| /* |
| * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips |
| * |
| * Copyright (C) 2008 David Brownell |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| */ |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/bcd.h> |
| #include <linux/slab.h> |
| #include <linux/rtc.h> |
| #include <linux/workqueue.h> |
| |
| #include <linux/spi/spi.h> |
| #include <linux/spi/ds1305.h> |
| |
| |
| /* |
| * Registers ... mask DS1305_WRITE into register address to write, |
| * otherwise you're reading it. All non-bitmask values are BCD. |
| */ |
| #define DS1305_WRITE 0x80 |
| |
| |
| /* RTC date/time ... the main special cases are that we: |
| * - Need fancy "hours" encoding in 12hour mode |
| * - Don't rely on the "day-of-week" field (or tm_wday) |
| * - Are a 21st-century clock (2000 <= year < 2100) |
| */ |
| #define DS1305_RTC_LEN 7 /* bytes for RTC regs */ |
| |
| #define DS1305_SEC 0x00 /* register addresses */ |
| #define DS1305_MIN 0x01 |
| #define DS1305_HOUR 0x02 |
| # define DS1305_HR_12 0x40 /* set == 12 hr mode */ |
| # define DS1305_HR_PM 0x20 /* set == PM (12hr mode) */ |
| #define DS1305_WDAY 0x03 |
| #define DS1305_MDAY 0x04 |
| #define DS1305_MON 0x05 |
| #define DS1305_YEAR 0x06 |
| |
| |
| /* The two alarms have only sec/min/hour/wday fields (ALM_LEN). |
| * DS1305_ALM_DISABLE disables a match field (some combos are bad). |
| * |
| * NOTE that since we don't use WDAY, we limit ourselves to alarms |
| * only one day into the future (vs potentially up to a week). |
| * |
| * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we |
| * don't currently support them. We'd either need to do it only when |
| * no alarm is pending (not the standard model), or to use the second |
| * alarm (implying that this is a DS1305 not DS1306, *and* that either |
| * it's wired up a second IRQ we know, or that INTCN is set) |
| */ |
| #define DS1305_ALM_LEN 4 /* bytes for ALM regs */ |
| #define DS1305_ALM_DISABLE 0x80 |
| |
| #define DS1305_ALM0(r) (0x07 + (r)) /* register addresses */ |
| #define DS1305_ALM1(r) (0x0b + (r)) |
| |
| |
| /* three control registers */ |
| #define DS1305_CONTROL_LEN 3 /* bytes of control regs */ |
| |
| #define DS1305_CONTROL 0x0f /* register addresses */ |
| # define DS1305_nEOSC 0x80 /* low enables oscillator */ |
| # define DS1305_WP 0x40 /* write protect */ |
| # define DS1305_INTCN 0x04 /* clear == only int0 used */ |
| # define DS1306_1HZ 0x04 /* enable 1Hz output */ |
| # define DS1305_AEI1 0x02 /* enable ALM1 IRQ */ |
| # define DS1305_AEI0 0x01 /* enable ALM0 IRQ */ |
| #define DS1305_STATUS 0x10 |
| /* status has just AEIx bits, mirrored as IRQFx */ |
| #define DS1305_TRICKLE 0x11 |
| /* trickle bits are defined in <linux/spi/ds1305.h> */ |
| |
| /* a bunch of NVRAM */ |
| #define DS1305_NVRAM_LEN 96 /* bytes of NVRAM */ |
| |
| #define DS1305_NVRAM 0x20 /* register addresses */ |
| |
| |
| struct ds1305 { |
| struct spi_device *spi; |
| struct rtc_device *rtc; |
| |
| struct work_struct work; |
| |
| unsigned long flags; |
| #define FLAG_EXITING 0 |
| |
| bool hr12; |
| u8 ctrl[DS1305_CONTROL_LEN]; |
| }; |
| |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* |
| * Utilities ... tolerate 12-hour AM/PM notation in case of non-Linux |
| * software (like a bootloader) which may require it. |
| */ |
| |
| static unsigned bcd2hour(u8 bcd) |
| { |
| if (bcd & DS1305_HR_12) { |
| unsigned hour = 0; |
| |
| bcd &= ~DS1305_HR_12; |
