blob: 058d7f95f5ae17df77c65c473a9683d4ec2a737a [file] [log] [blame]
/*
* Copyright (C) 2005 - 2010 ServerEngines
* All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation. The full GNU General
* Public License is included in this distribution in the file called COPYING.
*
* Contact Information:
* linux-drivers@serverengines.com
*
* ServerEngines
* 209 N. Fair Oaks Ave
* Sunnyvale, CA 94085
*/
#include "be.h"
#include "be_cmds.h"
#include <asm/div64.h>
MODULE_VERSION(DRV_VER);
MODULE_DEVICE_TABLE(pci, be_dev_ids);
MODULE_DESCRIPTION(DRV_DESC " " DRV_VER);
MODULE_AUTHOR("ServerEngines Corporation");
MODULE_LICENSE("GPL");
static unsigned int rx_frag_size = 2048;
static unsigned int num_vfs;
module_param(rx_frag_size, uint, S_IRUGO);
module_param(num_vfs, uint, S_IRUGO);
MODULE_PARM_DESC(rx_frag_size, "Size of a fragment that holds rcvd data.");
MODULE_PARM_DESC(num_vfs, "Number of PCI VFs to initialize");
static DEFINE_PCI_DEVICE_TABLE(be_dev_ids) = {
{ PCI_DEVICE(BE_VENDOR_ID, BE_DEVICE_ID1) },
{ PCI_DEVICE(BE_VENDOR_ID, BE_DEVICE_ID2) },
{ PCI_DEVICE(BE_VENDOR_ID, OC_DEVICE_ID1) },
{ PCI_DEVICE(BE_VENDOR_ID, OC_DEVICE_ID2) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, be_dev_ids);
static void be_queue_free(struct be_adapter *adapter, struct be_queue_info *q)
{
struct be_dma_mem *mem = &q->dma_mem;
if (mem->va)
pci_free_consistent(adapter->pdev, mem->size,
mem->va, mem->dma);
}
static int be_queue_alloc(struct be_adapter *adapter, struct be_queue_info *q,
u16 len, u16 entry_size)
{
struct be_dma_mem *mem = &q->dma_mem;
memset(q, 0, sizeof(*q));
q->len = len;
q->entry_size = entry_size;
mem->size = len * entry_size;
mem->va = pci_alloc_consistent(adapter->pdev, mem->size, &mem->dma);
if (!mem->va)
return -1;
memset(mem->va, 0, mem->size);
return 0;
}
static void be_intr_set(struct be_adapter *adapter, bool enable)
{
u8 __iomem *addr = adapter->pcicfg + PCICFG_MEMBAR_CTRL_INT_CTRL_OFFSET;
u32 reg = ioread32(addr);
u32 enabled = reg & MEMBAR_CTRL_INT_CTRL_HOSTINTR_MASK;
if (adapter->eeh_err)
return;
if (!enabled && enable)
reg |= MEMBAR_CTRL_INT_CTRL_HOSTINTR_MASK;
else if (enabled && !enable)
reg &= ~MEMBAR_CTRL_INT_CTRL_HOSTINTR_MASK;
else
return;
iowrite32(reg, addr);
}
static void be_rxq_notify(struct be_adapter *adapter, u16 qid, u16 posted)
{
u32 val = 0;
val |= qid & DB_RQ_RING_ID_MASK;
val |= posted << DB_RQ_NUM_POSTED_SHIFT;
iowrite32(val, adapter->db + DB_RQ_OFFSET);
}
static void be_txq_notify(struct be_adapter *adapter, u16 qid, u16 posted)
{
u32 val = 0;
val |= qid & DB_TXULP_RING_ID_MASK;
val |= (posted & DB_TXULP_NUM_POSTED_MASK) << DB_TXULP_NUM_POSTED_SHIFT;
iowrite32(val, adapter->db + DB_TXULP1_OFFSET);
}
static void be_eq_notify(struct be_adapter *adapter, u16 qid,
bool arm, bool clear_int, u16 num_popped)
{
u32 val = 0;
val |= qid & DB_EQ_RING_ID_MASK;
if (adapter->eeh_err)
return;
if (arm)
val |= 1 << DB_EQ_REARM_SHIFT;
if (clear_int)
val |= 1 << DB_EQ_CLR_SHIFT;
val |= 1 << DB_EQ_EVNT_SHIFT;
val |= num_popped << DB_EQ_NUM_POPPED_SHIFT;
iowrite32(val, adapter->db + DB_EQ_OFFSET);
}
void be_cq_notify(struct be_adapter *adapter, u16 qid, bool arm, u16 num_popped)
{
u32 val = 0;
val |= qid & DB_CQ_RING_ID_MASK;
if (adapter->eeh_err)
return;
if (arm)
val |= 1 << DB_CQ_REARM_SHIFT;
val |= num_popped << DB_CQ_NUM_POPPED_SHIFT;
iowrite32(val, adapter->db + DB_CQ_OFFSET);
}
static int be_mac_addr_set(struct net_device *netdev, void *p)
{
struct be_adapter *adapter = netdev_priv(netdev);
struct sockaddr *addr = p;
int status = 0;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
/* MAC addr configuration will be done in hardware for VFs
* by their corresponding PFs. Just copy to netdev addr here
*/
if (!be_physfn(adapter))
goto netdev_addr;
status = be_cmd_pmac_del(adapter, adapter->if_handle, adapter->pmac_id);
if (status)
return status;
status = be_cmd_pmac_add(adapter, (u8 *)addr->sa_data,
adapter->if_handle, &adapter->pmac_id);
netdev_addr:
if (!status)
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
return status;
}
void netdev_stats_update(struct be_adapter *adapter)
{
struct be_hw_stats *hw_stats = hw_stats_from_cmd(adapter->stats.cmd.va);
struct be_rxf_stats *rxf_stats = &hw_stats->rxf;
struct be_port_rxf_stats *port_stats =
&rxf_stats->port[adapter->port_num];
struct net_device_stats *dev_stats = &adapter->netdev->stats;
struct be_erx_stats *erx_stats = &hw_stats->erx;
dev_stats->rx_packets = drvr_stats(adapter)->be_rx_pkts;
dev_stats->tx_packets = drvr_stats(adapter)->be_tx_pkts;
dev_stats->rx_bytes = drvr_stats(adapter)->be_rx_bytes;
dev_stats->tx_bytes = drvr_stats(adapter)->be_tx_bytes;
/* bad pkts received */
dev_stats->rx_errors = port_stats->rx_crc_errors +
port_stats->rx_alignment_symbol_errors +
port_stats->rx_in_range_errors +
port_stats->rx_out_range_errors +
port_stats->rx_frame_too_long +
port_stats->rx_dropped_too_small +
port_stats->rx_dropped_too_short +
port_stats->rx_dropped_header_too_small +
port_stats->rx_dropped_tcp_length +
port_stats->rx_dropped_runt +
port_stats->rx_tcp_checksum_errs +
port_stats->rx_ip_checksum_errs +
port_stats->rx_udp_checksum_errs;
/* no space in linux buffers: best possible approximation */
dev_stats->rx_dropped =
erx_stats->rx_drops_no_fragments[adapter->rx_obj.q.id];
/* detailed rx errors */
dev_stats->rx_length_errors = port_stats->rx_in_range_errors +
port_stats->rx_out_range_errors +
port_stats->rx_frame_too_long;
/* receive ring buffer overflow */
dev_stats->rx_over_errors = 0;
dev_stats->rx_crc_errors = port_stats->rx_crc_errors;
/* frame alignment errors */
dev_stats->rx_frame_errors = port_stats->rx_alignment_symbol_errors;
/* receiver fifo overrun */
/* drops_no_pbuf is no per i/f, it's per BE card */
dev_stats->rx_fifo_errors = port_stats->rx_fifo_overflow +
port_stats->rx_input_fifo_overflow +
rxf_stats->rx_drops_no_pbuf;
/* receiver missed packetd */
dev_stats->rx_missed_errors = 0;
/* packet transmit problems */
dev_stats->tx_errors = 0;
/* no space available in linux */
dev_stats->tx_dropped = 0;
dev_stats->multicast = port_stats->rx_multicast_frames;
dev_stats->collisions = 0;
/* detailed tx_errors */
dev_stats->tx_aborted_errors = 0;
dev_stats->tx_carrier_errors = 0;
dev_stats->tx_fifo_errors = 0;
dev_stats->tx_heartbeat_errors = 0;
dev_stats->tx_window_errors = 0;
}
void be_link_status_update(struct be_adapter *adapter, bool link_up)
{
struct net_device *netdev = adapter->netdev;
/* If link came up or went down */
if (adapter->link_up != link_up) {
adapter->link_speed = -1;
if (link_up) {
netif_start_queue(netdev);
netif_carrier_on(netdev);
printk(KERN_INFO "%s: Link up\n", netdev->name);
} else {
netif_stop_queue(netdev);
netif_carrier_off(netdev);
printk(KERN_INFO "%s: Link down\n", netdev->name);
}
adapter->link_up = link_up;
}
}
/* Update the EQ delay n BE based on the RX frags consumed / sec */
static void be_rx_eqd_update(struct be_adapter *adapter)
{
struct be_eq_obj *rx_eq = &adapter->rx_eq;
struct be_drvr_stats *stats = &adapter->stats.drvr_stats;
ulong now = jiffies;
u32 eqd;
if (!rx_eq->enable_aic)
return;
