| /* | 
 |  *    Disk Array driver for HP Smart Array controllers. | 
 |  *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P. | 
 |  * | 
 |  *    This program is free software; you can redistribute it and/or modify | 
 |  *    it under the terms of the GNU General Public License as published by | 
 |  *    the Free Software Foundation; version 2 of the License. | 
 |  * | 
 |  *    This program is distributed in the hope that it will be useful, | 
 |  *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
 |  *    General Public License for more details. | 
 |  * | 
 |  *    You should have received a copy of the GNU General Public License | 
 |  *    along with this program; if not, write to the Free Software | 
 |  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA | 
 |  *    02111-1307, USA. | 
 |  * | 
 |  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/types.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/major.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/blkpg.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/init.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/hdreg.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/mutex.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/io.h> | 
 |  | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/genhd.h> | 
 | #include <linux/completion.h> | 
 | #include <scsi/scsi.h> | 
 | #include <scsi/sg.h> | 
 | #include <scsi/scsi_ioctl.h> | 
 | #include <linux/cdrom.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/kthread.h> | 
 |  | 
 | #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin)) | 
 | #define DRIVER_NAME "HP CISS Driver (v 3.6.20)" | 
 | #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20) | 
 |  | 
 | /* Embedded module documentation macros - see modules.h */ | 
 | MODULE_AUTHOR("Hewlett-Packard Company"); | 
 | MODULE_DESCRIPTION("Driver for HP Smart Array Controllers"); | 
 | MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400" | 
 | 			" SA6i P600 P800 P400 P400i E200 E200i E500 P700m" | 
 | 			" Smart Array G2 Series SAS/SATA Controllers"); | 
 | MODULE_VERSION("3.6.20"); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | static int cciss_allow_hpsa; | 
 | module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR); | 
 | MODULE_PARM_DESC(cciss_allow_hpsa, | 
 | 	"Prevent cciss driver from accessing hardware known to be " | 
 | 	" supported by the hpsa driver"); | 
 |  | 
 | #include "cciss_cmd.h" | 
 | #include "cciss.h" | 
 | #include <linux/cciss_ioctl.h> | 
 |  | 
 | /* define the PCI info for the cards we can control */ | 
 | static const struct pci_device_id cciss_pci_device_id[] = { | 
 | 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070}, | 
 | 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080}, | 
 | 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082}, | 
 | 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083}, | 
 | 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091}, | 
 | 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A}, | 
 | 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B}, | 
 | 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C}, | 
 | 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B}, | 
 | 	{0,} | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(pci, cciss_pci_device_id); | 
 |  | 
 | /*  board_id = Subsystem Device ID & Vendor ID | 
 |  *  product = Marketing Name for the board | 
 |  *  access = Address of the struct of function pointers | 
 |  */ | 
 | static struct board_type products[] = { | 
 | 	{0x40700E11, "Smart Array 5300", &SA5_access}, | 
 | 	{0x40800E11, "Smart Array 5i", &SA5B_access}, | 
 | 	{0x40820E11, "Smart Array 532", &SA5B_access}, | 
 | 	{0x40830E11, "Smart Array 5312", &SA5B_access}, | 
 | 	{0x409A0E11, "Smart Array 641", &SA5_access}, | 
 | 	{0x409B0E11, "Smart Array 642", &SA5_access}, | 
 | 	{0x409C0E11, "Smart Array 6400", &SA5_access}, | 
 | 	{0x409D0E11, "Smart Array 6400 EM", &SA5_access}, | 
 | 	{0x40910E11, "Smart Array 6i", &SA5_access}, | 
 | 	{0x3225103C, "Smart Array P600", &SA5_access}, | 
 | 	{0x3235103C, "Smart Array P400i", &SA5_access}, | 
 | 	{0x3211103C, "Smart Array E200i", &SA5_access}, | 
 | 	{0x3212103C, "Smart Array E200", &SA5_access}, | 
 | 	{0x3213103C, "Smart Array E200i", &SA5_access}, | 
 | 	{0x3214103C, "Smart Array E200i", &SA5_access}, | 
 | 	{0x3215103C, "Smart Array E200i", &SA5_access}, | 
 | 	{0x3237103C, "Smart Array E500", &SA5_access}, | 
 | /* controllers below this line are also supported by the hpsa driver. */ | 
 | #define HPSA_BOUNDARY 0x3223103C | 
 | 	{0x3223103C, "Smart Array P800", &SA5_access}, | 
 | 	{0x3234103C, "Smart Array P400", &SA5_access}, | 
 | 	{0x323D103C, "Smart Array P700m", &SA5_access}, | 
 | 	{0x3241103C, "Smart Array P212", &SA5_access}, | 