| if (bcd & DS1305_HR_PM) { |
| hour = 12; |
| bcd &= ~DS1305_HR_PM; |
| } |
| hour += bcd2bin(bcd); |
| return hour - 1; |
| } |
| return bcd2bin(bcd); |
| } |
| |
| static u8 hour2bcd(bool hr12, int hour) |
| { |
| if (hr12) { |
| hour++; |
| if (hour <= 12) |
| return DS1305_HR_12 | bin2bcd(hour); |
| hour -= 12; |
| return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour); |
| } |
| return bin2bcd(hour); |
| } |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* |
| * Interface to RTC framework |
| */ |
| |
| #ifdef CONFIG_RTC_INTF_DEV |
| |
| /* |
| * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl) |
| */ |
| static int ds1305_ioctl(struct device *dev, unsigned cmd, unsigned long arg) |
| { |
| struct ds1305 *ds1305 = dev_get_drvdata(dev); |
| u8 buf[2]; |
| int status = -ENOIOCTLCMD; |
| |
| buf[0] = DS1305_WRITE | DS1305_CONTROL; |
| buf[1] = ds1305->ctrl[0]; |
| |
| switch (cmd) { |
| case RTC_AIE_OFF: |
| status = 0; |
| if (!(buf[1] & DS1305_AEI0)) |
| goto done; |
| buf[1] &= ~DS1305_AEI0; |
| break; |
| |
| case RTC_AIE_ON: |
| status = 0; |
| if (ds1305->ctrl[0] & DS1305_AEI0) |
| goto done; |
| buf[1] |= DS1305_AEI0; |
| break; |
| } |
| if (status == 0) { |
| status = spi_write_then_read(ds1305->spi, buf, sizeof buf, |
| NULL, 0); |
| if (status >= 0) |
| ds1305->ctrl[0] = buf[1]; |
| } |
| |
| done: |
| return status; |
| } |
| |
| #else |
| #define ds1305_ioctl NULL |
| #endif |
| |
| /* |
| * Get/set of date and time is pretty normal. |
| */ |
| |
| static int ds1305_get_time(struct device *dev, struct rtc_time *time) |
| { |
| struct ds1305 *ds1305 = dev_get_drvdata(dev); |
| u8 addr = DS1305_SEC; |
| u8 buf[DS1305_RTC_LEN]; |
| int status; |
| |
| /* Use write-then-read to get all the date/time registers |
| * since dma from stack is nonportable |
| */ |
| status = spi_write_then_read(ds1305->spi, &addr, sizeof addr, |
| buf, sizeof buf); |
| if (status < 0) |
| return status; |
| |
| dev_vdbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n", |
| "read", buf[0], buf[1], buf[2], buf[3], |
| buf[4], buf[5], buf[6]); |
| |
| /* Decode the registers */ |
| time->tm_sec = bcd2bin(buf[DS1305_SEC]); |
| time->tm_min = bcd2bin(buf[DS1305_MIN]); |
| time->tm_hour = bcd2hour(buf[DS1305_HOUR]); |
| time->tm_wday = buf[DS1305_WDAY] - 1; |
| time->tm_mday = bcd2bin(buf[DS1305_MDAY]); |
| time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1; |
| time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100; |
| |
| dev_vdbg(dev, "%s secs=%d, mins=%d, " |
| "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n", |
| "read", time->tm_sec, time->tm_min, |
| time->tm_hour, time->tm_mday, |
| time->tm_mon, time->tm_year, time->tm_wday); |
| |
| /* Time may not be set */ |
| return rtc_valid_tm(time); |
| } |
| |
| static int ds1305_set_time(struct device *dev, struct rtc_time *time) |
| { |
| struct ds1305 *ds1305 = dev_get_drvdata(dev); |
| u8 buf[1 + DS1305_RTC_LEN]; |
| u8 *bp = buf; |
| |
| dev_vdbg(dev, "%s secs=%d, mins=%d, " |
| "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n", |
| "write", time->tm_sec, time->tm_min, |
| time->tm_hour, time->tm_mday, |
| time->tm_mon, time->tm_year, time->tm_wday); |
| |
| /* Write registers starting at the first time/date address. */ |
| *bp++ = DS1305_WRITE | DS1305_SEC; |
| |
| *bp++ = bin2bcd(time->tm_sec); |
| *bp++ = bin2bcd(time->tm_min); |
| *bp++ = hour2bcd(ds1305->hr12, time->tm_hour); |
