel_zone(struct ttm_mem_global *glob, |
| const struct sysinfo *si) |
| { |
| struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL); |
| uint64_t mem; |
| int ret; |
| |
| if (unlikely(!zone)) |
| return -ENOMEM; |
| |
| mem = si->totalram - si->totalhigh; |
| mem *= si->mem_unit; |
| |
| zone->name = "kernel"; |
| zone->zone_mem = mem; |
| zone->max_mem = mem >> 1; |
| zone->emer_mem = (mem >> 1) + (mem >> 2); |
| zone->swap_limit = zone->max_mem - (mem >> 3); |
| zone->used_mem = 0; |
| zone->glob = glob; |
| glob->zone_kernel = zone; |
| ret = kobject_init_and_add( |
| &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name); |
| if (unlikely(ret != 0)) { |
| kobject_put(&zone->kobj); |
| return ret; |
| } |
| glob->zones[glob->num_zones++] = zone; |
| return 0; |
| } |
| |
| #ifdef CONFIG_HIGHMEM |
| static int ttm_mem_init_highmem_zone(struct ttm_mem_global *glob, |
| const struct sysinfo *si) |
| { |
| struct ttm_mem_zone *zone; |
| uint64_t mem; |
| int ret; |
| |
| if (si->totalhigh == 0) |
| return 0; |
| |
| zone = kzalloc(sizeof(*zone), GFP_KERNEL); |
| if (unlikely(!zone)) |
| return -ENOMEM; |
| |
| mem = si->totalram; |
| mem *= si->mem_unit; |
| |
| zone->name = "highmem"; |
| zone->zone_mem = mem; |
| zone->max_mem = mem >> 1; |
| zone->emer_mem = (mem >> 1) + (mem >> 2); |
| zone->swap_limit = zone->max_mem - (mem >> 3); |
| zone->used_mem = 0; |
| zone->glob = glob; |
| glob->zone_highmem = zone; |
| ret = kobject_init_and_add( |
| &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name); |
| if (unlikely(ret != 0)) { |
| kobject_put(&zone->kobj); |
| return ret; |
| } |
| glob->zones[glob->num_zones++] = zone; |
| return 0; |
| } |
| #else |
| static int ttm_mem_init_dma32_zone(struct ttm_mem_global *glob, |
| const struct sysinfo *si) |
| { |
| struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL); |
| uint64_t mem; |
| int ret; |
| |
| if (unlikely(!zone)) |
| return -ENOMEM; |
| |
| mem = si->totalram; |
| mem *= si->mem_unit; |
| |
| /** |
| * No special dma32 zone needed. |
| */ |
| |
| if (mem <= ((uint64_t) 1ULL << 32)) { |
| kfree(zone); |
| return 0; |
| } |
| |
| /* |
| * Limit max dma32 memory to 4GB for now |
| * until we can figure out how big this |
| * zone really is. |
| */ |
| |
| mem = ((uint64_t) 1ULL << 32); |
| zone->name = "dma32"; |
| zone->zone_mem = mem; |
| zone->max_mem = mem >> 1; |
| zone->emer_mem = (mem >> 1) + (mem >> 2); |
| zone->swap_limit = zone->max_mem - (mem >> 3); |
| zone->used_mem = 0; |
| zone->glob = glob; |
| glob->zone_dma32 = zone; |
| ret = kobject_init_and_add( |
| &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name); |
| if (unlikely(ret != 0)) { |
| kobject_put(&zone->kobj); |
| return ret; |
| } |
| glob->zones[glob->num_zones++] = zone; |
| return 0; |
| } |
| #endif |
| |
| int ttm_mem_global_init(struct ttm_mem_global *glob) |
| { |
| struct sysinfo si; |
| int ret; |
| int i; |
| struct ttm_mem_zone *zone; |
| |
| spin_lock_init(&glob->lock); |
| glob->swap_queue = create_singlethread_workqueue("ttm_swap"); |
| INIT_WORK(&glob->work, ttm_shrink_work); |
| init_waitqueue_head(&glob->queue); |
| ret = kobject_init_and_add( |
| &glob->kobj, &ttm_mem_glob_kobj_type, ttm_get_kobj(), "memory_accounting"); |
| if (unlikely(ret != 0)) { |
| kobject_put(&glob->kobj); |
| return ret; |
| } |
| |
| si_meminfo(&si); |
| |
| ret = ttm_mem_init_kernel_zone(glob, &si); |
| if (unlikely(ret != 0)) |
| goto out_no_zone; |
| #ifdef CONFIG_HIGHMEM |
| ret = ttm_mem_init_highmem_zone(glob, &si); |
| if (unlikely(ret != 0)) |
| goto out_no_zone; |
| #else |
| ret = ttm_mem_init_dma32_zone(glob, &si); |
| if (unlikely(ret != 0)) |
| goto out_no_zone; |
| #endif |
| for (i = 0; i < glob->num_zones; ++i) { |
| zone = glob->zones[i]; |
| printk(KERN_INFO TTM_PFX |
| "Zone %7s: Available graphics memory: %llu kiB.\n", |
| zone->name, (unsigned long long) zone->max_mem >> 10); |
| } |
| return 0; |
| out_no_zone: |
| ttm_mem_global_release(glob); |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_mem_global_init); |
| |
| void ttm_mem_global_release(struct ttm_mem_global *glob) |
| { |
| unsigned int i; |
| struct ttm_mem_zone *zone; |
| |
| flush_workqueue(glob->swap_queue); |
| destroy_workqueue(glob->swap_queue); |
| glob->swap_queue = NULL; |
| for (i = 0; i < glob->num_zones; ++i) { |
| zone = glob->zones[i]; |