 | 	{0x3243103C, "Smart Array P410", &SA5_access}, | 
 | 	{0x3245103C, "Smart Array P410i", &SA5_access}, | 
 | 	{0x3247103C, "Smart Array P411", &SA5_access}, | 
 | 	{0x3249103C, "Smart Array P812", &SA5_access}, | 
 | 	{0x324A103C, "Smart Array P712m", &SA5_access}, | 
 | 	{0x324B103C, "Smart Array P711m", &SA5_access}, | 
 | }; | 
 |  | 
 | /* How long to wait (in milliseconds) for board to go into simple mode */ | 
 | #define MAX_CONFIG_WAIT 30000 | 
 | #define MAX_IOCTL_CONFIG_WAIT 1000 | 
 |  | 
 | /*define how many times we will try a command because of bus resets */ | 
 | #define MAX_CMD_RETRIES 3 | 
 |  | 
 | #define MAX_CTLR	32 | 
 |  | 
 | /* Originally cciss driver only supports 8 major numbers */ | 
 | #define MAX_CTLR_ORIG 	8 | 
 |  | 
 | static ctlr_info_t *hba[MAX_CTLR]; | 
 |  | 
 | static struct task_struct *cciss_scan_thread; | 
 | static DEFINE_MUTEX(scan_mutex); | 
 | static LIST_HEAD(scan_q); | 
 |  | 
 | static void do_cciss_request(struct request_queue *q); | 
 | static irqreturn_t do_cciss_intr(int irq, void *dev_id); | 
 | static int cciss_open(struct block_device *bdev, fmode_t mode); | 
 | static int cciss_release(struct gendisk *disk, fmode_t mode); | 
 | static int cciss_ioctl(struct block_device *bdev, fmode_t mode, | 
 | 		       unsigned int cmd, unsigned long arg); | 
 | static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo); | 
 |  | 
 | static int cciss_revalidate(struct gendisk *disk); | 
 | static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl); | 
 | static int deregister_disk(ctlr_info_t *h, int drv_index, | 
 | 			   int clear_all, int via_ioctl); | 
 |  | 
 | static void cciss_read_capacity(int ctlr, int logvol, | 
 | 			sector_t *total_size, unsigned int *block_size); | 
 | static void cciss_read_capacity_16(int ctlr, int logvol, | 
 | 			sector_t *total_size, unsigned int *block_size); | 
 | static void cciss_geometry_inquiry(int ctlr, int logvol, | 
 | 			sector_t total_size, | 
 | 			unsigned int block_size, InquiryData_struct *inq_buff, | 
 | 				   drive_info_struct *drv); | 
 | static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *, | 
 | 					   __u32); | 
 | static void start_io(ctlr_info_t *h); | 
 | static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size, | 
 | 			__u8 page_code, unsigned char scsi3addr[], | 
 | 			int cmd_type); | 
 | static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c, | 
 | 	int attempt_retry); | 
 | static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c); | 
 |  | 
 | static void fail_all_cmds(unsigned long ctlr); | 
 | static int add_to_scan_list(struct ctlr_info *h); | 
 | static int scan_thread(void *data); | 
 | static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c); | 
 | static void cciss_hba_release(struct device *dev); | 
 | static void cciss_device_release(struct device *dev); | 
 | static void cciss_free_gendisk(ctlr_info_t *h, int drv_index); | 
 | static void cciss_free_drive_info(ctlr_info_t *h, int drv_index); | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | static void cciss_procinit(int i); | 
 | #else | 
 | static void cciss_procinit(int i) | 
 | { | 
 | } | 
 | #endif				/* CONFIG_PROC_FS */ | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | static int cciss_compat_ioctl(struct block_device *, fmode_t, | 
 | 			      unsigned, unsigned long); | 
 | #endif | 
 |  | 
 | static const struct block_device_operations cciss_fops = { | 
 | 	.owner = THIS_MODULE, | 
 | 	.open = cciss_open, | 
 | 	.release = cciss_release, | 
 | 	.locked_ioctl = cciss_ioctl, | 
 | 	.getgeo = cciss_getgeo, | 
 | #ifdef CONFIG_COMPAT | 
 | 	.compat_ioctl = cciss_compat_ioctl, | 
 | #endif | 
 | 	.revalidate_disk = cciss_revalidate, | 
 | }; | 
 |  | 
 | /* | 
 |  * Enqueuing and dequeuing functions for cmdlists. | 
 |  */ | 
 | static inline void addQ(struct hlist_head *list, CommandList_struct *c) | 
 | { | 
 | 	hlist_add_head(&c->list, list); | 
 | } | 
 |  | 
 | static inline void removeQ(CommandList_struct *c) | 
 | { | 
 | 	/* | 
 | 	 * After kexec/dump some commands might still | 
 | 	 * be in flight, which the firmware will try | 
 | 	 * to complete. Resetting the firmware doesn't work | 
 | 	 * with old fw revisions, so we have to mark | 
 | 	 * them off as 'stale' to prevent the driver from | 
 | 	 * falling over. | 
 | 	 */ | 
 | 	if (WARN_ON(hlist_unhashed(&c->list))) { | 
 | 		c->cmd_type = CMD_MSG_STALE; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	hlist_del_init(&c->list); | 
 | } | 
 |  | 
 | static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list, | 
 | 	int nr_cmds) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!cmd_sg_list) | 
 | 		return; | 
 | 	for (i = 0; i < nr_cmds; i++) { | 
 | 		kfree(cmd_sg_list[i]); | 
 | 		cmd_sg_list[i] = NULL; | 
 | 	} | 
 | 	kfree(cmd_sg_list); | 
 | } | 
 |  | 