| *bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1; |
| *bp++ = bin2bcd(time->tm_mday); |
| *bp++ = bin2bcd(time->tm_mon + 1); |
| *bp++ = bin2bcd(time->tm_year - 100); |
| |
| dev_dbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n", |
| "write", buf[1], buf[2], buf[3], |
| buf[4], buf[5], buf[6], buf[7]); |
| |
| /* use write-then-read since dma from stack is nonportable */ |
| return spi_write_then_read(ds1305->spi, buf, sizeof buf, |
| NULL, 0); |
| } |
| |
| /* |
| * Get/set of alarm is a bit funky: |
| * |
| * - First there's the inherent raciness of getting the (partitioned) |
| * status of an alarm that could trigger while we're reading parts |
| * of that status. |
| * |
| * - Second there's its limited range (we could increase it a bit by |
| * relying on WDAY), which means it will easily roll over. |
| * |
| * - Third there's the choice of two alarms and alarm signals. |
| * Here we use ALM0 and expect that nINT0 (open drain) is used; |
| * that's the only real option for DS1306 runtime alarms, and is |
| * natural on DS1305. |
| * |
| * - Fourth, there's also ALM1, and a second interrupt signal: |
| * + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0; |
| * + On DS1306 ALM1 only uses INT1 (an active high pulse) |
| * and it won't work when VCC1 is active. |
| * |
| * So to be most general, we should probably set both alarms to the |
| * same value, letting ALM1 be the wakeup event source on DS1306 |
| * and handling several wiring options on DS1305. |
| * |
| * - Fifth, we support the polled mode (as well as possible; why not?) |
| * even when no interrupt line is wired to an IRQ. |
| */ |
| |
| /* |
| * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl) |
| */ |
| static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm) |
| { |
| struct ds1305 *ds1305 = dev_get_drvdata(dev); |
| struct spi_device *spi = ds1305->spi; |
| u8 addr; |
| int status; |
| u8 buf[DS1305_ALM_LEN]; |
| |
| /* Refresh control register cache BEFORE reading ALM0 registers, |
| * since reading alarm registers acks any pending IRQ. That |
| * makes returning "pending" status a bit of a lie, but that bit |
| * of EFI status is at best fragile anyway (given IRQ handlers). |
| */ |
| addr = DS1305_CONTROL; |
| status = spi_write_then_read(spi, &addr, sizeof addr, |
| ds1305->ctrl, sizeof ds1305->ctrl); |
| if (status < 0) |
| return status; |
| |
| alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0); |
| alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0); |
| |
| /* get and check ALM0 registers */ |
| addr = DS1305_ALM0(DS1305_SEC); |
| status = spi_write_then_read(spi, &addr, sizeof addr, |
| buf, sizeof buf); |
| if (status < 0) |
| return status; |
| |
| dev_vdbg(dev, "%s: %02x %02x %02x %02x\n", |
| "alm0 read", buf[DS1305_SEC], buf[DS1305_MIN], |
| buf[DS1305_HOUR], buf[DS1305_WDAY]); |
| |
| if ((DS1305_ALM_DISABLE & buf[DS1305_SEC]) |
| || (DS1305_ALM_DISABLE & buf[DS1305_MIN]) |
| || (DS1305_ALM_DISABLE & buf[DS1305_HOUR])) |
| return -EIO; |
| |
| /* Stuff these values into alm->time and let RTC framework code |
| * fill in the rest ... and also handle rollover to tomorrow when |
| * that's needed. |
| */ |
| alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]); |
| alm->time.tm_min = bcd2bin(buf[DS1305_MIN]); |
| alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]); |
| alm->time.tm_mday = -1; |
| alm->time.tm_mon = -1; |
| alm->time.tm_year = -1; |