/* Wrapped around */
if (time_before(now, stats->rx_fps_jiffies)) {
stats->rx_fps_jiffies = now;
return;
}
/* Update once a second */
if ((now - stats->rx_fps_jiffies) < HZ)
return;
stats->be_rx_fps = (stats->be_rx_frags - stats->be_prev_rx_frags) /
((now - stats->rx_fps_jiffies) / HZ);
stats->rx_fps_jiffies = now;
stats->be_prev_rx_frags = stats->be_rx_frags;
eqd = stats->be_rx_fps / 110000;
eqd = eqd << 3;
if (eqd > rx_eq->max_eqd)
eqd = rx_eq->max_eqd;
if (eqd < rx_eq->min_eqd)
eqd = rx_eq->min_eqd;
if (eqd < 10)
eqd = 0;
if (eqd != rx_eq->cur_eqd)
be_cmd_modify_eqd(adapter, rx_eq->q.id, eqd);
rx_eq->cur_eqd = eqd;
}
static struct net_device_stats *be_get_stats(struct net_device *dev)
{
return &dev->stats;
}
static u32 be_calc_rate(u64 bytes, unsigned long ticks)
{
u64 rate = bytes;
do_div(rate, ticks / HZ);
rate <<= 3; /* bytes/sec -> bits/sec */
do_div(rate, 1000000ul); /* MB/Sec */
return rate;
}
static void be_tx_rate_update(struct be_adapter *adapter)
{
struct be_drvr_stats *stats = drvr_stats(adapter);
ulong now = jiffies;
/* Wrapped around? */
if (time_before(now, stats->be_tx_jiffies)) {
stats->be_tx_jiffies = now;
return;
}
/* Update tx rate once in two seconds */
if ((now - stats->be_tx_jiffies) > 2 * HZ) {
stats->be_tx_rate = be_calc_rate(stats->be_tx_bytes
- stats->be_tx_bytes_prev,
now - stats->be_tx_jiffies);
stats->be_tx_jiffies = now;
stats->be_tx_bytes_prev = stats->be_tx_bytes;
}
}
static void be_tx_stats_update(struct be_adapter *adapter,
u32 wrb_cnt, u32 copied, u32 gso_segs, bool stopped)
{
struct be_drvr_stats *stats = drvr_stats(adapter);
stats->be_tx_reqs++;
stats->be_tx_wrbs += wrb_cnt;
stats->be_tx_bytes += copied;
stats->be_tx_pkts += (gso_segs ? gso_segs : 1);
if (stopped)
stats->be_tx_stops++;
}
/* Determine number of WRB entries needed to xmit data in an skb */
static u32 wrb_cnt_for_skb(struct sk_buff *skb, bool *dummy)
{
int cnt = (skb->len > skb->data_len);
cnt += skb_shinfo(skb)->nr_frags;
/* to account for hdr wrb */
cnt++;
if (cnt & 1) {
/* add a dummy to make it an even num */
cnt++;
*dummy = true;
} else
*dummy = false;
BUG_ON(cnt > BE_MAX_TX_FRAG_COUNT);
return cnt;
}
static inline void wrb_fill(struct be_eth_wrb *wrb, u64 addr, int len)
{
wrb->frag_pa_hi = upper_32_bits(addr);
wrb->frag_pa_lo = addr & 0xFFFFFFFF;
wrb->frag_len = len & ETH_WRB_FRAG_LEN_MASK;
}
static void wrb_fill_hdr(struct be_eth_hdr_wrb *hdr, struct sk_buff *skb,
bool vlan, u32 wrb_cnt, u32 len)
{
memset(hdr, 0, sizeof(*hdr));
AMAP_SET_BITS(struct amap_eth_hdr_wrb, crc, hdr, 1);
if (skb_shinfo(skb)->gso_segs > 1 && skb_shinfo(skb)->gso_size) {
AMAP_SET_BITS(struct amap_eth_hdr_wrb, lso, hdr, 1);
AMAP_SET_BITS(struct amap_eth_hdr_wrb, lso_mss,
hdr, skb_shinfo(skb)->gso_size);
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (is_tcp_pkt(skb))
AMAP_SET_BITS(struct amap_eth_hdr_wrb, tcpcs, hdr, 1);
else if (is_udp_pkt(skb))
AMAP_SET_BITS(struct amap_eth_hdr_wrb, udpcs, hdr, 1);
}
if (vlan && vlan_tx_tag_present(skb)) {
AMAP_SET_BITS(struct amap_eth_hdr_wrb, vlan, hdr, 1);
AMAP_SET_BITS(struct amap_eth_hdr_wrb, vlan_tag,
hdr, vlan_tx_tag_get(skb));
}
AMAP_SET_BITS(struct amap_eth_hdr_wrb, event, hdr, 1);
AMAP_SET_BITS(struct amap_eth_hdr_wrb, complete, hdr, 1);
AMAP_SET_BITS(struct amap_eth_hdr_wrb, num_wrb, hdr, wrb_cnt);
AMAP_SET_BITS(struct amap_eth_hdr_wrb, len, hdr, len);
}
static void unmap_tx_frag(struct pci_dev *pdev, struct be_eth_wrb *wrb,
bool unmap_single)
{
dma_addr_t dma;
be_dws_le_to_cpu(wrb, sizeof(*wrb));
dma = (u64)wrb->frag_pa_hi << 32 | (u64)wrb->frag_pa_lo;
if (wrb->frag_len) {
if (unmap_single)
pci_unmap_single(pdev, dma, wrb->frag_len,
PCI_DMA_TODEVICE);
else
pci_unmap_page(pdev, dma, wrb->frag_len,
PCI_DMA_TODEVICE);
}
}
static int make_tx_wrbs(struct be_adapter *adapter,
struct sk_buff *skb, u32 wrb_cnt, bool dummy_wrb)
{
dma_addr_t busaddr;
int i, copied = 0;
struct pci_dev *pdev = adapter->pdev;
struct sk_buff *first_skb = skb;
struct be_queue_info *txq = &adapter->tx_obj.q;
struct be_eth_wrb *wrb;
struct be_eth_hdr_wrb *hdr;
bool map_single = false;
u16 map_head;
hdr = queue_head_node(txq);
queue_head_inc(txq);
map_head = txq->head;
if (skb->len > skb->data_len) {
int len = skb_headlen(skb);
busaddr = pci_map_single(pdev, skb->data, len,
PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(pdev, busaddr))
goto dma_err;
map_single = true;
wrb = queue_head_node(txq);
wrb_fill(wrb, busaddr, len);
be_dws_cpu_to_le(wrb, sizeof(*wrb));
queue_head_inc(txq);
copied += len;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
struct skb_frag_struct *frag =
&skb_shinfo(skb)->frags[i];
busaddr = pci_map_page(pdev, frag->page,
frag->page_offset,
frag->size, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(pdev, busaddr))
goto dma_err;
wrb = queue_head_node(txq);
wrb_fill(wrb, busaddr, frag->size);
be_dws_cpu_to_le(wrb, sizeof(*wrb));
queue_head_inc(txq);
copied += frag->size;
}
if (dummy_wrb) {
wrb = queue_head_node(txq);
wrb_fill(wrb, 0, 0);
be_dws_cpu_to_le(wrb, sizeof(*wrb));
queue_head_inc(txq);
}
wrb_fill_hdr(hdr, first_skb, adapter->vlan_grp ? true : false,
wrb_cnt, copied);
be_dws_cpu_to_le(hdr, sizeof(*hdr));
return copied;
dma_err:
txq->head = map_head;
while (copied) {
wrb = queue_head_node(txq);
unmap_tx_frag(pdev, wrb, map_single);
map_single = false;
copied -= wrb->frag_len;
queue_head_inc(txq);
}
return 0;
}
static netdev_tx_t be_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct be_adapter *adapter = netdev_priv(netdev);
struct be_tx_obj *tx_obj = &adapter->tx_obj;
struct be_queue_info *txq = &tx_obj->q;
u32 wrb_cnt = 0, copied = 0;
u32 start = txq->head;
bool dummy_wrb, stopped = false;
wrb_cnt = wrb_cnt_for_skb(skb, &dummy_wrb);
copied = make_tx_wrbs(adapter, skb, wrb_cnt, dummy_wrb);
if (copied) {
/* record the sent skb in the sent_skb table */
BUG_ON(tx_obj->sent_skb_list[start]);
tx_obj->sent_skb_list[start] = skb;
/* Ensure txq has space for the next skb; Else stop the queue
* *BEFORE* ringing the tx doorbell, so that we serialze the
* tx compls of the current transmit which'll wake up the queue
*/
atomic_add(wrb_cnt, &txq->used);
if ((BE_MAX_TX_FRAG_COUNT + atomic_read(&txq->used)) >=
txq->len) {
netif_stop_queue(netdev);
stopped = true;
}
be_txq_notify(adapter, txq->id, wrb_cnt);
be_tx_stats_update(adapter, wrb_cnt, copied,
skb_shinfo(skb)->gso_segs, stopped);
} else {
txq->head = start;
dev_kfree_skb_any(skb);
}
return NETDEV_TX_OK;
}
static int be_change_mtu(struct net_device *netdev, int new_mtu)
{
struct be_adapter *adapter = netdev_priv(netdev);
if (new_mtu < BE_MIN_MTU ||
new_mtu > (BE_MAX_JUMBO_FRAME_SIZE -
(ETH_HLEN + ETH_FCS_LEN))) {
dev_info(&adapter->pdev->dev,
"MTU must be between %d and %d bytes\n",
BE_MIN_MTU,
(BE_MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN)));
return -EINVAL;
}
dev_info(&adapter->pdev->dev, "MTU changed from %d to %d bytes\n",
netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
return 0;
}
/*
* A max of 64 (BE_NUM_VLANS_SUPPORTED) vlans can be configured in BE.
* If the user configures more, place BE in vlan promiscuous mode.