 | static SGDescriptor_struct **cciss_allocate_sg_chain_blocks( | 
 | 	ctlr_info_t *h, int chainsize, int nr_cmds) | 
 | { | 
 | 	int j; | 
 | 	SGDescriptor_struct **cmd_sg_list; | 
 |  | 
 | 	if (chainsize <= 0) | 
 | 		return NULL; | 
 |  | 
 | 	cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL); | 
 | 	if (!cmd_sg_list) | 
 | 		return NULL; | 
 |  | 
 | 	/* Build up chain blocks for each command */ | 
 | 	for (j = 0; j < nr_cmds; j++) { | 
 | 		/* Need a block of chainsized s/g elements. */ | 
 | 		cmd_sg_list[j] = kmalloc((chainsize * | 
 | 			sizeof(*cmd_sg_list[j])), GFP_KERNEL); | 
 | 		if (!cmd_sg_list[j]) { | 
 | 			dev_err(&h->pdev->dev, "Cannot get memory " | 
 | 				"for s/g chains.\n"); | 
 | 			goto clean; | 
 | 		} | 
 | 	} | 
 | 	return cmd_sg_list; | 
 | clean: | 
 | 	cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c) | 
 | { | 
 | 	SGDescriptor_struct *chain_sg; | 
 | 	u64bit temp64; | 
 |  | 
 | 	if (c->Header.SGTotal <= h->max_cmd_sgentries) | 
 | 		return; | 
 |  | 
 | 	chain_sg = &c->SG[h->max_cmd_sgentries - 1]; | 
 | 	temp64.val32.lower = chain_sg->Addr.lower; | 
 | 	temp64.val32.upper = chain_sg->Addr.upper; | 
 | 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE); | 
 | } | 
 |  | 
 | static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c, | 
 | 	SGDescriptor_struct *chain_block, int len) | 
 | { | 
 | 	SGDescriptor_struct *chain_sg; | 
 | 	u64bit temp64; | 
 |  | 
 | 	chain_sg = &c->SG[h->max_cmd_sgentries - 1]; | 
 | 	chain_sg->Ext = CCISS_SG_CHAIN; | 
 | 	chain_sg->Len = len; | 
 | 	temp64.val = pci_map_single(h->pdev, chain_block, len, | 
 | 				PCI_DMA_TODEVICE); | 
 | 	chain_sg->Addr.lower = temp64.val32.lower; | 
 | 	chain_sg->Addr.upper = temp64.val32.upper; | 
 | } | 
 |  | 
 | #include "cciss_scsi.c"		/* For SCSI tape support */ | 
 |  | 
 | static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", | 
 | 	"UNKNOWN" | 
 | }; | 
 | #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1) | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 |  | 
 | /* | 
 |  * Report information about this controller. | 
 |  */ | 
 | #define ENG_GIG 1000000000 | 
 | #define ENG_GIG_FACTOR (ENG_GIG/512) | 
 | #define ENGAGE_SCSI	"engage scsi" | 
 |  | 
 | static struct proc_dir_entry *proc_cciss; | 
 |  | 
 | static void cciss_seq_show_header(struct seq_file *seq) | 
 | { | 
 | 	ctlr_info_t *h = seq->private; | 
 |  | 
 | 	seq_printf(seq, "%s: HP %s Controller\n" | 
 | 		"Board ID: 0x%08lx\n" | 
 | 		"Firmware Version: %c%c%c%c\n" | 
 | 		"IRQ: %d\n" | 
 | 		"Logical drives: %d\n" | 
 | 		"Current Q depth: %d\n" | 
 | 		"Current # commands on controller: %d\n" | 
 | 		"Max Q depth since init: %d\n" | 
 | 		"Max # commands on controller since init: %d\n" | 
 | 		"Max SG entries since init: %d\n", | 
 | 		h->devname, | 
 | 		h->product_name, | 
 | 		(unsigned long)h->board_id, | 
 | 		h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], | 
 | 		h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT], | 
 | 		h->num_luns, | 
 | 		h->Qdepth, h->commands_outstanding, | 
 | 		h->maxQsinceinit, h->max_outstanding, h->maxSG); | 
 |  | 
 | #ifdef CONFIG_CISS_SCSI_TAPE | 
 | 	cciss_seq_tape_report(seq, h->ctlr); | 
 | #endif /* CONFIG_CISS_SCSI_TAPE */ | 
 | } | 
 |  | 
 | static void *cciss_seq_start(struct seq_file *seq, loff_t *pos) | 
 | { | 
 | 	ctlr_info_t *h = seq->private; | 
 | 	unsigned ctlr = h->ctlr; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* prevent displaying bogus info during configuration | 
 | 	 * or deconfiguration of a logical volume | 
 | 	 */ | 
 | 	spin_lock_irqsave(CCISS_LOCK(ctlr), flags); | 
 | 	if (h->busy_configuring) { | 
 | 		spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); | 
 | 		return ERR_PTR(-EBUSY); | 
 | 	} | 
 | 	h->busy_configuring = 1; | 
 | 	spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); | 
 |  | 
 | 	if (*pos == 0) | 
 | 		cciss_seq_show_header(seq); | 
 |  | 
 | 	return pos; | 
 | } | 
 |  | 
 | static int cciss_seq_show(struct seq_file *seq, void *v) | 
 | { | 
 | 	sector_t vol_sz, vol_sz_frac; | 
 | 	ctlr_info_t *h = seq->private; | 
 | 	unsigned ctlr = h->ctlr; | 
 | 	loff_t *pos = v; | 
 | 	drive_info_struct *drv = h->drv[*pos]; | 
 |  | 
 | 	if (*pos > h->highest_lun) | 
 | 		return 0; | 
 |  | 
 | 	if (drv == NULL) /* it's possible for h->drv[] to have holes. */ | 
 | 		return 0; | 
 |  | 
 | 	if (drv->heads == 0) | 
 | 		return 0; | 
 |  | 
 | 	vol_sz = drv->nr_blocks; | 
 | 	vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR); | 
 | 	vol_sz_frac *= 100; | 
 | 	sector_div(vol_sz_frac, ENG_GIG_FACTOR); | 
 |  | 
 | 	if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN) | 
 | 		drv->raid_level = RAID_UNKNOWN; | 
 | 	seq_printf(seq, "cciss/c%dd%d:" | 
 | 			"\t%4u.%02uGB\tRAID %s\n", | 
 | 			ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac, | 