| /* next three fields are unused by Linux */ |
| alm->time.tm_wday = -1; |
| alm->time.tm_mday = -1; |
| alm->time.tm_isdst = -1; |
| |
| return 0; |
| } |
| |
| /* |
| * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl) |
| */ |
| static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm) |
| { |
| struct ds1305 *ds1305 = dev_get_drvdata(dev); |
| struct spi_device *spi = ds1305->spi; |
| unsigned long now, later; |
| struct rtc_time tm; |
| int status; |
| u8 buf[1 + DS1305_ALM_LEN]; |
| |
| /* convert desired alarm to time_t */ |
| status = rtc_tm_to_time(&alm->time, &later); |
| if (status < 0) |
| return status; |
| |
| /* Read current time as time_t */ |
| status = ds1305_get_time(dev, &tm); |
| if (status < 0) |
| return status; |
| status = rtc_tm_to_time(&tm, &now); |
| if (status < 0) |
| return status; |
| |
| /* make sure alarm fires within the next 24 hours */ |
| if (later <= now) |
| return -EINVAL; |
| if ((later - now) > 24 * 60 * 60) |
| return -EDOM; |
| |
| /* disable alarm if needed */ |
| if (ds1305->ctrl[0] & DS1305_AEI0) { |
| ds1305->ctrl[0] &= ~DS1305_AEI0; |
| |
| buf[0] = DS1305_WRITE | DS1305_CONTROL; |
| buf[1] = ds1305->ctrl[0]; |
| status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0); |
| if (status < 0) |
| return status; |
| } |
| |
| /* write alarm */ |
| buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC); |
| buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec); |
| buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min); |
| buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour); |
| buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE; |
| |
| dev_dbg(dev, "%s: %02x %02x %02x %02x\n", |
| "alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN], |
| buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]); |
| |
| status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0); |
| if (status < 0) |
| return status; |
| |
| /* enable alarm if requested */ |
| if (alm->enabled) { |
| ds1305->ctrl[0] |= DS1305_AEI0; |
| |
| buf[0] = DS1305_WRITE | DS1305_CONTROL; |
| buf[1] = ds1305->ctrl[0]; |
| status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0); |
| } |
| |
| return status; |
| } |
| |
| #ifdef CONFIG_PROC_FS |
| |
| static int ds1305_proc(struct device *dev, struct seq_file *seq) |
| { |
| struct ds1305 *ds1305 = dev_get_drvdata(dev); |
| char *diodes = "no"; |
| char *resistors = ""; |
| |
| /* ctrl[2] is treated as read-only; no locking needed */ |
| if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) { |
| switch (ds1305->ctrl[2] & 0x0c) { |
| case DS1305_TRICKLE_DS2: |
| diodes = "2 diodes, "; |
| break; |
| case DS1305_TRICKLE_DS1: |
| diodes = "1 diode, "; |
| break; |
| default: |
| goto done; |
| } |
| switch (ds1305->ctrl[2] & 0x03) { |
| case DS1305_TRICKLE_2K: |
| resistors = "2k Ohm"; |
| break; |
| case DS1305_TRICKLE_4K: |
| resistors = "4k Ohm"; |
| break; |
| case DS1305_TRICKLE_8K: |
| resistors = "8k Ohm"; |
| break; |
| default: |
| diodes = "no"; |
| break; |
| } |
| } |
| |
| done: |
| return seq_printf(seq, |
| "trickle_charge\t: %s%s\n", |
| diodes, resistors); |
| } |
| |
| #else |
| #define ds1305_proc NULL |
| #endif |
| |
| static const struct rtc_class_ops ds1305_ops = { |
| .ioctl = ds1305_ioctl, |
| .read_time = ds1305_get_time, |
| .set_time = ds1305_set_time, |
| .read_alarm = ds1305_get_alarm, |
| .set_alarm = ds1305_set_alarm, |