*/
static int be_vid_config(struct be_adapter *adapter)
{
u16 vtag[BE_NUM_VLANS_SUPPORTED];
u16 ntags = 0, i;
int status = 0;
if (adapter->vlans_added <= adapter->max_vlans) {
/* Construct VLAN Table to give to HW */
for (i = 0; i < VLAN_GROUP_ARRAY_LEN; i++) {
if (adapter->vlan_tag[i]) {
vtag[ntags] = cpu_to_le16(i);
ntags++;
}
}
status = be_cmd_vlan_config(adapter, adapter->if_handle,
vtag, ntags, 1, 0);
} else {
status = be_cmd_vlan_config(adapter, adapter->if_handle,
NULL, 0, 1, 1);
}
return status;
}
static void be_vlan_register(struct net_device *netdev, struct vlan_group *grp)
{
struct be_adapter *adapter = netdev_priv(netdev);
struct be_eq_obj *rx_eq = &adapter->rx_eq;
struct be_eq_obj *tx_eq = &adapter->tx_eq;
be_eq_notify(adapter, rx_eq->q.id, false, false, 0);
be_eq_notify(adapter, tx_eq->q.id, false, false, 0);
adapter->vlan_grp = grp;
be_eq_notify(adapter, rx_eq->q.id, true, false, 0);
be_eq_notify(adapter, tx_eq->q.id, true, false, 0);
}
static void be_vlan_add_vid(struct net_device *netdev, u16 vid)
{
struct be_adapter *adapter = netdev_priv(netdev);
if (!be_physfn(adapter))
return;
adapter->vlan_tag[vid] = 1;
adapter->vlans_added++;
if (adapter->vlans_added <= (adapter->max_vlans + 1))
be_vid_config(adapter);
}
static void be_vlan_rem_vid(struct net_device *netdev, u16 vid)
{
struct be_adapter *adapter = netdev_priv(netdev);
if (!be_physfn(adapter))
return;
adapter->vlan_tag[vid] = 0;
vlan_group_set_device(adapter->vlan_grp, vid, NULL);
adapter->vlans_added--;
if (adapter->vlans_added <= adapter->max_vlans)
be_vid_config(adapter);
}
static void be_set_multicast_list(struct net_device *netdev)
{
struct be_adapter *adapter = netdev_priv(netdev);
if (netdev->flags & IFF_PROMISC) {
be_cmd_promiscuous_config(adapter, adapter->port_num, 1);
adapter->promiscuous = true;
goto done;
}
/* BE was previously in promiscous mode; disable it */
if (adapter->promiscuous) {
adapter->promiscuous = false;
be_cmd_promiscuous_config(adapter, adapter->port_num, 0);
}
/* Enable multicast promisc if num configured exceeds what we support */
if (netdev->flags & IFF_ALLMULTI ||
netdev_mc_count(netdev) > BE_MAX_MC) {
be_cmd_multicast_set(adapter, adapter->if_handle, NULL,
&adapter->mc_cmd_mem);
goto done;
}
be_cmd_multicast_set(adapter, adapter->if_handle, netdev,
&adapter->mc_cmd_mem);
done:
return;
}
static int be_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
struct be_adapter *adapter = netdev_priv(netdev);
int status;
if (!adapter->sriov_enabled)
return -EPERM;
if (!is_valid_ether_addr(mac) || (vf >= num_vfs))
return -EINVAL;
status = be_cmd_pmac_del(adapter, adapter->vf_if_handle[vf],
adapter->vf_pmac_id[vf]);
status = be_cmd_pmac_add(adapter, mac, adapter->vf_if_handle[vf],
&adapter->vf_pmac_id[vf]);
if (!status)
dev_err(&adapter->pdev->dev, "MAC %pM set on VF %d Failed\n",
mac, vf);
return status;
}
static void be_rx_rate_update(struct be_adapter *adapter)
{
struct be_drvr_stats *stats = drvr_stats(adapter);
ulong now = jiffies;
/* Wrapped around */
if (time_before(now, stats->be_rx_jiffies)) {
stats->be_rx_jiffies = now;
return;
}
/* Update the rate once in two seconds */
if ((now - stats->be_rx_jiffies) < 2 * HZ)
return;
stats->be_rx_rate = be_calc_rate(stats->be_rx_bytes
- stats->be_rx_bytes_prev,
now - stats->be_rx_jiffies);
stats->be_rx_jiffies = now;
stats->be_rx_bytes_prev = stats->be_rx_bytes;
}
static void be_rx_stats_update(struct be_adapter *adapter,
u32 pktsize, u16 numfrags)
{
struct be_drvr_stats *stats = drvr_stats(adapter);
stats->be_rx_compl++;
stats->be_rx_frags += numfrags;
stats->be_rx_bytes += pktsize;
stats->be_rx_pkts++;
}
static inline bool do_pkt_csum(struct be_eth_rx_compl *rxcp, bool cso)
{
u8 l4_cksm, ip_version, ipcksm, tcpf = 0, udpf = 0, ipv6_chk;
l4_cksm = AMAP_GET_BITS(struct amap_eth_rx_compl, l4_cksm, rxcp);
ipcksm = AMAP_GET_BITS(struct amap_eth_rx_compl, ipcksm, rxcp);
ip_version = AMAP_GET_BITS(struct amap_eth_rx_compl, ip_version, rxcp);
if (ip_version) {
tcpf = AMAP_GET_BITS(struct amap_eth_rx_compl, tcpf, rxcp);
udpf = AMAP_GET_BITS(struct amap_eth_rx_compl, udpf, rxcp);
}
ipv6_chk = (ip_version && (tcpf || udpf));
return ((l4_cksm && ipv6_chk && ipcksm) && cso) ? false : true;
}
static struct be_rx_page_info *
get_rx_page_info(struct be_adapter *adapter, u16 frag_idx)
{
struct be_rx_page_info *rx_page_info;
struct be_queue_info *rxq = &adapter->rx_obj.q;
rx_page_info = &adapter->rx_obj.page_info_tbl[frag_idx];
BUG_ON(!rx_page_info->page);
if (rx_page_info->last_page_user) {
pci_unmap_page(adapter->pdev, dma_unmap_addr(rx_page_info, bus),
adapter->big_page_size, PCI_DMA_FROMDEVICE);
rx_page_info->last_page_user = false;
}
atomic_dec(&rxq->used);
return rx_page_info;
}
/* Throwaway the data in the Rx completion */
static void be_rx_compl_discard(struct be_adapter *adapter,
struct be_eth_rx_compl *rxcp)
{
struct be_queue_info *rxq = &adapter->rx_obj.q;
struct be_rx_page_info *page_info;
u16 rxq_idx, i, num_rcvd;
rxq_idx = AMAP_GET_BITS(struct amap_eth_rx_compl, fragndx, rxcp);
num_rcvd = AMAP_GET_BITS(struct amap_eth_rx_compl, numfrags, rxcp);
for (i = 0; i < num_rcvd; i++) {
page_info = get_rx_page_info(adapter, rxq_idx);
put_page(page_info->page);
memset(page_info, 0, sizeof(*page_info));
index_inc(&rxq_idx, rxq->len);
}
}
/*
* skb_fill_rx_data forms a complete skb for an ether frame
* indicated by rxcp.
*/
static void skb_fill_rx_data(struct be_adapter *adapter,
struct sk_buff *skb, struct be_eth_rx_compl *rxcp,
u16 num_rcvd)
{
struct be_queue_info *rxq = &adapter->rx_obj.q;
struct be_rx_page_info *page_info;
u16 rxq_idx, i, j;
u32 pktsize, hdr_len, curr_frag_len, size;
u8 *start;
rxq_idx = AMAP_GET_BITS(struct amap_eth_rx_compl, fragndx, rxcp);
pktsize = AMAP_GET_BITS(struct amap_eth_rx_compl, pktsize, rxcp);
page_info = get_rx_page_info(adapter, rxq_idx);
start = page_address(page_info->page) + page_info->page_offset;
prefetch(start);
/* Copy data in the first descriptor of this completion */
curr_frag_len = min(pktsize, rx_frag_size);
/* Copy the header portion into skb_data */
hdr_len = min((u32)BE_HDR_LEN, curr_frag_len);
memcpy(skb->data, start, hdr_len);
skb->len = curr_frag_len;
if (curr_frag_len <= BE_HDR_LEN) { /* tiny packet */
/* Complete packet has now been moved to data */
put_page(page_info->page);
skb->data_len = 0;
skb->tail += curr_frag_len;
} else {
skb_shinfo(skb)->nr_frags = 1;
skb_shinfo(skb)->frags[0].page = page_info->page;
skb_shinfo(skb)->frags[0].page_offset =
page_info->page_offset + hdr_len;
skb_shinfo(skb)->frags[0].size = curr_frag_len - hdr_len;
skb->data_len = curr_frag_len - hdr_len;
skb->tail += hdr_len;
}
page_info->page = NULL;
if (pktsize <= rx_frag_size) {
BUG_ON(num_rcvd != 1);
goto done;
}
/* More frags present for this completion */
size = pktsize;
for (i = 1, j = 0; i < num_rcvd; i++) {
size -= curr_frag_len;
index_inc(&rxq_idx, rxq->len);
page_info = get_rx_page_info(adapter, rxq_idx);
curr_frag_len = min(size, rx_frag_size);
/* Coalesce all frags from the same physical page in one slot */
if (page_info->page_offset == 0) {
/* Fresh page */
j++;
skb_shinfo(skb)->frags[j].page = page_info->page;
skb_shinfo(skb)->frags[j].page_offset =
page_info->page_offset;
skb_shinfo(skb)->frags[j].size = 0;
skb_shinfo(skb)->nr_frags++;
} else {
put_page(page_info->page);
}
skb_shinfo(skb)->frags[j].size += curr_frag_len;
skb->len += curr_frag_len;
skb->data_len += curr_frag_len;
page_info->page = NULL;
}
BUG_ON(j > MAX_SKB_FRAGS);
done:
be_rx_stats_update(adapter, pktsize, num_rcvd);
}
/* Process the RX completion indicated by rxcp when GRO is disabled */
static void be_rx_compl_process(struct be_adapter *adapter,
struct be_eth_rx_compl *rxcp)
{
struct sk_buff *skb;
u32 vlanf, vid;
u16 num_rcvd;
u8 vtm;
num_rcvd = AMAP_GET_BITS(struct amap_eth_rx_compl, numfrags, rxcp);
/* Is it a flush compl that has no data */
if (unlikely(num_rcvd == 0))
return;
skb = netdev_alloc_skb_ip_align(adapter->netdev, BE_HDR_LEN);
if (unlikely(!skb)) {
if (net_ratelimit())
dev_warn(&adapter->pdev->dev, "skb alloc failed\n");
be_rx_compl_discard(adapter, rxcp);
return;
}
skb_fill_rx_data(adapter, skb, rxcp, num_rcvd);
if (do_pkt_csum(rxcp, adapter->rx_csum))
skb->ip_summed = CHECKSUM_NONE;
else
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->truesize = skb->len + sizeof(struct sk_buff);
skb->protocol = eth_type_trans(skb, adapter->netdev);
vlanf = AMAP_GET_BITS(struct amap_eth_rx_compl, vtp, rxcp);
vtm = AMAP_GET_BITS(struct amap_eth_rx_compl, vtm, rxcp);
/* vlanf could be wrongly set in some cards.
* ignore if vtm is not set */
if ((adapter->cap & 0x400) && !vtm)
vlanf = 0;
if (unlikely(vlanf)) {
if (!adapter->vlan_grp || adapter->vlans_added == 0) {
kfree_skb(skb);
return;
}
vid = AMAP_GET_BITS(struct amap_eth_rx_compl, vlan_tag, rxcp);
vid = swab16(vid);
vlan_hwaccel_receive_skb(skb, adapter->vlan_grp, vid);
} else {
netif_receive_skb(skb);
}
}
/* Process the RX completion indicated by rxcp when GRO is enabled */
static void be_rx_compl_process_gro(struct be_adapter *adapter,
struct be_eth_rx_compl *rxcp)
{
struct be_rx_page_info *page_info;
struct sk_buff *skb = NULL;
struct be_queue_info *rxq = &adapter->rx_obj.q;
struct be_eq_obj *eq_obj = &adapter->rx_eq;
u32 num_rcvd, pkt_size, remaining, vlanf, curr_frag_len;
u16 i, rxq_idx = 0, vid, j;
u8 vtm;
num_rcvd = AMAP_GET_BITS(struct amap_eth_rx_compl, numfrags, rxcp);
/* Is it a flush compl that has no data */
if (unlikely(num_rcvd == 0))
return;
pkt_size = AMAP_GET_BITS(struct amap_eth_rx_compl, pktsize, rxcp);
vlanf = AMAP_GET_BITS(struct amap_eth_rx_compl, vtp, rxcp);
rxq_idx = AMAP_GET_BITS(struct amap_eth_rx_compl, fragndx, rxcp);
vtm = AMAP_GET_BITS(struct amap_eth_rx_compl, vtm, rxcp);
/* vlanf could be wrongly set in some cards.