 | 			raid_label[drv->raid_level]); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
 | { | 
 | 	ctlr_info_t *h = seq->private; | 
 |  | 
 | 	if (*pos > h->highest_lun) | 
 | 		return NULL; | 
 | 	*pos += 1; | 
 |  | 
 | 	return pos; | 
 | } | 
 |  | 
 | static void cciss_seq_stop(struct seq_file *seq, void *v) | 
 | { | 
 | 	ctlr_info_t *h = seq->private; | 
 |  | 
 | 	/* Only reset h->busy_configuring if we succeeded in setting | 
 | 	 * it during cciss_seq_start. */ | 
 | 	if (v == ERR_PTR(-EBUSY)) | 
 | 		return; | 
 |  | 
 | 	h->busy_configuring = 0; | 
 | } | 
 |  | 
 | static const struct seq_operations cciss_seq_ops = { | 
 | 	.start = cciss_seq_start, | 
 | 	.show  = cciss_seq_show, | 
 | 	.next  = cciss_seq_next, | 
 | 	.stop  = cciss_seq_stop, | 
 | }; | 
 |  | 
 | static int cciss_seq_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	int ret = seq_open(file, &cciss_seq_ops); | 
 | 	struct seq_file *seq = file->private_data; | 
 |  | 
 | 	if (!ret) | 
 | 		seq->private = PDE(inode)->data; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t | 
 | cciss_proc_write(struct file *file, const char __user *buf, | 
 | 		 size_t length, loff_t *ppos) | 
 | { | 
 | 	int err; | 
 | 	char *buffer; | 
 |  | 
 | #ifndef CONFIG_CISS_SCSI_TAPE | 
 | 	return -EINVAL; | 
 | #endif | 
 |  | 
 | 	if (!buf || length > PAGE_SIZE - 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	buffer = (char *)__get_free_page(GFP_KERNEL); | 
 | 	if (!buffer) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	err = -EFAULT; | 
 | 	if (copy_from_user(buffer, buf, length)) | 
 | 		goto out; | 
 | 	buffer[length] = '\0'; | 
 |  | 
 | #ifdef CONFIG_CISS_SCSI_TAPE | 
 | 	if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) { | 
 | 		struct seq_file *seq = file->private_data; | 
 | 		ctlr_info_t *h = seq->private; | 
 |  | 
 | 		err = cciss_engage_scsi(h->ctlr); | 
 | 		if (err == 0) | 
 | 			err = length; | 
 | 	} else | 
 | #endif /* CONFIG_CISS_SCSI_TAPE */ | 
 | 		err = -EINVAL; | 
 | 	/* might be nice to have "disengage" too, but it's not | 
 | 	   safely possible. (only 1 module use count, lock issues.) */ | 
 |  | 
 | out: | 
 | 	free_page((unsigned long)buffer); | 
 | 	return err; | 
 | } | 
 |  | 
 | static const struct file_operations cciss_proc_fops = { | 
 | 	.owner	 = THIS_MODULE, | 
 | 	.open    = cciss_seq_open, | 
 | 	.read    = seq_read, | 
 | 	.llseek  = seq_lseek, | 
 | 	.release = seq_release, | 
 | 	.write	 = cciss_proc_write, | 
 | }; | 
 |  | 
 | static void __devinit cciss_procinit(int i) | 
 | { | 
 | 	struct proc_dir_entry *pde; | 
 |  | 
 | 	if (proc_cciss == NULL) | 
 | 		proc_cciss = proc_mkdir("driver/cciss", NULL); | 
 | 	if (!proc_cciss) | 
 | 		return; | 
 | 	pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP | | 
 | 					S_IROTH, proc_cciss, | 
 | 					&cciss_proc_fops, hba[i]); | 
 | } | 
 | #endif				/* CONFIG_PROC_FS */ | 
 |  | 
 | #define MAX_PRODUCT_NAME_LEN 19 | 
 |  | 
 | #define to_hba(n) container_of(n, struct ctlr_info, dev) | 
 | #define to_drv(n) container_of(n, drive_info_struct, dev) | 
 |  | 
 | static ssize_t host_store_rescan(struct device *dev, | 
 | 				 struct device_attribute *attr, | 
 | 				 const char *buf, size_t count) | 
 | { | 
 | 	struct ctlr_info *h = to_hba(dev); | 
 |  | 
 | 	add_to_scan_list(h); | 
 | 	wake_up_process(cciss_scan_thread); | 
 | 	wait_for_completion_interruptible(&h->scan_wait); | 
 |  | 
 | 	return count; | 
 | } | 
 | static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); | 
 |  | 
 | static ssize_t dev_show_unique_id(struct device *dev, | 
 | 				 struct device_attribute *attr, | 
 | 				 char *buf) | 
 | { | 
 | 	drive_info_struct *drv = to_drv(dev); | 
 | 	struct ctlr_info *h = to_hba(drv->dev.parent); | 
 | 	__u8 sn[16]; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); | 
 | 	if (h->busy_configuring) | 
 | 		ret = -EBUSY; | 
 | 	else | 
 | 		memcpy(sn, drv->serial_no, sizeof(sn)); | 
 | 	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	else | 
 | 		return snprintf(buf, 16 * 2 + 2, | 
 | 				"%02X%02X%02X%02X%02X%02X%02X%02X" | 
 | 				"%02X%02X%02X%02X%02X%02X%02X%02X\n", | 
 | 				sn[0], sn[1], sn[2], sn[3], | 
 | 				sn[4], sn[5], sn[6], sn[7], | 
 | 				sn[8], sn[9], sn[10], sn[11], | 
 | 				sn[12], sn[13], sn[14], sn[15]); | 
 | } | 
 | static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL); | 
 |  | 
 | static ssize_t dev_show_vendor(struct device *dev, | 
 | 			       struct device_attribute *attr, | 
 | 			       char *buf) | 
 | { | 
 | 	drive_info_struct *drv = to_drv(dev); | 
 | 	struct ctlr_info *h = to_hba(drv->dev.parent); | 
 | 	char vendor[VENDOR_LEN + 1]; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); | 
 | 	if (h->busy_configuring) | 
 | 		ret = -EBUSY; | 
 | 	else | 
 | 		memcpy(vendor, drv->vendor, VENDOR_LEN + 1); | 