| .proc = ds1305_proc, |
| }; |
| |
| static void ds1305_work(struct work_struct *work) |
| { |
| struct ds1305 *ds1305 = container_of(work, struct ds1305, work); |
| struct mutex *lock = &ds1305->rtc->ops_lock; |
| struct spi_device *spi = ds1305->spi; |
| u8 buf[3]; |
| int status; |
| |
| /* lock to protect ds1305->ctrl */ |
| mutex_lock(lock); |
| |
| /* Disable the IRQ, and clear its status ... for now, we "know" |
| * that if more than one alarm is active, they're in sync. |
| * Note that reading ALM data registers also clears IRQ status. |
| */ |
| ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0); |
| ds1305->ctrl[1] = 0; |
| |
| buf[0] = DS1305_WRITE | DS1305_CONTROL; |
| buf[1] = ds1305->ctrl[0]; |
| buf[2] = 0; |
| |
| status = spi_write_then_read(spi, buf, sizeof buf, |
| NULL, 0); |
| if (status < 0) |
| dev_dbg(&spi->dev, "clear irq --> %d\n", status); |
| |
| mutex_unlock(lock); |
| |
| if (!test_bit(FLAG_EXITING, &ds1305->flags)) |
| enable_irq(spi->irq); |
| |
| rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF); |
| } |
| |
| /* |
| * This "real" IRQ handler hands off to a workqueue mostly to allow |
| * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async |
| * I/O requests in IRQ context (to clear the IRQ status). |
| */ |
| static irqreturn_t ds1305_irq(int irq, void *p) |
| { |
| struct ds1305 *ds1305 = p; |
| |
| disable_irq(irq); |
| schedule_work(&ds1305->work); |
| return IRQ_HANDLED; |
| } |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* |
| * Interface for NVRAM |
| */ |
| |
| static void msg_init(struct spi_message *m, struct spi_transfer *x, |
| u8 *addr, size_t count, char *tx, char *rx) |
| { |
| spi_message_init(m); |
| memset(x, 0, 2 * sizeof(*x)); |
| |
| x->tx_buf = addr; |
| x->len = 1; |
| spi_message_add_tail(x, m); |
| |
| x++; |
| |
| x->tx_buf = tx; |
| x->rx_buf = rx; |
| x->len = count; |
| spi_message_add_tail(x, m); |
| } |
| |
| static ssize_t |
| ds1305_nvram_read(struct kobject *kobj, struct bin_attribute *attr, |
| char *buf, loff_t off, size_t count) |
| { |
| struct spi_device *spi; |
| u8 addr; |
| struct spi_message m; |
| struct spi_transfer x[2]; |
| int status; |
| |
| spi = container_of(kobj, struct spi_device, dev.kobj); |
| |
| if (unlikely(off >= DS1305_NVRAM_LEN)) |
| return 0; |
| if (count >= DS1305_NVRAM_LEN) |
| count = DS1305_NVRAM_LEN; |
| if ((off + count) > DS1305_NVRAM_LEN) |
| count = DS1305_NVRAM_LEN - off; |
| if (unlikely(!count)) |
| return count; |
| |
| addr = DS1305_NVRAM + off; |
| msg_init(&m, x, &addr, count, NULL, buf); |
| |
| status = spi_sync(spi, &m); |
| if (status < 0) |
| dev_err(&spi->dev, "nvram %s error %d\n", "read", status); |
| return (status < 0) ? status : count; |
| } |
| |
| static ssize_t |
| ds1305_nvram_write(struct kobject *kobj, struct bin_attribute *attr, |
| char *buf, loff_t off, size_t count) |
| { |
| struct spi_device *spi; |
| u8 addr; |
| struct spi_message m; |
| struct spi_transfer x[2]; |
| int status; |
| |
| spi = container_of(kobj, struct spi_device, dev.kobj); |
| |
| if (unlikely(off >= DS1305_NVRAM_LEN)) |
| return -EFBIG; |
| if (count >= DS1305_NVRAM_LEN) |
| count = DS1305_NVRAM_LEN; |
| if ((off + count) > DS1305_NVRAM_LEN) |
| count = DS1305_NVRAM_LEN - off; |
| if (unlikely(!count)) |
| return count; |
| |
| addr = (DS1305_WRITE | DS1305_NVRAM) + off; |
| msg_init(&m, x, &addr, count, buf, NULL); |
| |
| status = spi_sync(spi, &m); |