| kobject_del(&zone->kobj); |
| kobject_put(&zone->kobj); |
| } |
| kobject_del(&glob->kobj); |
| kobject_put(&glob->kobj); |
| } |
| EXPORT_SYMBOL(ttm_mem_global_release); |
| |
| static void ttm_check_swapping(struct ttm_mem_global *glob) |
| { |
| bool needs_swapping = false; |
| unsigned int i; |
| struct ttm_mem_zone *zone; |
| |
| spin_lock(&glob->lock); |
| for (i = 0; i < glob->num_zones; ++i) { |
| zone = glob->zones[i]; |
| if (zone->used_mem > zone->swap_limit) { |
| needs_swapping = true; |
| break; |
| } |
| } |
| |
| spin_unlock(&glob->lock); |
| |
| if (unlikely(needs_swapping)) |
| (void)queue_work(glob->swap_queue, &glob->work); |
| |
| } |
| |
| static void ttm_mem_global_free_zone(struct ttm_mem_global *glob, |
| struct ttm_mem_zone *single_zone, |
| uint64_t amount) |
| { |
| unsigned int i; |
| struct ttm_mem_zone *zone; |
| |
| spin_lock(&glob->lock); |
| for (i = 0; i < glob->num_zones; ++i) { |
| zone = glob->zones[i]; |
| if (single_zone && zone != single_zone) |
| continue; |
| zone->used_mem -= amount; |
| } |
| spin_unlock(&glob->lock); |
| } |
| |
| void ttm_mem_global_free(struct ttm_mem_global *glob, |
| uint64_t amount) |
| { |
| return ttm_mem_global_free_zone(glob, NULL, amount); |
| } |
| EXPORT_SYMBOL(ttm_mem_global_free); |
| |
| static int ttm_mem_global_reserve(struct ttm_mem_global *glob, |
| struct ttm_mem_zone *single_zone, |
| uint64_t amount, bool reserve) |
| { |
| uint64_t limit; |
| int ret = -ENOMEM; |
| unsigned int i; |
| struct ttm_mem_zone *zone; |
| |
| spin_lock(&glob->lock); |
| for (i = 0; i < glob->num_zones; ++i) { |
| zone = glob->zones[i]; |
| if (single_zone && zone != single_zone) |
| continue; |
| |
| limit = (capable(CAP_SYS_ADMIN)) ? |
| zone->emer_mem : zone->max_mem; |
| |
| if (zone->used_mem > limit) |
| goto out_unlock; |
| } |
| |
| if (reserve) { |
| for (i = 0; i < glob->num_zones; ++i) { |
| zone = glob->zones[i]; |
| if (single_zone && zone != single_zone) |
| continue; |
| zone->used_mem += amount; |
| } |
| } |
| |
| ret = 0; |
| out_unlock: |
| spin_unlock(&glob->lock); |
| ttm_check_swapping(glob); |
| |
| return ret; |
| } |
| |
| |
| static int ttm_mem_global_alloc_zone(struct ttm_mem_global *glob, |
| struct ttm_mem_zone *single_zone, |
| uint64_t memory, |
| bool no_wait, bool interruptible) |
| { |
| int count = TTM_MEMORY_ALLOC_RETRIES; |
| |
| while (unlikely(ttm_mem_global_reserve(glob, |
| single_zone, |
| memory, true) |
| != 0)) { |
| if (no_wait) |
| return -ENOMEM; |
| if (unlikely(count-- == 0)) |
| return -ENOMEM; |
| ttm_shrink(glob, false, memory + (memory >> 2) + 16); |
| } |
| |
| return 0; |
| } |
| |
| int ttm_mem_global_alloc(struct ttm_mem_global *glob, uint64_t memory, |
| bool no_wait, bool interruptible) |
| { |
| /** |
| * Normal allocations of kernel memory are registered in |
| * all zones. |
| */ |
| |
| return ttm_mem_global_alloc_zone(glob, NULL, memory, no_wait, |
| interruptible); |
| } |
| EXPORT_SYMBOL(ttm_mem_global_alloc); |
| |
| int ttm_mem_global_alloc_page(struct ttm_mem_global *glob, |
| struct page *page, |
| bool no_wait, bool interruptible) |
| { |
| |
| struct ttm_mem_zone *zone = NULL; |
| |
| /** |
| * Page allocations may be registed in a single zone |
| * only if highmem or !dma32. |
| */ |
| |
| #ifdef CONFIG_HIGHMEM |
| if (PageHighMem(page) && glob->zone_highmem != NULL) |
| zone = glob->zone_highmem; |
| #else |
| if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL) |
| zone = glob->zone_kernel; |
| #endif |
| return ttm_mem_global_alloc_zone(glob, zone, PAGE_SIZE, no_wait, |
| interruptible); |
| } |
| |
| void ttm_mem_global_free_page(struct ttm_mem_global *glob, struct page *page) |
| { |
| struct ttm_mem_zone *zone = NULL; |
| |
| #ifdef CONFIG_HIGHMEM |
| if (PageHighMem(page) && glob->zone_highmem != NULL) |
| zone = glob->zone_highmem; |
| #else |
| if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL) |
| zone = glob->zone_kernel; |
| #endif |
| ttm_mem_global_free_zone(glob, zone, PAGE_SIZE); |
| } |
| |
| |
| size_t ttm_round_pot(size_t size) |
| { |
| if ((size & (size - 1)) == 0) |
| return size; |
| else if (size > PAGE_SIZE) |
| return PAGE_ALIGN(size); |
| else { |
| size_t tmp_size = 4; |
| |
| while (tmp_size < size) |
| tmp_size <<= 1; |
| |
| return tmp_size; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_round_pot); |