 | 	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	else | 
 | 		return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor); | 
 | } | 
 | static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL); | 
 |  | 
 | static ssize_t dev_show_model(struct device *dev, | 
 | 			      struct device_attribute *attr, | 
 | 			      char *buf) | 
 | { | 
 | 	drive_info_struct *drv = to_drv(dev); | 
 | 	struct ctlr_info *h = to_hba(drv->dev.parent); | 
 | 	char model[MODEL_LEN + 1]; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); | 
 | 	if (h->busy_configuring) | 
 | 		ret = -EBUSY; | 
 | 	else | 
 | 		memcpy(model, drv->model, MODEL_LEN + 1); | 
 | 	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	else | 
 | 		return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model); | 
 | } | 
 | static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL); | 
 |  | 
 | static ssize_t dev_show_rev(struct device *dev, | 
 | 			    struct device_attribute *attr, | 
 | 			    char *buf) | 
 | { | 
 | 	drive_info_struct *drv = to_drv(dev); | 
 | 	struct ctlr_info *h = to_hba(drv->dev.parent); | 
 | 	char rev[REV_LEN + 1]; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); | 
 | 	if (h->busy_configuring) | 
 | 		ret = -EBUSY; | 
 | 	else | 
 | 		memcpy(rev, drv->rev, REV_LEN + 1); | 
 | 	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	else | 
 | 		return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev); | 
 | } | 
 | static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL); | 
 |  | 
 | static ssize_t cciss_show_lunid(struct device *dev, | 
 | 				struct device_attribute *attr, char *buf) | 
 | { | 
 | 	drive_info_struct *drv = to_drv(dev); | 
 | 	struct ctlr_info *h = to_hba(drv->dev.parent); | 
 | 	unsigned long flags; | 
 | 	unsigned char lunid[8]; | 
 |  | 
 | 	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); | 
 | 	if (h->busy_configuring) { | 
 | 		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	if (!drv->heads) { | 
 | 		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 | 		return -ENOTTY; | 
 | 	} | 
 | 	memcpy(lunid, drv->LunID, sizeof(lunid)); | 
 | 	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 | 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", | 
 | 		lunid[0], lunid[1], lunid[2], lunid[3], | 
 | 		lunid[4], lunid[5], lunid[6], lunid[7]); | 
 | } | 
 | static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL); | 
 |  | 
 | static ssize_t cciss_show_raid_level(struct device *dev, | 
 | 				     struct device_attribute *attr, char *buf) | 
 | { | 
 | 	drive_info_struct *drv = to_drv(dev); | 
 | 	struct ctlr_info *h = to_hba(drv->dev.parent); | 
 | 	int raid; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); | 
 | 	if (h->busy_configuring) { | 
 | 		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	raid = drv->raid_level; | 
 | 	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 | 	if (raid < 0 || raid > RAID_UNKNOWN) | 
 | 		raid = RAID_UNKNOWN; | 
 |  | 
 | 	return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n", | 
 | 			raid_label[raid]); | 
 | } | 
 | static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL); | 
 |  | 
 | static ssize_t cciss_show_usage_count(struct device *dev, | 
 | 				      struct device_attribute *attr, char *buf) | 
 | { | 
 | 	drive_info_struct *drv = to_drv(dev); | 
 | 	struct ctlr_info *h = to_hba(drv->dev.parent); | 
 | 	unsigned long flags; | 
 | 	int count; | 
 |  | 
 | 	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); | 
 | 	if (h->busy_configuring) { | 
 | 		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	count = drv->usage_count; | 
 | 	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 | 	return snprintf(buf, 20, "%d\n", count); | 
 | } | 
 | static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL); | 
 |  | 
 | static struct attribute *cciss_host_attrs[] = { | 
 | 	&dev_attr_rescan.attr, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static struct attribute_group cciss_host_attr_group = { | 
 | 	.attrs = cciss_host_attrs, | 
 | }; | 
 |  | 
 | static const struct attribute_group *cciss_host_attr_groups[] = { | 
 | 	&cciss_host_attr_group, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static struct device_type cciss_host_type = { | 
 | 	.name		= "cciss_host", | 
 | 	.groups		= cciss_host_attr_groups, | 
 | 	.release	= cciss_hba_release, | 
 | }; | 
 |  | 
 | static struct attribute *cciss_dev_attrs[] = { | 
 | 	&dev_attr_unique_id.attr, | 
 | 	&dev_attr_model.attr, | 
 | 	&dev_attr_vendor.attr, | 
 | 	&dev_attr_rev.attr, | 
 | 	&dev_attr_lunid.attr, | 
 | 	&dev_attr_raid_level.attr, | 
 | 	&dev_attr_usage_count.attr, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static struct attribute_group cciss_dev_attr_group = { | 
 | 	.attrs = cciss_dev_attrs, | 
 | }; | 
 |  | 