| if (status < 0) |
| dev_err(&spi->dev, "nvram %s error %d\n", "write", status); |
| return (status < 0) ? status : count; |
| } |
| |
| static struct bin_attribute nvram = { |
| .attr.name = "nvram", |
| .attr.mode = S_IRUGO | S_IWUSR, |
| .read = ds1305_nvram_read, |
| .write = ds1305_nvram_write, |
| .size = DS1305_NVRAM_LEN, |
| }; |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* |
| * Interface to SPI stack |
| */ |
| |
| static int __devinit ds1305_probe(struct spi_device *spi) |
| { |
| struct ds1305 *ds1305; |
| int status; |
| u8 addr, value; |
| struct ds1305_platform_data *pdata = spi->dev.platform_data; |
| bool write_ctrl = false; |
| |
| /* Sanity check board setup data. This may be hooked up |
| * in 3wire mode, but we don't care. Note that unless |
| * there's an inverter in place, this needs SPI_CS_HIGH! |
| */ |
| if ((spi->bits_per_word && spi->bits_per_word != 8) |
| || (spi->max_speed_hz > 2000000) |
| || !(spi->mode & SPI_CPHA)) |
| return -EINVAL; |
| |
| /* set up driver data */ |
| ds1305 = kzalloc(sizeof *ds1305, GFP_KERNEL); |
| if (!ds1305) |
| return -ENOMEM; |
| ds1305->spi = spi; |
| spi_set_drvdata(spi, ds1305); |
| |
| /* read and cache control registers */ |
| addr = DS1305_CONTROL; |
| status = spi_write_then_read(spi, &addr, sizeof addr, |
| ds1305->ctrl, sizeof ds1305->ctrl); |
| if (status < 0) { |
| dev_dbg(&spi->dev, "can't %s, %d\n", |
| "read", status); |
| goto fail0; |
| } |
| |
| dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n", |
| "read", ds1305->ctrl[0], |
| ds1305->ctrl[1], ds1305->ctrl[2]); |
| |
| /* Sanity check register values ... partially compensating for the |
| * fact that SPI has no device handshake. A pullup on MISO would |
| * make these tests fail; but not all systems will have one. If |
| * some register is neither 0x00 nor 0xff, a chip is likely there. |
| */ |
| if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) { |
| dev_dbg(&spi->dev, "RTC chip is not present\n"); |
| status = -ENODEV; |
| goto fail0; |
| } |
| if (ds1305->ctrl[2] == 0) |
| dev_dbg(&spi->dev, "chip may not be present\n"); |
| |
| /* enable writes if needed ... if we were paranoid it would |
| * make sense to enable them only when absolutely necessary. |
| */ |
| if (ds1305->ctrl[0] & DS1305_WP) { |
| u8 buf[2]; |
| |
| ds1305->ctrl[0] &= ~DS1305_WP; |
| |
| buf[0] = DS1305_WRITE | DS1305_CONTROL; |
| buf[1] = ds1305->ctrl[0]; |
| status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0); |
| |
| dev_dbg(&spi->dev, "clear WP --> %d\n", status); |
| if (status < 0) |
| goto fail0; |
| } |
| |
| /* on DS1305, maybe start oscillator; like most low power |
| * oscillators, it may take a second to stabilize |
| */ |
| if (ds1305->ctrl[0] & DS1305_nEOSC) { |
| ds1305->ctrl[0] &= ~DS1305_nEOSC; |
| write_ctrl = true; |
| dev_warn(&spi->dev, "SET TIME!\n"); |
| } |
| |
| /* ack any pending IRQs */ |
| if (ds1305->ctrl[1]) { |
| ds1305->ctrl[1] = 0; |
| write_ctrl = true; |
| } |
| |
| /* this may need one-time (re)init */ |
| if (pdata) { |
| /* maybe enable trickle charge */ |
| if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) { |
| ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC |
| | pdata->trickle; |
| write_ctrl = true; |
| } |
| |
| /* on DS1306, configure 1 Hz signal */ |
| if (pdata->is_ds1306) { |
| if (pdata->en_1hz) { |
| if (!(ds1305->ctrl[0] & DS1306_1HZ)) { |
| ds1305->ctrl[0] |= DS1306_1HZ; |