* ignore if vtm is not set */
if ((adapter->cap & 0x400) && !vtm)
vlanf = 0;
skb = napi_get_frags(&eq_obj->napi);
if (!skb) {
be_rx_compl_discard(adapter, rxcp);
return;
}
remaining = pkt_size;
for (i = 0, j = -1; i < num_rcvd; i++) {
page_info = get_rx_page_info(adapter, rxq_idx);
curr_frag_len = min(remaining, rx_frag_size);
/* Coalesce all frags from the same physical page in one slot */
if (i == 0 || page_info->page_offset == 0) {
/* First frag or Fresh page */
j++;
skb_shinfo(skb)->frags[j].page = page_info->page;
skb_shinfo(skb)->frags[j].page_offset =
page_info->page_offset;
skb_shinfo(skb)->frags[j].size = 0;
} else {
put_page(page_info->page);
}
skb_shinfo(skb)->frags[j].size += curr_frag_len;
remaining -= curr_frag_len;
index_inc(&rxq_idx, rxq->len);
memset(page_info, 0, sizeof(*page_info));
}
BUG_ON(j > MAX_SKB_FRAGS);
skb_shinfo(skb)->nr_frags = j + 1;
skb->len = pkt_size;
skb->data_len = pkt_size;
skb->truesize += pkt_size;
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (likely(!vlanf)) {
napi_gro_frags(&eq_obj->napi);
} else {
vid = AMAP_GET_BITS(struct amap_eth_rx_compl, vlan_tag, rxcp);
vid = swab16(vid);
if (!adapter->vlan_grp || adapter->vlans_added == 0)
return;
vlan_gro_frags(&eq_obj->napi, adapter->vlan_grp, vid);
}
be_rx_stats_update(adapter, pkt_size, num_rcvd);
}
static struct be_eth_rx_compl *be_rx_compl_get(struct be_adapter *adapter)
{
struct be_eth_rx_compl *rxcp = queue_tail_node(&adapter->rx_obj.cq);
if (rxcp->dw[offsetof(struct amap_eth_rx_compl, valid) / 32] == 0)
return NULL;
be_dws_le_to_cpu(rxcp, sizeof(*rxcp));
queue_tail_inc(&adapter->rx_obj.cq);
return rxcp;
}
/* To reset the valid bit, we need to reset the whole word as
* when walking the queue the valid entries are little-endian
* and invalid entries are host endian
*/
static inline void be_rx_compl_reset(struct be_eth_rx_compl *rxcp)
{
rxcp->dw[offsetof(struct amap_eth_rx_compl, valid) / 32] = 0;
}
static inline struct page *be_alloc_pages(u32 size)
{
gfp_t alloc_flags = GFP_ATOMIC;
u32 order = get_order(size);
if (order > 0)
alloc_flags |= __GFP_COMP;
return alloc_pages(alloc_flags, order);
}
/*
* Allocate a page, split it to fragments of size rx_frag_size and post as
* receive buffers to BE
*/
static void be_post_rx_frags(struct be_adapter *adapter)
{
struct be_rx_page_info *page_info_tbl = adapter->rx_obj.page_info_tbl;
struct be_rx_page_info *page_info = NULL, *prev_page_info = NULL;
struct be_queue_info *rxq = &adapter->rx_obj.q;
struct page *pagep = NULL;
struct be_eth_rx_d *rxd;
u64 page_dmaaddr = 0, frag_dmaaddr;
u32 posted, page_offset = 0;
page_info = &page_info_tbl[rxq->head];
for (posted = 0; posted < MAX_RX_POST && !page_info->page; posted++) {
if (!pagep) {
pagep = be_alloc_pages(adapter->big_page_size);
if (unlikely(!pagep)) {
drvr_stats(adapter)->be_ethrx_post_fail++;
break;
}
page_dmaaddr = pci_map_page(adapter->pdev, pagep, 0,
adapter->big_page_size,
PCI_DMA_FROMDEVICE);
page_info->page_offset = 0;
} else {
get_page(pagep);
page_info->page_offset = page_offset + rx_frag_size;
}
page_offset = page_info->page_offset;
page_info->page = pagep;
dma_unmap_addr_set(page_info, bus, page_dmaaddr);
frag_dmaaddr = page_dmaaddr + page_info->page_offset;
rxd = queue_head_node(rxq);
rxd->fragpa_lo = cpu_to_le32(frag_dmaaddr & 0xFFFFFFFF);
rxd->fragpa_hi = cpu_to_le32(upper_32_bits(frag_dmaaddr));
/* Any space left in the current big page for another frag? */
if ((page_offset + rx_frag_size + rx_frag_size) >
adapter->big_page_size) {
pagep = NULL;
page_info->last_page_user = true;
}
prev_page_info = page_info;
queue_head_inc(rxq);
page_info = &page_info_tbl[rxq->head];
}
if (pagep)
prev_page_info->last_page_user = true;
if (posted) {
atomic_add(posted, &rxq->used);
be_rxq_notify(adapter, rxq->id, posted);
} else if (atomic_read(&rxq->used) == 0) {
/* Let be_worker replenish when memory is available */
adapter->rx_post_starved = true;
}
}
static struct be_eth_tx_compl *be_tx_compl_get(struct be_queue_info *tx_cq)
{
struct be_eth_tx_compl *txcp = queue_tail_node(tx_cq);
if (txcp->dw[offsetof(struct amap_eth_tx_compl, valid) / 32] == 0)
return NULL;
be_dws_le_to_cpu(txcp, sizeof(*txcp));
txcp->dw[offsetof(struct amap_eth_tx_compl, valid) / 32] = 0;
queue_tail_inc(tx_cq);
return txcp;
}
static void be_tx_compl_process(struct be_adapter *adapter, u16 last_index)
{
struct be_queue_info *txq = &adapter->tx_obj.q;
struct be_eth_wrb *wrb;
struct sk_buff **sent_skbs = adapter->tx_obj.sent_skb_list;
struct sk_buff *sent_skb;
u16 cur_index, num_wrbs = 1; /* account for hdr wrb */
bool unmap_skb_hdr = true;
sent_skb = sent_skbs[txq->tail];
BUG_ON(!sent_skb);
sent_skbs[txq->tail] = NULL;
/* skip header wrb */
queue_tail_inc(txq);
do {
cur_index = txq->tail;
wrb = queue_tail_node(txq);
unmap_tx_frag(adapter->pdev, wrb, (unmap_skb_hdr &&
skb_headlen(sent_skb)));
unmap_skb_hdr = false;
num_wrbs++;
queue_tail_inc(txq);
} while (cur_index != last_index);
atomic_sub(num_wrbs, &txq->used);
kfree_skb(sent_skb);
}
static inline struct be_eq_entry *event_get(struct be_eq_obj *eq_obj)
{
struct be_eq_entry *eqe = queue_tail_node(&eq_obj->q);
if (!eqe->evt)
return NULL;
eqe->evt = le32_to_cpu(eqe->evt);
queue_tail_inc(&eq_obj->q);
return eqe;
}
static int event_handle(struct be_adapter *adapter,
struct be_eq_obj *eq_obj)
{
struct be_eq_entry *eqe;
u16 num = 0;
while ((eqe = event_get(eq_obj)) != NULL) {
eqe->evt = 0;
num++;
}
/* Deal with any spurious interrupts that come
* without events
*/
be_eq_notify(adapter, eq_obj->q.id, true, true, num);
if (num)
napi_schedule(&eq_obj->napi);
return num;
}
/* Just read and notify events without processing them.
* Used at the time of destroying event queues */
static void be_eq_clean(struct be_adapter *adapter,
struct be_eq_obj *eq_obj)
{
struct be_eq_entry *eqe;
u16 num = 0;
while ((eqe = event_get(eq_obj)) != NULL) {
eqe->evt = 0;
num++;
}
if (num)
be_eq_notify(adapter, eq_obj->q.id, false, true, num);
}
static void be_rx_q_clean(struct be_adapter *adapter)
{
struct be_rx_page_info *page_info;
struct be_queue_info *rxq = &adapter->rx_obj.q;
struct be_queue_info *rx_cq = &adapter->rx_obj.cq;
struct be_eth_rx_compl *rxcp;
u16 tail;
/* First cleanup pending rx completions */
while ((rxcp = be_rx_compl_get(adapter)) != NULL) {
be_rx_compl_discard(adapter, rxcp);
be_rx_compl_reset(rxcp);
be_cq_notify(adapter, rx_cq->id, true, 1);
}
/* Then free posted rx buffer that were not used */
tail = (rxq->head + rxq->len - atomic_read(&rxq->used)) % rxq->len;
for (; atomic_read(&rxq->used) > 0; index_inc(&tail, rxq->len)) {
page_info = get_rx_page_info(adapter, tail);
put_page(page_info->page);
memset(page_info, 0, sizeof(*page_info));
}
BUG_ON(atomic_read(&rxq->used));
}
static void be_tx_compl_clean(struct be_adapter *adapter)
{
struct be_queue_info *tx_cq = &adapter->tx_obj.cq;
struct be_queue_info *txq = &adapter->tx_obj.q;
struct be_eth_tx_compl *txcp;
u16 end_idx, cmpl = 0, timeo = 0;
struct sk_buff **sent_skbs = adapter->tx_obj.sent_skb_list;
struct sk_buff *sent_skb;
bool dummy_wrb;
/* Wait for a max of 200ms for all the tx-completions to arrive. */
do {
while ((txcp = be_tx_compl_get(tx_cq))) {
end_idx = AMAP_GET_BITS(struct amap_eth_tx_compl,
wrb_index, txcp);
be_tx_compl_process(adapter, end_idx);
cmpl++;
}
if (cmpl) {
be_cq_notify(adapter, tx_cq->id, false, cmpl);
cmpl = 0;
}
if (atomic_read(&txq->used) == 0 || ++timeo > 200)
break;
mdelay(1);
} while (true);
if (atomic_read(&txq->used))
dev_err(&adapter->pdev->dev, "%d pending tx-completions\n",
atomic_read(&txq->used));
/* free posted tx for which compls will never arrive */
while (atomic_read(&txq->used)) {
sent_skb = sent_skbs[txq->tail];
end_idx = txq->tail;
index_adv(&end_idx,
wrb_cnt_for_skb(sent_skb, &dummy_wrb) - 1, txq->len);
be_tx_compl_process(adapter, end_idx);
}
}
static void be_mcc_queues_destroy(struct be_adapter *adapter)
{
struct be_queue_info *q;
q = &adapter->mcc_obj.q;
if (q->created)