 | static const struct attribute_group *cciss_dev_attr_groups[] = { | 
 | 	&cciss_dev_attr_group, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static struct device_type cciss_dev_type = { | 
 | 	.name		= "cciss_device", | 
 | 	.groups		= cciss_dev_attr_groups, | 
 | 	.release	= cciss_device_release, | 
 | }; | 
 |  | 
 | static struct bus_type cciss_bus_type = { | 
 | 	.name		= "cciss", | 
 | }; | 
 |  | 
 | /* | 
 |  * cciss_hba_release is called when the reference count | 
 |  * of h->dev goes to zero. | 
 |  */ | 
 | static void cciss_hba_release(struct device *dev) | 
 | { | 
 | 	/* | 
 | 	 * nothing to do, but need this to avoid a warning | 
 | 	 * about not having a release handler from lib/kref.c. | 
 | 	 */ | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize sysfs entry for each controller.  This sets up and registers | 
 |  * the 'cciss#' directory for each individual controller under | 
 |  * /sys/bus/pci/devices/<dev>/. | 
 |  */ | 
 | static int cciss_create_hba_sysfs_entry(struct ctlr_info *h) | 
 | { | 
 | 	device_initialize(&h->dev); | 
 | 	h->dev.type = &cciss_host_type; | 
 | 	h->dev.bus = &cciss_bus_type; | 
 | 	dev_set_name(&h->dev, "%s", h->devname); | 
 | 	h->dev.parent = &h->pdev->dev; | 
 |  | 
 | 	return device_add(&h->dev); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove sysfs entries for an hba. | 
 |  */ | 
 | static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h) | 
 | { | 
 | 	device_del(&h->dev); | 
 | 	put_device(&h->dev); /* final put. */ | 
 | } | 
 |  | 
 | /* cciss_device_release is called when the reference count | 
 |  * of h->drv[x]dev goes to zero. | 
 |  */ | 
 | static void cciss_device_release(struct device *dev) | 
 | { | 
 | 	drive_info_struct *drv = to_drv(dev); | 
 | 	kfree(drv); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize sysfs for each logical drive.  This sets up and registers | 
 |  * the 'c#d#' directory for each individual logical drive under | 
 |  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from | 
 |  * /sys/block/cciss!c#d# to this entry. | 
 |  */ | 
 | static long cciss_create_ld_sysfs_entry(struct ctlr_info *h, | 
 | 				       int drv_index) | 
 | { | 
 | 	struct device *dev; | 
 |  | 
 | 	if (h->drv[drv_index]->device_initialized) | 
 | 		return 0; | 
 |  | 
 | 	dev = &h->drv[drv_index]->dev; | 
 | 	device_initialize(dev); | 
 | 	dev->type = &cciss_dev_type; | 
 | 	dev->bus = &cciss_bus_type; | 
 | 	dev_set_name(dev, "c%dd%d", h->ctlr, drv_index); | 
 | 	dev->parent = &h->dev; | 
 | 	h->drv[drv_index]->device_initialized = 1; | 
 | 	return device_add(dev); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove sysfs entries for a logical drive. | 
 |  */ | 
 | static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index, | 
 | 	int ctlr_exiting) | 
 | { | 
 | 	struct device *dev = &h->drv[drv_index]->dev; | 
 |  | 
 | 	/* special case for c*d0, we only destroy it on controller exit */ | 
 | 	if (drv_index == 0 && !ctlr_exiting) | 
 | 		return; | 
 |  | 
 | 	device_del(dev); | 
 | 	put_device(dev); /* the "final" put. */ | 
 | 	h->drv[drv_index] = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * For operations that cannot sleep, a command block is allocated at init, | 
 |  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track | 
 |  * which ones are free or in use.  For operations that can wait for kmalloc | 
 |  * to possible sleep, this routine can be called with get_from_pool set to 0. | 
 |  * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was. | 
 |  */ | 
 | static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool) | 
 | { | 
 | 	CommandList_struct *c; | 
 | 	int i; | 
 | 	u64bit temp64; | 
 | 	dma_addr_t cmd_dma_handle, err_dma_handle; | 
 |  | 
 | 	if (!get_from_pool) { | 
 | 		c = (CommandList_struct *) pci_alloc_consistent(h->pdev, | 
 | 			sizeof(CommandList_struct), &cmd_dma_handle); | 
 | 		if (c == NULL) | 
 | 			return NULL; | 
 | 		memset(c, 0, sizeof(CommandList_struct)); | 
 |  | 
 | 		c->cmdindex = -1; | 
 |  | 
 | 		c->err_info = (ErrorInfo_struct *) | 
 | 		    pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct), | 
 | 			    &err_dma_handle); | 
 |  | 
 | 		if (c->err_info == NULL) { | 
 | 			pci_free_consistent(h->pdev, | 
 | 				sizeof(CommandList_struct), c, cmd_dma_handle); | 
 | 			return NULL; | 
 | 		} | 
 | 		memset(c->err_info, 0, sizeof(ErrorInfo_struct)); | 
 | 	} else {		/* get it out of the controllers pool */ | 
 |  | 
 | 		do { | 
 | 			i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); | 
 | 			if (i == h->nr_cmds) | 
 | 				return NULL; | 
 | 		} while (test_and_set_bit | 
 | 			 (i & (BITS_PER_LONG - 1), | 
 | 			  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); | 
 | #ifdef CCISS_DEBUG | 
 | 		printk(KERN_DEBUG "cciss: using command buffer %d\n", i); | 
 | #endif | 