| write_ctrl = true; |
| } |
| } else { |
| if (ds1305->ctrl[0] & DS1306_1HZ) { |
| ds1305->ctrl[0] &= ~DS1306_1HZ; |
| write_ctrl = true; |
| } |
| } |
| } |
| } |
| |
| if (write_ctrl) { |
| u8 buf[4]; |
| |
| buf[0] = DS1305_WRITE | DS1305_CONTROL; |
| buf[1] = ds1305->ctrl[0]; |
| buf[2] = ds1305->ctrl[1]; |
| buf[3] = ds1305->ctrl[2]; |
| status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0); |
| if (status < 0) { |
| dev_dbg(&spi->dev, "can't %s, %d\n", |
| "write", status); |
| goto fail0; |
| } |
| |
| dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n", |
| "write", ds1305->ctrl[0], |
| ds1305->ctrl[1], ds1305->ctrl[2]); |
| } |
| |
| /* see if non-Linux software set up AM/PM mode */ |
| addr = DS1305_HOUR; |
| status = spi_write_then_read(spi, &addr, sizeof addr, |
| &value, sizeof value); |
| if (status < 0) { |
| dev_dbg(&spi->dev, "read HOUR --> %d\n", status); |
| goto fail0; |
| } |
| |
| ds1305->hr12 = (DS1305_HR_12 & value) != 0; |
| if (ds1305->hr12) |
| dev_dbg(&spi->dev, "AM/PM\n"); |
| |
| /* register RTC ... from here on, ds1305->ctrl needs locking */ |
| ds1305->rtc = rtc_device_register("ds1305", &spi->dev, |
| &ds1305_ops, THIS_MODULE); |
| if (IS_ERR(ds1305->rtc)) { |
| status = PTR_ERR(ds1305->rtc); |
| dev_dbg(&spi->dev, "register rtc --> %d\n", status); |
| goto fail0; |
| } |
| |
| /* Maybe set up alarm IRQ; be ready to handle it triggering right |
| * away. NOTE that we don't share this. The signal is active low, |
| * and we can't ack it before a SPI message delay. We temporarily |
| * disable the IRQ until it's acked, which lets us work with more |
| * IRQ trigger modes (not all IRQ controllers can do falling edge). |
| */ |
| if (spi->irq) { |
| INIT_WORK(&ds1305->work, ds1305_work); |
| status = request_irq(spi->irq, ds1305_irq, |
| 0, dev_name(&ds1305->rtc->dev), ds1305); |
| if (status < 0) { |
| dev_dbg(&spi->dev, "request_irq %d --> %d\n", |
| spi->irq, status); |
| goto fail1; |
| } |
| |
| device_set_wakeup_capable(&spi->dev, 1); |
| } |
| |
| /* export NVRAM */ |
| status = sysfs_create_bin_file(&spi->dev.kobj, &nvram); |
| if (status < 0) { |
| dev_dbg(&spi->dev, "register nvram --> %d\n", status); |
| goto fail2; |
| } |
| |
| return 0; |
| |
| fail2: |
| free_irq(spi->irq, ds1305); |
| fail1: |
| rtc_device_unregister(ds1305->rtc); |
| fail0: |
| kfree(ds1305); |
| return status; |
| } |
| |
| static int __devexit ds1305_remove(struct spi_device *spi) |
| { |
| struct ds1305 *ds1305 = spi_get_drvdata(spi); |
| |
| sysfs_remove_bin_file(&spi->dev.kobj, &nvram); |
| |
| /* carefully shut down irq and workqueue, if present */ |
| if (spi->irq) { |
| set_bit(FLAG_EXITING, &ds1305->flags); |
| free_irq(spi->irq, ds1305); |
| flush_scheduled_work(); |
| } |
| |
| rtc_device_unregister(ds1305->rtc); |
| spi_set_drvdata(spi, NULL); |
| kfree(ds1305); |
| return 0; |
| } |
| |
| static struct spi_driver ds1305_driver = { |
| .driver.name = "rtc-ds1305", |
| .driver.owner = THIS_MODULE, |
| .probe = ds1305_probe, |
| .remove = __devexit_p(ds1305_remove), |
| /* REVISIT add suspend/resume */ |
| }; |
| |
| static int __init ds1305_init(void) |
| { |
| return spi_register_driver(&ds1305_driver); |
| } |
| module_init(ds1305_init); |
| |
| static void __exit ds1305_exit(void) |
| { |
| spi_unregister_driver(&ds1305_driver); |
| } |
| module_exit(ds1305_exit); |
| |
| MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("spi:rtc-ds1305"); |