be_cmd_q_destroy(adapter, q, QTYPE_MCCQ);
be_queue_free(adapter, q);
q = &adapter->mcc_obj.cq;
if (q->created)
be_cmd_q_destroy(adapter, q, QTYPE_CQ);
be_queue_free(adapter, q);
}
/* Must be called only after TX qs are created as MCC shares TX EQ */
static int be_mcc_queues_create(struct be_adapter *adapter)
{
struct be_queue_info *q, *cq;
/* Alloc MCC compl queue */
cq = &adapter->mcc_obj.cq;
if (be_queue_alloc(adapter, cq, MCC_CQ_LEN,
sizeof(struct be_mcc_compl)))
goto err;
/* Ask BE to create MCC compl queue; share TX's eq */
if (be_cmd_cq_create(adapter, cq, &adapter->tx_eq.q, false, true, 0))
goto mcc_cq_free;
/* Alloc MCC queue */
q = &adapter->mcc_obj.q;
if (be_queue_alloc(adapter, q, MCC_Q_LEN, sizeof(struct be_mcc_wrb)))
goto mcc_cq_destroy;
/* Ask BE to create MCC queue */
if (be_cmd_mccq_create(adapter, q, cq))
goto mcc_q_free;
return 0;
mcc_q_free:
be_queue_free(adapter, q);
mcc_cq_destroy:
be_cmd_q_destroy(adapter, cq, QTYPE_CQ);
mcc_cq_free:
be_queue_free(adapter, cq);
err:
return -1;
}
static void be_tx_queues_destroy(struct be_adapter *adapter)
{
struct be_queue_info *q;
q = &adapter->tx_obj.q;
if (q->created)
be_cmd_q_destroy(adapter, q, QTYPE_TXQ);
be_queue_free(adapter, q);
q = &adapter->tx_obj.cq;
if (q->created)
be_cmd_q_destroy(adapter, q, QTYPE_CQ);
be_queue_free(adapter, q);
/* Clear any residual events */
be_eq_clean(adapter, &adapter->tx_eq);
q = &adapter->tx_eq.q;
if (q->created)
be_cmd_q_destroy(adapter, q, QTYPE_EQ);
be_queue_free(adapter, q);
}
static int be_tx_queues_create(struct be_adapter *adapter)
{
struct be_queue_info *eq, *q, *cq;
adapter->tx_eq.max_eqd = 0;
adapter->tx_eq.min_eqd = 0;
adapter->tx_eq.cur_eqd = 96;
adapter->tx_eq.enable_aic = false;
/* Alloc Tx Event queue */
eq = &adapter->tx_eq.q;
if (be_queue_alloc(adapter, eq, EVNT_Q_LEN, sizeof(struct be_eq_entry)))
return -1;
/* Ask BE to create Tx Event queue */
if (be_cmd_eq_create(adapter, eq, adapter->tx_eq.cur_eqd))
goto tx_eq_free;
adapter->base_eq_id = adapter->tx_eq.q.id;
/* Alloc TX eth compl queue */
cq = &adapter->tx_obj.cq;
if (be_queue_alloc(adapter, cq, TX_CQ_LEN,
sizeof(struct be_eth_tx_compl)))
goto tx_eq_destroy;
/* Ask BE to create Tx eth compl queue */
if (be_cmd_cq_create(adapter, cq, eq, false, false, 3))
goto tx_cq_free;
/* Alloc TX eth queue */
q = &adapter->tx_obj.q;
if (be_queue_alloc(adapter, q, TX_Q_LEN, sizeof(struct be_eth_wrb)))
goto tx_cq_destroy;
/* Ask BE to create Tx eth queue */
if (be_cmd_txq_create(adapter, q, cq))
goto tx_q_free;
return 0;
tx_q_free:
be_queue_free(adapter, q);
tx_cq_destroy:
be_cmd_q_destroy(adapter, cq, QTYPE_CQ);
tx_cq_free:
be_queue_free(adapter, cq);
tx_eq_destroy:
be_cmd_q_destroy(adapter, eq, QTYPE_EQ);
tx_eq_free:
be_queue_free(adapter, eq);
return -1;
}
static void be_rx_queues_destroy(struct be_adapter *adapter)
{
struct be_queue_info *q;
q = &adapter->rx_obj.q;
if (q->created) {
be_cmd_q_destroy(adapter, q, QTYPE_RXQ);
/* After the rxq is invalidated, wait for a grace time
* of 1ms for all dma to end and the flush compl to arrive
*/
mdelay(1);
be_rx_q_clean(adapter);
}
be_queue_free(adapter, q);
q = &adapter->rx_obj.cq;
if (q->created)
be_cmd_q_destroy(adapter, q, QTYPE_CQ);
be_queue_free(adapter, q);
/* Clear any residual events */
be_eq_clean(adapter, &adapter->rx_eq);
q = &adapter->rx_eq.q;
if (q->created)
be_cmd_q_destroy(adapter, q, QTYPE_EQ);
be_queue_free(adapter, q);
}
static int be_rx_queues_create(struct be_adapter *adapter)
{
struct be_queue_info *eq, *q, *cq;
int rc;
adapter->big_page_size = (1 << get_order(rx_frag_size)) * PAGE_SIZE;
adapter->rx_eq.max_eqd = BE_MAX_EQD;
adapter->rx_eq.min_eqd = 0;
adapter->rx_eq.cur_eqd = 0;
adapter->rx_eq.enable_aic = true;
/* Alloc Rx Event queue */
eq = &adapter->rx_eq.q;
rc = be_queue_alloc(adapter, eq, EVNT_Q_LEN,
sizeof(struct be_eq_entry));
if (rc)
return rc;
/* Ask BE to create Rx Event queue */
rc = be_cmd_eq_create(adapter, eq, adapter->rx_eq.cur_eqd);
if (rc)
goto rx_eq_free;
/* Alloc RX eth compl queue */
cq = &adapter->rx_obj.cq;
rc = be_queue_alloc(adapter, cq, RX_CQ_LEN,
sizeof(struct be_eth_rx_compl));
if (rc)
goto rx_eq_destroy;
/* Ask BE to create Rx eth compl queue */
rc = be_cmd_cq_create(adapter, cq, eq, false, false, 3);
if (rc)
goto rx_cq_free;
/* Alloc RX eth queue */
q = &adapter->rx_obj.q;
rc = be_queue_alloc(adapter, q, RX_Q_LEN, sizeof(struct be_eth_rx_d));
if (rc)
goto rx_cq_destroy;
/* Ask BE to create Rx eth queue */
rc = be_cmd_rxq_create(adapter, q, cq->id, rx_frag_size,
BE_MAX_JUMBO_FRAME_SIZE, adapter->if_handle, false);
if (rc)
goto rx_q_free;
return 0;
rx_q_free:
be_queue_free(adapter, q);
rx_cq_destroy:
be_cmd_q_destroy(adapter, cq, QTYPE_CQ);
rx_cq_free:
be_queue_free(adapter, cq);
rx_eq_destroy:
be_cmd_q_destroy(adapter, eq, QTYPE_EQ);
rx_eq_free:
be_queue_free(adapter, eq);
return rc;
}
/* There are 8 evt ids per func. Retruns the evt id's bit number */
static inline int be_evt_bit_get(struct be_adapter *adapter, u32 eq_id)
{
return eq_id - adapter->base_eq_id;
}
static irqreturn_t be_intx(int irq, void *dev)
{
struct be_adapter *adapter = dev;
int isr;
isr = ioread32(adapter->csr + CEV_ISR0_OFFSET +
(adapter->tx_eq.q.id/ 8) * CEV_ISR_SIZE);
if (!isr)
return IRQ_NONE;
event_handle(adapter, &adapter->tx_eq);
event_handle(adapter, &adapter->rx_eq);
return IRQ_HANDLED;
}
static irqreturn_t be_msix_rx(int irq, void *dev)
{
struct be_adapter *adapter = dev;
event_handle(adapter, &adapter->rx_eq);
return IRQ_HANDLED;
}
static irqreturn_t be_msix_tx_mcc(int irq, void *dev)
{
struct be_adapter *adapter = dev;
event_handle(adapter, &adapter->tx_eq);
return IRQ_HANDLED;
}
static inline bool do_gro(struct be_adapter *adapter,
struct be_eth_rx_compl *rxcp)
{
int err = AMAP_GET_BITS(struct amap_eth_rx_compl, err, rxcp);
int tcp_frame = AMAP_GET_BITS(struct amap_eth_rx_compl, tcpf, rxcp);
if (err)
drvr_stats(adapter)->be_rxcp_err++;
return (tcp_frame && !err) ? true : false;
}
int be_poll_rx(struct napi_struct *napi, int budget)
{
struct be_eq_obj *rx_eq = container_of(napi, struct be_eq_obj, napi);
struct be_adapter *adapter =
container_of(rx_eq, struct be_adapter, rx_eq);
struct be_queue_info *rx_cq = &adapter->rx_obj.cq;
struct be_eth_rx_compl *rxcp;
u32 work_done;
adapter->stats.drvr_stats.be_rx_polls++;
for (work_done = 0; work_done < budget; work_done++) {
rxcp = be_rx_compl_get(adapter);
if (!rxcp)
break;
if (do_gro(adapter, rxcp))
be_rx_compl_process_gro(adapter, rxcp);
else
be_rx_compl_process(adapter, rxcp);
be_rx_compl_reset(rxcp);
}
/* Refill the queue */
if (atomic_read(&adapter->rx_obj.q.used) < RX_FRAGS_REFILL_WM)
be_post_rx_frags(adapter);
/* All consumed */
if (work_done < budget) {
napi_complete(napi);
be_cq_notify(adapter, rx_cq->id, true, work_done);
} else {
/* More to be consumed; continue with interrupts disabled */
be_cq_notify(adapter, rx_cq->id, false, work_done);
}
return work_done;
}
/* As TX and MCC share the same EQ check for both TX and MCC completions.
* For TX/MCC we don't honour budget; consume everything
*/
static int be_poll_tx_mcc(struct napi_struct *napi, int budget)
{
struct be_eq_obj *tx_eq = container_of(napi, struct be_eq_obj, napi);
struct be_adapter *adapter =
container_of(tx_eq, struct be_adapter, tx_eq);
struct be_queue_info *txq = &adapter->tx_obj.q;
struct be_queue_info *tx_cq = &adapter->tx_obj.cq;
struct be_eth_tx_compl *txcp;
int tx_compl = 0, mcc_compl, status = 0;
u16 end_idx;
while ((txcp = be_tx_compl_get(tx_cq))) {
end_idx = AMAP_GET_BITS(struct amap_eth_tx_compl,
wrb_index, txcp);
be_tx_compl_process(adapter, end_idx);
tx_compl++;
}
mcc_compl = be_process_mcc(adapter, &status);
napi_complete(napi);
if (mcc_compl) {
struct be_mcc_obj *mcc_obj = &adapter->mcc_obj;
be_cq_notify(adapter, mcc_obj->cq.id, true, mcc_compl);
}
if (tx_compl) {
be_cq_notify(adapter, adapter->tx_obj.cq.id, true, tx_compl);
/* As Tx wrbs have been freed up, wake up netdev queue if
* it was stopped due to lack of tx wrbs.