 | 		c = h->cmd_pool + i; | 
 | 		memset(c, 0, sizeof(CommandList_struct)); | 
 | 		cmd_dma_handle = h->cmd_pool_dhandle | 
 | 		    + i * sizeof(CommandList_struct); | 
 | 		c->err_info = h->errinfo_pool + i; | 
 | 		memset(c->err_info, 0, sizeof(ErrorInfo_struct)); | 
 | 		err_dma_handle = h->errinfo_pool_dhandle | 
 | 		    + i * sizeof(ErrorInfo_struct); | 
 | 		h->nr_allocs++; | 
 |  | 
 | 		c->cmdindex = i; | 
 | 	} | 
 |  | 
 | 	INIT_HLIST_NODE(&c->list); | 
 | 	c->busaddr = (__u32) cmd_dma_handle; | 
 | 	temp64.val = (__u64) err_dma_handle; | 
 | 	c->ErrDesc.Addr.lower = temp64.val32.lower; | 
 | 	c->ErrDesc.Addr.upper = temp64.val32.upper; | 
 | 	c->ErrDesc.Len = sizeof(ErrorInfo_struct); | 
 |  | 
 | 	c->ctlr = h->ctlr; | 
 | 	return c; | 
 | } | 
 |  | 
 | /* | 
 |  * Frees a command block that was previously allocated with cmd_alloc(). | 
 |  */ | 
 | static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool) | 
 | { | 
 | 	int i; | 
 | 	u64bit temp64; | 
 |  | 
 | 	if (!got_from_pool) { | 
 | 		temp64.val32.lower = c->ErrDesc.Addr.lower; | 
 | 		temp64.val32.upper = c->ErrDesc.Addr.upper; | 
 | 		pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct), | 
 | 				    c->err_info, (dma_addr_t) temp64.val); | 
 | 		pci_free_consistent(h->pdev, sizeof(CommandList_struct), | 
 | 				    c, (dma_addr_t) c->busaddr); | 
 | 	} else { | 
 | 		i = c - h->cmd_pool; | 
 | 		clear_bit(i & (BITS_PER_LONG - 1), | 
 | 			  h->cmd_pool_bits + (i / BITS_PER_LONG)); | 
 | 		h->nr_frees++; | 
 | 	} | 
 | } | 
 |  | 
 | static inline ctlr_info_t *get_host(struct gendisk *disk) | 
 | { | 
 | 	return disk->queue->queuedata; | 
 | } | 
 |  | 
 | static inline drive_info_struct *get_drv(struct gendisk *disk) | 
 | { | 
 | 	return disk->private_data; | 
 | } | 
 |  | 
 | /* | 
 |  * Open.  Make sure the device is really there. | 
 |  */ | 
 | static int cciss_open(struct block_device *bdev, fmode_t mode) | 
 | { | 
 | 	ctlr_info_t *host = get_host(bdev->bd_disk); | 
 | 	drive_info_struct *drv = get_drv(bdev->bd_disk); | 
 |  | 
 | #ifdef CCISS_DEBUG | 
 | 	printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name); | 
 | #endif				/* CCISS_DEBUG */ | 
 |  | 
 | 	if (drv->busy_configuring) | 
 | 		return -EBUSY; | 
 | 	/* | 
 | 	 * Root is allowed to open raw volume zero even if it's not configured | 
 | 	 * so array config can still work. Root is also allowed to open any | 
 | 	 * volume that has a LUN ID, so it can issue IOCTL to reread the | 
 | 	 * disk information.  I don't think I really like this | 
 | 	 * but I'm already using way to many device nodes to claim another one | 
 | 	 * for "raw controller". | 
 | 	 */ | 
 | 	if (drv->heads == 0) { | 
 | 		if (MINOR(bdev->bd_dev) != 0) {	/* not node 0? */ | 
 | 			/* if not node 0 make sure it is a partition = 0 */ | 
 | 			if (MINOR(bdev->bd_dev) & 0x0f) { | 
 | 				return -ENXIO; | 
 | 				/* if it is, make sure we have a LUN ID */ | 
 | 			} else if (memcmp(drv->LunID, CTLR_LUNID, | 
 | 				sizeof(drv->LunID))) { | 
 | 				return -ENXIO; | 
 | 			} | 
 | 		} | 
 | 		if (!capable(CAP_SYS_ADMIN)) | 
 | 			return -EPERM; | 
 | 	} | 
 | 	drv->usage_count++; | 
 | 	host->usage_count++; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Close.  Sync first. | 
 |  */ | 
 | static int cciss_release(struct gendisk *disk, fmode_t mode) | 
 | { | 
 | 	ctlr_info_t *host = get_host(disk); | 
 | 	drive_info_struct *drv = get_drv(disk); | 
 |  | 
 | #ifdef CCISS_DEBUG | 
 | 	printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name); | 
 | #endif				/* CCISS_DEBUG */ | 
 |  | 
 | 	drv->usage_count--; | 
 | 	host->usage_count--; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 |  | 
 | static int do_ioctl(struct block_device *bdev, fmode_t mode, | 
 | 		    unsigned cmd, unsigned long arg) | 
 | { | 
 | 	int ret; | 
 | 	lock_kernel(); | 
 | 	ret = cciss_ioctl(bdev, mode, cmd, arg); | 
 | 	unlock_kernel(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode, | 
 | 				  unsigned cmd, unsigned long arg); | 
 | static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode, | 
 | 				      unsigned cmd, unsigned long arg); | 
 |  | 
 | static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode, | 
 | 			      unsigned cmd, unsigned long arg) | 
 | { | 
 | 	switch (cmd) { | 
 | 	case CCISS_GETPCIINFO: | 
 | 	case CCISS_GETINTINFO: | 
 | 	case CCISS_SETINTINFO: | 
 | 	case CCISS_GETNODENAME: | 
 | 	case CCISS_SETNODENAME: | 
 | 	case CCISS_GETHEARTBEAT: | 
 | 	case CCISS_GETBUSTYPES: | 
 | 	case CCISS_GETFIRMVER: | 
 | 	case CCISS_GETDRIVVER: | 
 | 	case CCISS_REVALIDVOLS: | 
 | 	case CCISS_DEREGDISK: | 
 | 	case CCISS_REGNEWDISK: | 
 | 	case CCISS_REGNEWD: | 
 | 	case CCISS_RESCANDISK: | 
 | 	case CCISS_GETLUNINFO: | 
 | 		return do_ioctl(bdev, mode, cmd, arg); | 
 |  | 
 | 	case CCISS_PASSTHRU32: | 