*/
if (netif_queue_stopped(adapter->netdev) &&
atomic_read(&txq->used) < txq->len / 2) {
netif_wake_queue(adapter->netdev);
}
drvr_stats(adapter)->be_tx_events++;
drvr_stats(adapter)->be_tx_compl += tx_compl;
}
return 1;
}
static void be_worker(struct work_struct *work)
{
struct be_adapter *adapter =
container_of(work, struct be_adapter, work.work);
be_cmd_get_stats(adapter, &adapter->stats.cmd);
/* Set EQ delay */
be_rx_eqd_update(adapter);
be_tx_rate_update(adapter);
be_rx_rate_update(adapter);
if (adapter->rx_post_starved) {
adapter->rx_post_starved = false;
be_post_rx_frags(adapter);
}
schedule_delayed_work(&adapter->work, msecs_to_jiffies(1000));
}
static void be_msix_disable(struct be_adapter *adapter)
{
if (adapter->msix_enabled) {
pci_disable_msix(adapter->pdev);
adapter->msix_enabled = false;
}
}
static void be_msix_enable(struct be_adapter *adapter)
{
int i, status;
for (i = 0; i < BE_NUM_MSIX_VECTORS; i++)
adapter->msix_entries[i].entry = i;
status = pci_enable_msix(adapter->pdev, adapter->msix_entries,
BE_NUM_MSIX_VECTORS);
if (status == 0)
adapter->msix_enabled = true;
}
static void be_sriov_enable(struct be_adapter *adapter)
{
#ifdef CONFIG_PCI_IOV
int status;
if (be_physfn(adapter) && num_vfs) {
status = pci_enable_sriov(adapter->pdev, num_vfs);
adapter->sriov_enabled = status ? false : true;
}
#endif
}
static void be_sriov_disable(struct be_adapter *adapter)
{
#ifdef CONFIG_PCI_IOV
if (adapter->sriov_enabled) {
pci_disable_sriov(adapter->pdev);
adapter->sriov_enabled = false;
}
#endif
}
static inline int be_msix_vec_get(struct be_adapter *adapter, u32 eq_id)
{
return adapter->msix_entries[
be_evt_bit_get(adapter, eq_id)].vector;
}
static int be_request_irq(struct be_adapter *adapter,
struct be_eq_obj *eq_obj,
void *handler, char *desc)
{
struct net_device *netdev = adapter->netdev;
int vec;
sprintf(eq_obj->desc, "%s-%s", netdev->name, desc);
vec = be_msix_vec_get(adapter, eq_obj->q.id);
return request_irq(vec, handler, 0, eq_obj->desc, adapter);
}
static void be_free_irq(struct be_adapter *adapter, struct be_eq_obj *eq_obj)
{
int vec = be_msix_vec_get(adapter, eq_obj->q.id);
free_irq(vec, adapter);
}
static int be_msix_register(struct be_adapter *adapter)
{
int status;
status = be_request_irq(adapter, &adapter->tx_eq, be_msix_tx_mcc, "tx");
if (status)
goto err;
status = be_request_irq(adapter, &adapter->rx_eq, be_msix_rx, "rx");
if (status)
goto free_tx_irq;
return 0;
free_tx_irq:
be_free_irq(adapter, &adapter->tx_eq);
err:
dev_warn(&adapter->pdev->dev,
"MSIX Request IRQ failed - err %d\n", status);
pci_disable_msix(adapter->pdev);
adapter->msix_enabled = false;
return status;
}
static int be_irq_register(struct be_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int status;
if (adapter->msix_enabled) {
status = be_msix_register(adapter);
if (status == 0)
goto done;
/* INTx is not supported for VF */
if (!be_physfn(adapter))
return status;
}
/* INTx */
netdev->irq = adapter->pdev->irq;
status = request_irq(netdev->irq, be_intx, IRQF_SHARED, netdev->name,
adapter);
if (status) {
dev_err(&adapter->pdev->dev,
"INTx request IRQ failed - err %d\n", status);
return status;
}
done:
adapter->isr_registered = true;
return 0;
}
static void be_irq_unregister(struct be_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
if (!adapter->isr_registered)
return;
/* INTx */
if (!adapter->msix_enabled) {
free_irq(netdev->irq, adapter);
goto done;
}
/* MSIx */
be_free_irq(adapter, &adapter->tx_eq);
be_free_irq(adapter, &adapter->rx_eq);
done:
adapter->isr_registered = false;
}
static int be_open(struct net_device *netdev)
{
struct be_adapter *adapter = netdev_priv(netdev);
struct be_eq_obj *rx_eq = &adapter->rx_eq;
struct be_eq_obj *tx_eq = &adapter->tx_eq;
bool link_up;
int status;
u8 mac_speed;
u16 link_speed;
/* First time posting */
be_post_rx_frags(adapter);
napi_enable(&rx_eq->napi);
napi_enable(&tx_eq->napi);
be_irq_register(adapter);
be_intr_set(adapter, true);
/* The evt queues are created in unarmed state; arm them */
be_eq_notify(adapter, rx_eq->q.id, true, false, 0);
be_eq_notify(adapter, tx_eq->q.id, true, false, 0);
/* Rx compl queue may be in unarmed state; rearm it */
be_cq_notify(adapter, adapter->rx_obj.cq.id, true, 0);
/* Now that interrupts are on we can process async mcc */
be_async_mcc_enable(adapter);
status = be_cmd_link_status_query(adapter, &link_up, &mac_speed,
&link_speed);
if (status)
goto ret_sts;
be_link_status_update(adapter, link_up);
if (be_physfn(adapter))
status = be_vid_config(adapter);
if (status)
goto ret_sts;
if (be_physfn(adapter)) {
status = be_cmd_set_flow_control(adapter,
adapter->tx_fc, adapter->rx_fc);
if (status)
goto ret_sts;
}
schedule_delayed_work(&adapter->work, msecs_to_jiffies(100));
ret_sts:
return status;
}
static int be_setup_wol(struct be_adapter *adapter, bool enable)
{
struct be_dma_mem cmd;
int status = 0;
u8 mac[ETH_ALEN];
memset(mac, 0, ETH_ALEN);
cmd.size = sizeof(struct be_cmd_req_acpi_wol_magic_config);
cmd.va = pci_alloc_consistent(adapter->pdev, cmd.size, &cmd.dma);
if (cmd.va == NULL)
return -1;
memset(cmd.va, 0, cmd.size);
if (enable) {
status = pci_write_config_dword(adapter->pdev,
PCICFG_PM_CONTROL_OFFSET, PCICFG_PM_CONTROL_MASK);
if (status) {
dev_err(&adapter->pdev->dev,
"Could not enable Wake-on-lan\n");
pci_free_consistent(adapter->pdev, cmd.size, cmd.va,
cmd.dma);
return status;
}
status = be_cmd_enable_magic_wol(adapter,
adapter->netdev->dev_addr, &cmd);
pci_enable_wake(adapter->pdev, PCI_D3hot, 1);
pci_enable_wake(adapter->pdev, PCI_D3cold, 1);
} else {
status = be_cmd_enable_magic_wol(adapter, mac, &cmd);
pci_enable_wake(adapter->pdev, PCI_D3hot, 0);
pci_enable_wake(adapter->pdev, PCI_D3cold, 0);
}
pci_free_consistent(adapter->pdev, cmd.size, cmd.va, cmd.dma);
return status;
}
static int be_setup(struct be_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
u32 cap_flags, en_flags, vf = 0;
int status;
u8 mac[ETH_ALEN];
cap_flags = en_flags = BE_IF_FLAGS_UNTAGGED | BE_IF_FLAGS_BROADCAST;
if (be_physfn(adapter)) {
cap_flags |= BE_IF_FLAGS_MCAST_PROMISCUOUS |
BE_IF_FLAGS_PROMISCUOUS |
BE_IF_FLAGS_PASS_L3L4_ERRORS;
en_flags |= BE_IF_FLAGS_PASS_L3L4_ERRORS;
}
status = be_cmd_if_create(adapter, cap_flags, en_flags,
netdev->dev_addr, false/* pmac_invalid */,
&adapter->if_handle, &adapter->pmac_id, 0);
if (status != 0)
goto do_none;
if (be_physfn(adapter)) {
while (vf < num_vfs) {
cap_flags = en_flags = BE_IF_FLAGS_UNTAGGED
| BE_IF_FLAGS_BROADCAST;
status = be_cmd_if_create(adapter, cap_flags, en_flags,
mac, true, &adapter->vf_if_handle[vf],
NULL, vf+1);
if (status) {
dev_err(&adapter->pdev->dev,
"Interface Create failed for VF %d\n", vf);
goto if_destroy;
}
vf++;
} while (vf < num_vfs);
} else if (!be_physfn(adapter)) {
status = be_cmd_mac_addr_query(adapter, mac,
MAC_ADDRESS_TYPE_NETWORK, false, adapter->if_handle);
if (!status) {
memcpy(adapter->netdev->dev_addr, mac, ETH_ALEN);
memcpy(adapter->netdev->perm_addr, mac, ETH_ALEN);
}
}
status = be_tx_queues_create(adapter);
if (status != 0)
goto if_destroy;
status = be_rx_queues_create(adapter);
if (status != 0)
goto tx_qs_destroy;
status = be_mcc_queues_create(adapter);
if (status != 0)
goto rx_qs_destroy;
adapter->link_speed = -1;
return 0;
rx_qs_destroy:
be_rx_queues_destroy(adapter);
tx_qs_destroy:
be_tx_queues_destroy(adapter);
if_destroy:
for (vf = 0; vf < num_vfs; vf++)
if (adapter->vf_if_handle[vf])
be_cmd_if_destroy(adapter, adapter->vf_if_handle[vf]);
be_cmd_if_destroy(adapter, adapter->if_handle);
do_none:
return status;
}
static int be_clear(struct be_adapter *adapter)
{
be_mcc_queues_destroy(adapter);
be_rx_queues_destroy(adapter);
be_tx_queues_destroy(adapter);
be_cmd_if_destroy(adapter, adapter->if_handle);
/* tell fw we're done with firing cmds */
be_cmd_fw_clean(adapter);
return 0;
}
static int be_close(struct net_device *netdev)
{
struct be_adapter *adapter = netdev_priv(netdev);
struct be_eq_obj *rx_eq = &adapter->rx_eq;
struct be_eq_obj *tx_eq = &adapter->tx_eq;
int vec;
cancel_delayed_work_sync(&adapter->work);
be_async_mcc_disable(adapter);
netif_stop_queue(netdev);
netif_carrier_off(netdev);
adapter->link_up = false;
be_intr_set(adapter, false);
if (adapter->msix_enabled) {
vec = be_msix_vec_get(adapter, tx_eq->q.id);
synchronize_irq(vec);
vec = be_msix_vec_get(adapter, rx_eq->q.id);
synchronize_irq(vec);
} else {
synchronize_irq(netdev->irq);
}
be_irq_unregister(adapter);
napi_disable(&rx_eq->napi);
napi_disable(&tx_eq->napi);
/* Wait for all pending tx completions to arrive so that
* all tx skbs are freed.
*/
be_tx_compl_clean(adapter);
return 0;
}
#define FW_FILE_HDR_SIGN "ServerEngines Corp. "
char flash_cookie[2][16] = {"*** SE FLAS",
"H DIRECTORY *** "};
static bool be_flash_redboot(struct be_adapter *adapter,
const u8 *p, u32 img_start, int image_size,
int hdr_size)
{
u32 crc_offset;
u8 flashed_crc[4];
int status;
crc_offset = hdr_size + img_start + image_size - 4;
p += crc_offset;
status = be_cmd_get_flash_crc(adapter, flashed_crc,
(image_size - 4));
if (status) {
dev_err(&adapter->pdev->dev,
"could not get crc from flash, not flashing redboot\n");
return false;
}
/*update redboot only if crc does not match*/
if (!memcmp(flashed_crc, p, 4))
return false;
else
return true;
}
static int be_flash_data(struct be_adapter *adapter,
const struct firmware *fw,
struct be_dma_mem *flash_cmd, int num_of_images)
{
int status = 0, i, filehdr_size = 0;
u32 total_bytes = 0, flash_op;
int num_bytes;
const u8 *p = fw->data;
struct be_cmd_write_flashrom *req = flash_cmd->va;
struct flash_comp *pflashcomp;
int num_comp;
struct flash_comp gen3_flash_types[9] = {
{ FLASH_iSCSI_PRIMARY_IMAGE_START_g3, IMG_TYPE_ISCSI_ACTIVE,
FLASH_IMAGE_MAX_SIZE_g3},
{ FLASH_REDBOOT_START_g3, IMG_TYPE_REDBOOT,
FLASH_REDBOOT_IMAGE_MAX_SIZE_g3},
{ FLASH_iSCSI_BIOS_START_g3, IMG_TYPE_BIOS,
FLASH_BIOS_IMAGE_MAX_SIZE_g3},
{ FLASH_PXE_BIOS_START_g3, IMG_TYPE_PXE_BIOS,
FLASH_BIOS_IMAGE_MAX_SIZE_g3},
{ FLASH_FCoE_BIOS_START_g3, IMG_TYPE_FCOE_BIOS,
FLASH_BIOS_IMAGE_MAX_SIZE_g3},
{ FLASH_iSCSI_BACKUP_IMAGE_START_g3, IMG_TYPE_ISCSI_BACKUP,
FLASH_IMAGE_MAX_SIZE_g3},
{ FLASH_FCoE_PRIMARY_IMAGE_START_g3, IMG_TYPE_FCOE_FW_ACTIVE,
FLASH_IMAGE_MAX_SIZE_g3},
{ FLASH_FCoE_BACKUP_IMAGE_START_g3, IMG_TYPE_FCOE_FW_BACKUP,
FLASH_IMAGE_MAX_SIZE_g3},
{ FLASH_NCSI_START_g3, IMG_TYPE_NCSI_FW,
FLASH_NCSI_IMAGE_MAX_SIZE_g3}
};
struct flash_comp gen2_flash_types[8] = {
{ FLASH_iSCSI_PRIMARY_IMAGE_START_g2, IMG_TYPE_ISCSI_ACTIVE,
FLASH_IMAGE_MAX_SIZE_g2},
{ FLASH_REDBOOT_START_g2, IMG_TYPE_REDBOOT,
FLASH_REDBOOT_IMAGE_MAX_SIZE_g2},
{ FLASH_iSCSI_BIOS_START_g2, IMG_TYPE_BIOS,
FLASH_BIOS_IMAGE_MAX_SIZE_g2},
{ FLASH_PXE_BIOS_START_g2, IMG_TYPE_PXE_BIOS,
FLASH_BIOS_IMAGE_MAX_SIZE_g2},
{ FLASH_FCoE_BIOS_START_g2, IMG_TYPE_FCOE_BIOS,
FLASH_BIOS_IMAGE_MAX_SIZE_g2},
{ FLASH_iSCSI_BACKUP_IMAGE_START_g2, IMG_TYPE_ISCSI_BACKUP,
FLASH_IMAGE_MAX_SIZE_g2},
{ FLASH_FCoE_PRIMARY_IMAGE_START_g2, IMG_TYPE_FCOE_FW_ACTIVE,
FLASH_IMAGE_MAX_SIZE_g2},
{ FLASH_FCoE_BACKUP_IMAGE_START_g2, IMG_TYPE_FCOE_FW_BACKUP,
FLASH_IMAGE_MAX_SIZE_g2}
};
if (adapter->generation == BE_GEN3) {
pflashcomp = gen3_flash_types;
filehdr_size = sizeof(struct flash_file_hdr_g3);
num_comp = 9;
} else {
pflashcomp = gen2_flash_types;
filehdr_size = sizeof(struct flash_file_hdr_g2);
num_comp = 8;
}
for (i = 0; i < num_comp; i++) {
if ((pflashcomp[i].optype == IMG_TYPE_NCSI_FW) &&
memcmp(adapter->fw_ver, "3.102.148.0", 11) < 0)
continue;
if ((pflashcomp[i].optype == IMG_TYPE_REDBOOT) &&
(!be_flash_redboot(adapter, fw->data,
pflashcomp[i].offset, pflashcomp[i].size,
filehdr_size)))
continue;
p = fw->data;
p += filehdr_size + pflashcomp[i].offset
+ (num_of_images * sizeof(struct image_hdr));
if (p + pflashcomp[i].size > fw->data + fw->size)
return -1;
total_bytes = pflashcomp[i].size;
while (total_bytes) {
if (total_bytes > 32*1024)
num_bytes = 32*1024;
else
num_bytes = total_bytes;
total_bytes -= num_bytes;
if (!total_bytes)
flash_op = FLASHROM_OPER_FLASH;
else
flash_op = FLASHROM_OPER_SAVE;
memcpy(req->params.data_buf, p, num_bytes);
p += num_bytes;
status = be_cmd_write_flashrom(adapter, flash_cmd,
pflashcomp[i].optype, flash_op, num_bytes);
if (status) {
dev_err(&adapter->pdev->dev,
"cmd to write to flash rom failed.\n");
return -1;
}
yield();
}
}
return 0;
}
static int get_ufigen_type(struct flash_file_hdr_g2 *fhdr)
{
if (fhdr == NULL)
return 0;
if (fhdr->build[0] == '3')
return BE_GEN3;
else if (fhdr->build[0] == '2')
return BE_GEN2;
else
return 0;
}
int be_load_fw(struct be_adapter *adapter, u8 *func)
{
char fw_file[ETHTOOL_FLASH_MAX_FILENAME];
const struct firmware *fw;
struct flash_file_hdr_g2 *fhdr;
struct flash_file_hdr_g3 *fhdr3;
struct image_hdr *img_hdr_ptr = NULL;
struct be_dma_mem flash_cmd;
int status, i = 0, num_imgs = 0;
const u8 *p;
strcpy(fw_file, func);
status = request_firmware(&fw, fw_file, &adapter->pdev->dev);
if (status)
goto fw_exit;
p = fw->data;
fhdr = (struct flash_file_hdr_g2 *) p;
dev_info(&adapter->pdev->dev, "Flashing firmware file %s\n", fw_file);
flash_cmd.size = sizeof(struct be_cmd_write_flashrom) + 32*1024;
flash_cmd.va = pci_alloc_consistent(adapter->pdev, flash_cmd.size,
&flash_cmd.dma);
if (!flash_cmd.va) {
status = -ENOMEM;
dev_err(&adapter->pdev->dev,
"Memory allocation failure while flashing\n");
goto fw_exit;
}
if ((adapter->generation == BE_GEN3) &&
(get_ufigen_type(fhdr) == BE_GEN3)) {
fhdr3 = (struct flash_file_hdr_g3 *) fw->data;
num_imgs = le32_to_cpu(fhdr3->num_imgs);
for (i = 0; i < num_imgs; i++) {
img_hdr_ptr = (struct image_hdr *) (fw->data +
(sizeof(struct flash_file_hdr_g3) +
i * sizeof(struct image_hdr)));
if (le32_to_cpu(img_hdr_ptr->imageid) == 1)
status = be_flash_data(adapter, fw, &flash_cmd,
num_imgs);
}
} else if ((adapter->generation == BE_GEN2) &&
(get_ufigen_type(fhdr) == BE_GEN2)) {
status = be_flash_data(adapter, fw, &flash_cmd, 0);
} else {
dev_err(&adapter->pdev->dev,
"UFI and Interface are not compatible for flashing\n");
status = -1;
}
pci_free_consistent(adapter->pdev, flash_cmd.size, flash_cmd.va,
flash_cmd.dma);
if (status) {
dev_err(&adapter->pdev->dev, "Firmware load error\n");
goto fw_exit;
}
dev_info(&adapter->pdev->dev, "Firmware flashed successfully\n");
fw_exit:
release_firmware(fw);
return status;
}
static struct net_device_ops be_netdev_ops = {
.ndo_open = be_open,
.ndo_stop = be_close,
.ndo_start_xmit = be_xmit,
.ndo_get_stats = be_get_stats,
.ndo_set_rx_mode = be_set_multicast_list,
.ndo_set_mac_address = be_mac_addr_set,
.ndo_change_mtu = be_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_vlan_rx_register = be_vlan_register,
.ndo_vlan_rx_add_vid = be_vlan_add_vid,
.ndo_vlan_rx_kill_vid = be_vlan_rem_vid,
.ndo_set_vf_mac = be_set_vf_mac
};
static void be_netdev_init(struct net_device *netdev)
{
struct be_adapter *adapter = netdev_priv(netdev);
netdev->features |= NETIF_F_SG | NETIF_F_HW_VLAN_RX | NETIF_F_TSO |
NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER | NETIF_F_HW_CSUM |
NETIF_F_GRO;
netdev->vlan_features |= NETIF_F_SG | NETIF_F_TSO | NETIF_F_HW_CSUM;
netdev->flags |= IFF_MULTICAST;
adapter->rx_csum = true;
/* Default settings for Rx and Tx flow control */
adapter->rx_fc = true;
adapter->tx_fc = true;
netif_set_gso_max_size(netdev, 65535);
BE_SET_NETDEV_OPS(netdev, &be_netdev_ops);
SET_ETHTOOL_OPS(netdev, &be_ethtool_ops);
netif_napi_add(netdev, &adapter->rx_eq.napi, be_poll_rx,
BE_NAPI_WEIGHT);
netif_napi_add(netdev, &adapter->tx_eq.napi, be_poll_tx_mcc,
BE_NAPI_WEIGHT);
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
static void be_unmap_pci_bars(struct be_adapter *adapter)
{
if (adapter->csr)
iounmap(adapter->csr);
if (adapter->db)
iounmap(adapter->db);
if (adapter->pcicfg && be_physfn(adapter))
iounmap(adapter->pcicfg);
}
static int be_map_pci_bars(struct be_adapter *adapter)
{
u8 __iomem *addr;
int pcicfg_reg, db_reg;
if (be_physfn(adapter)) {
addr = ioremap_nocache(pci_resource_start(adapter->pdev, 2),
pci_resource_len(adapter->pdev, 2));
if (addr == NULL)
return -ENOMEM;
adapter->csr = addr;
}
if (adapter->generation == BE_GEN2) {
pcicfg_reg = 1;
db_reg = 4;
} else {
pcicfg_reg = 0;
if (be_physfn(adapter))
db_reg = 4;
else
db_reg = 0;
}
addr = ioremap_nocache(pci_resource_start(adapter->pdev, db_reg),
pci_resource_len(adapter->pdev, db_reg));
if (addr == NULL)
goto pci_map_err;
adapter->db = addr;
if (be_physfn(adapter)) {
addr = ioremap_nocache(
pci_resource_start(adapter->pdev, pcicfg_reg),
pci_resource_len(adapter->pdev, pcicfg_reg));
if (addr == NULL)
goto pci_map_err;
adapter->pcicfg = addr;
} else
adapter->pcicfg = adapter->db + SRIOV_VF_PCICFG_OFFSET;
return 0;
pci_map_err:
be_unmap_pci_bars(adapter);
return -ENOMEM;
}
static void be_ctrl_cleanup(struct be_adapter *adapter)
{
struct be_dma_mem *mem = &adapter->mbox_mem_alloced;
be_unmap_pci_bars(adapter);
if (mem->va)
pci_free_consistent(adapter->pdev, mem->size,
mem->va, mem->dma);
mem = &adapter->mc_cmd_mem;
if (mem->va)
pci_free_consistent(adapter->pdev, mem->size,
mem->va, mem->dma);
}
static int be_ctrl_init(struct be_adapter *adapter)
{
struct be_dma_mem *mbox_mem_alloc = &adapter->mbox_mem_alloced;
struct be_dma_mem *mbox_mem_align = &adapter->mbox_mem;
struct be_dma_mem *mc_cmd_mem = &adapter->mc_cmd_mem;
int status;
status = be_map_pci_bars(adapter);
if (status)
goto done;
mbox_mem_alloc->size = sizeof(struct be_mcc_mailbox) + 16;
mbox_mem_alloc->va = pci_alloc_consistent(adapter->pdev,
mbox_mem_alloc->size, &mbox_mem_alloc->dma);
if (!mbox_mem_alloc->va) {
status = -ENOMEM;
goto unmap_pci_bars;
}
mbox_mem_align->size = sizeof(struct be_mcc_mailbox);
mbox_mem_align->va = PTR_ALIGN(mbox_mem_alloc->va, 16);
mbox_mem_align->dma = PTR_ALIGN(mbox_mem_alloc->dma, 16);
memset(mbox_mem_align->va, 0, sizeof(struct be_mcc_mailbox));
mc_cmd_mem->size = sizeof(struct be_cmd_req_mcast_mac_config);
mc_cmd_mem->va = pci_alloc_consistent(adapter->pdev, mc_cmd_mem->size,
&mc_cmd_mem->dma);
if (mc_cmd_mem->va == NULL) {
status = -ENOMEM;
goto free_mbox;
}
memset(mc_cmd_mem->va, 0, mc_cmd_mem->size);
spin_lock_init(&adapter->mbox_lock);
spin_lock_init(&adapter->mcc_lock);
spin_lock_init(&adapter->mcc_cq_lock);
pci_save_state(adapter->pdev);
return 0;
free_mbox:
pci_free_consistent(adapter->pdev, mbox_mem_alloc->size,
mbox_mem_alloc->va, mbox_mem_alloc->dma);
unmap_pci_bars:
be_unmap_pci_bars(adapter);
done:
return status;
}
static void be_stats_cleanup(struct be_adapter *adapter)
{
struct be_stats_obj *stats = &adapter->stats;
struct be_dma_mem *cmd = &stats->cmd;
if (cmd->va)
pci_free_consistent(adapter->pdev, cmd->size,
cmd->va, cmd->dma);
}
static int be_stats_init(struct be_adapter *adapter)
{
struct be_stats_obj *stats = &adapter->stats;
struct be_dma_mem *cmd = &stats->cmd;
cmd->size = sizeof(struct be_cmd_req_get_stats);
cmd->va = pci_alloc_consistent(adapter->pdev, cmd->size, &cmd->dma);
if (cmd->va == NULL)
return -1;
memset(cmd->va, 0, cmd->size);
return 0;
}
static void __devexit be_remove(struct pci_dev *pdev)
{
struct be_adapter *adapter = pci_get_drvdata(pdev);
if (!adapter)
return;
unregister_netdev(adapter->netdev);
be_clear(adapter);
be_stats_cleanup(adapter);
be_ctrl_cleanup(adapter);
be_sriov_disable(adapter);
be_msix_disable(adapter);
pci_set_drvdata(pdev, NULL);
pci_release_regions(pdev);
pci_disable_device(pdev);
free_netdev(adapter->netdev);
}
static int be_get_config(struct be_adapter *adapter)
{
int status;
u8 mac[ETH_ALEN];
status = be_cmd_get_fw_ver(adapter, adapter->fw_ver);
if (status)
return status;
status = be_cmd_query_fw_cfg(adapter,
&adapter->port_num, &adapter->cap);
if (status)
return status;
memset(mac, 0, ETH_ALEN);
if (be_physfn(adapter)) {
status = be_cmd_mac_addr_query(adapter, mac,
MAC_ADDRESS_TYPE_NETWORK, true /*permanent */, 0);
if (status)
return status;
if (!is_valid_ether_addr(mac))
return -EADDRNOTAVAIL;
memcpy(adapter->netdev->dev_addr, mac, ETH_ALEN);
memcpy(adapter->netdev->perm_addr, mac, ETH_ALEN);
}
if (adapter->cap & 0x400)
adapter->max_vlans = BE_NUM_VLANS_SUPPORTED/4;
else
adapter->max_vlans = BE_NUM_VLANS_SUPPORTED;
return 0;
}
static int __devinit be_probe(struct pci_dev *pdev,
const struct pci_device_id *pdev_id)
{
int status = 0;
struct be_adapter *adapter;
struct net_device *netdev;
status = pci_enable_device(pdev);
if (status)
goto do_none;
status = pci_request_regions(pdev, DRV_NAME);
if (status)
goto disable_dev;
pci_set_master(pdev);
netdev = alloc_etherdev(sizeof(struct be_adapter));
if (netdev == NULL) {
status = -ENOMEM;
goto rel_reg;
}
adapter = netdev_priv(netdev);
switch (pdev->device) {
case BE_DEVICE_ID1:
case OC_DEVICE_ID1:
adapter->generation = BE_GEN2;
break;
case BE_DEVICE_ID2:
case OC_DEVICE_ID2:
adapter->generation = BE_GEN3;
break;
default:
adapter->generation = 0;
}
adapter->pdev = pdev;
pci_set_drvdata(pdev, adapter);
adapter->netdev = netdev;
be_netdev_init(netdev);
SET_NETDEV_DEV(netdev, &pdev->dev);
be_msix_enable(adapter);
status = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if (!status) {
netdev->features |= NETIF_F_HIGHDMA;
} else {
status = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (status) {
dev_err(&pdev->dev, "Could not set PCI DMA Mask\n");
goto free_netdev;
}
}
be_sriov_enable(adapter);
status = be_ctrl_init(adapter);
if (status)
goto free_netdev;
/* sync up with fw's ready state */
if (be_physfn(adapter)) {
status = be_cmd_POST(adapter);
if (status)
goto ctrl_clean;
status = be_cmd_reset_function(adapter);
if (status)
goto ctrl_clean;
}
/* tell fw we're ready to fire cmds */
status = be_cmd_fw_init(adapter);
if (status)
goto ctrl_clean;
status = be_stats_init(adapter);
if (status)
goto ctrl_clean;
status = be_get_config(adapter);
if (status)
goto stats_clean;
INIT_DELAYED_WORK(&adapter->work, be_worker);
status = be_setup(adapter);
if (status)
goto stats_clean;
status = register_netdev(netdev);
if (status != 0)
goto unsetup;
dev_info(&pdev->dev, "%s port %d\n", nic_name(pdev), adapter->port_num);
return 0;
unsetup:
be_clear(adapter);
stats_clean:
be_stats_cleanup(adapter);
ctrl_clean:
be_ctrl_cleanup(adapter);
free_netdev:
be_msix_disable(adapter);
be_sriov_disable(adapter);
free_netdev(adapter->netdev);
pci_set_drvdata(pdev, NULL);
rel_reg:
pci_release_regions(pdev);
disable_dev:
pci_disable_device(pdev);
do_none:
dev_err(&pdev->dev, "%s initialization failed\n", nic_name(pdev));
return status;
}
static int be_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct be_adapter *adapter = pci_get_drvdata(pdev);
struct net_device *netdev = adapter->netdev;
if (adapter->wol)
be_setup_wol(adapter, true);
netif_device_detach(netdev);
if (netif_running(netdev)) {
rtnl_lock();
be_close(netdev);
rtnl_unlock();
}
be_cmd_get_flow_control(adapter, &adapter->tx_fc, &adapter->rx_fc);
be_clear(adapter);
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int be_resume(struct pci_dev *pdev)
{
int status = 0;
struct be_adapter *adapter = pci_get_drvdata(pdev);
struct net_device *netdev = adapter->netdev;
netif_device_detach(netdev);
status = pci_enable_device(pdev);
if (status)
return status;
pci_set_power_state(pdev, 0);
pci_restore_state(pdev);
/* tell fw we're ready to fire cmds */
status = be_cmd_fw_init(adapter);
if (status)
return status;
be_setup(adapter);
if (netif_running(netdev)) {
rtnl_lock();
be_open(netdev);
rtnl_unlock();
}
netif_device_attach(netdev);
if (adapter->wol)
be_setup_wol(adapter, false);
return 0;
}
/*
* An FLR will stop BE from DMAing any data.
*/
static void be_shutdown(struct pci_dev *pdev)
{
struct be_adapter *adapter = pci_get_drvdata(pdev);
struct net_device *netdev = adapter->netdev;
netif_device_detach(netdev);
be_cmd_reset_function(adapter);
if (adapter->wol)
be_setup_wol(adapter, true);
pci_disable_device(pdev);
}
static pci_ers_result_t be_eeh_err_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct be_adapter *adapter = pci_get_drvdata(pdev);
struct net_device *netdev = adapter->netdev;
dev_err(&adapter->pdev->dev, "EEH error detected\n");
adapter->eeh_err = true;
netif_device_detach(netdev);
if (netif_running(netdev)) {
rtnl_lock();
be_close(netdev);
rtnl_unlock();
}
be_clear(adapter);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
pci_disable_device(pdev);
return PCI_ERS_RESULT_NEED_RESET;
}
static pci_ers_result_t be_eeh_reset(struct pci_dev *pdev)
{
struct be_adapter *adapter = pci_get_drvdata(pdev);
int status;
dev_info(&adapter->pdev->dev, "EEH reset\n");
adapter->eeh_err = false;
status = pci_enable_device(pdev);
if (status)
return PCI_ERS_RESULT_DISCONNECT;
pci_set_master(pdev);
pci_set_power_state(pdev, 0);
pci_restore_state(pdev);
/* Check if card is ok and fw is ready */
status = be_cmd_POST(adapter);
if (status)
return PCI_ERS_RESULT_DISCONNECT;
return PCI_ERS_RESULT_RECOVERED;
}
static void be_eeh_resume(struct pci_dev *pdev)
{
int status = 0;
struct be_adapter *adapter = pci_get_drvdata(pdev);
struct net_device *netdev = adapter->netdev;
dev_info(&adapter->pdev->dev, "EEH resume\n");
pci_save_state(pdev);
/* tell fw we're ready to fire cmds */
status = be_cmd_fw_init(adapter);
if (status)
goto err;
status = be_setup(adapter);
if (status)
goto err;
if (netif_running(netdev)) {
status = be_open(netdev);
if (status)
goto err;
}
netif_device_attach(netdev);
return;
err:
dev_err(&adapter->pdev->dev, "EEH resume failed\n");
}
static struct pci_error_handlers be_eeh_handlers = {
.error_detected = be_eeh_err_detected,
.slot_reset = be_eeh_reset,
.resume = be_eeh_resume,
};
static struct pci_driver be_driver = {
.name = DRV_NAME,
.id_table = be_dev_ids,
.probe = be_probe,
.remove = be_remove,
.suspend = be_suspend,
.resume = be_resume,
.shutdown = be_shutdown,
.err_handler = &be_eeh_handlers
};
static int __init be_init_module(void)
{
if (rx_frag_size != 8192 && rx_frag_size != 4096 &&
rx_frag_size != 2048) {
printk(KERN_WARNING DRV_NAME
" : Module param rx_frag_size must be 2048/4096/8192."
" Using 2048\n");
rx_frag_size = 2048;
}
if (num_vfs > 32) {
printk(KERN_WARNING DRV_NAME
" : Module param num_vfs must not be greater than 32."
"Using 32\n");
num_vfs = 32;
}
return pci_register_driver(&be_driver);
}
module_init(be_init_module);
static void __exit be_exit_module(void)
{
pci_unregister_driver(&be_driver);
}
module_exit(be_exit_module);