 | 		return cciss_ioctl32_passthru(bdev, mode, cmd, arg); | 
 | 	case CCISS_BIG_PASSTHRU32: | 
 | 		return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg); | 
 |  | 
 | 	default: | 
 | 		return -ENOIOCTLCMD; | 
 | 	} | 
 | } | 
 |  | 
 | static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode, | 
 | 				  unsigned cmd, unsigned long arg) | 
 | { | 
 | 	IOCTL32_Command_struct __user *arg32 = | 
 | 	    (IOCTL32_Command_struct __user *) arg; | 
 | 	IOCTL_Command_struct arg64; | 
 | 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); | 
 | 	int err; | 
 | 	u32 cp; | 
 |  | 
 | 	err = 0; | 
 | 	err |= | 
 | 	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info, | 
 | 			   sizeof(arg64.LUN_info)); | 
 | 	err |= | 
 | 	    copy_from_user(&arg64.Request, &arg32->Request, | 
 | 			   sizeof(arg64.Request)); | 
 | 	err |= | 
 | 	    copy_from_user(&arg64.error_info, &arg32->error_info, | 
 | 			   sizeof(arg64.error_info)); | 
 | 	err |= get_user(arg64.buf_size, &arg32->buf_size); | 
 | 	err |= get_user(cp, &arg32->buf); | 
 | 	arg64.buf = compat_ptr(cp); | 
 | 	err |= copy_to_user(p, &arg64, sizeof(arg64)); | 
 |  | 
 | 	if (err) | 
 | 		return -EFAULT; | 
 |  | 
 | 	err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p); | 
 | 	if (err) | 
 | 		return err; | 
 | 	err |= | 
 | 	    copy_in_user(&arg32->error_info, &p->error_info, | 
 | 			 sizeof(arg32->error_info)); | 
 | 	if (err) | 
 | 		return -EFAULT; | 
 | 	return err; | 
 | } | 
 |  | 
 | static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode, | 
 | 				      unsigned cmd, unsigned long arg) | 
 | { | 
 | 	BIG_IOCTL32_Command_struct __user *arg32 = | 
 | 	    (BIG_IOCTL32_Command_struct __user *) arg; | 
 | 	BIG_IOCTL_Command_struct arg64; | 
 | 	BIG_IOCTL_Command_struct __user *p = | 
 | 	    compat_alloc_user_space(sizeof(arg64)); | 
 | 	int err; | 
 | 	u32 cp; | 
 |  | 
 | 	err = 0; | 
 | 	err |= | 
 | 	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info, | 
 | 			   sizeof(arg64.LUN_info)); | 
 | 	err |= | 
 | 	    copy_from_user(&arg64.Request, &arg32->Request, | 
 | 			   sizeof(arg64.Request)); | 
 | 	err |= | 
 | 	    copy_from_user(&arg64.error_info, &arg32->error_info, | 
 | 			   sizeof(arg64.error_info)); | 
 | 	err |= get_user(arg64.buf_size, &arg32->buf_size); | 
 | 	err |= get_user(arg64.malloc_size, &arg32->malloc_size); | 
 | 	err |= get_user(cp, &arg32->buf); | 
 | 	arg64.buf = compat_ptr(cp); | 
 | 	err |= copy_to_user(p, &arg64, sizeof(arg64)); | 
 |  | 
 | 	if (err) | 
 | 		return -EFAULT; | 
 |  | 
 | 	err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p); | 
 | 	if (err) | 
 | 		return err; | 
 | 	err |= | 
 | 	    copy_in_user(&arg32->error_info, &p->error_info, | 
 | 			 sizeof(arg32->error_info)); | 
 | 	if (err) | 
 | 		return -EFAULT; | 
 | 	return err; | 
 | } | 
 | #endif | 
 |  | 
 | static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo) | 
 | { | 
 | 	drive_info_struct *drv = get_drv(bdev->bd_disk); | 
 |  | 
 | 	if (!drv->cylinders) | 
 | 		return -ENXIO; | 
 |  | 
 | 	geo->heads = drv->heads; | 
 | 	geo->sectors = drv->sectors; | 
 | 	geo->cylinders = drv->cylinders; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c) | 
 | { | 
 | 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS && | 
 | 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) | 
 | 		(void)check_for_unit_attention(host, c); | 
 | } | 
 | /* | 
 |  * ioctl | 
 |  */ | 
 | static int cciss_ioctl(struct block_device *bdev, fmode_t mode, | 
 | 		       unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	struct gendisk *disk = bdev->bd_disk; | 
 | 	ctlr_info_t *host = get_host(disk); | 
 | 	drive_info_struct *drv = get_drv(disk); | 
 | 	int ctlr = host->ctlr; | 
 | 	void __user *argp = (void __user *)arg; | 
 |  | 
 | #ifdef CCISS_DEBUG | 
 | 	printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg); | 
 | #endif				/* CCISS_DEBUG */ | 
 |  | 
 | 	switch (cmd) { | 
 | 	case CCISS_GETPCIINFO: | 
 | 		{ | 
 | 			cciss_pci_info_struct pciinfo; | 
 |  | 
 | 			if (!arg) | 
 | 				return -EINVAL; | 
 | 			pciinfo.domain = pci_domain_nr(host->pdev->bus); | 
 | 			pciinfo.bus = host->pdev->bus->number; | 
 | 			pciinfo.dev_fn = host->pdev->devfn; | 
 | 			pciinfo.board_id = host->board_id; | 
 | 			if (copy_to_user | 
 | 			    (argp, &pciinfo, sizeof(cciss_pci_info_struct))) | 
 | 				return -EFAULT; | 
 | 			return 0; | 
 | 		} | 
 | 	case CCISS_GETINTINFO: | 
 | 		{ | 
 | 			cciss_coalint_struct intinfo; | 
 | 			if (!arg) | 
 | 				return -EINVAL; | 
 | 			intinfo.delay = | 
 | 			    readl(&host->cfgtable->HostWrite.CoalIntDelay); | 
 | 			intinfo.count = | 
 | 			    readl(&host->cfgtable->HostWrite.CoalIntCount); | 
 | 			if (copy_to_user | 
 | 			    (argp, &intinfo, sizeof(cciss_coalint_struct))) | 
 | 				return -EFAULT; | 
 | 			return 0; | 
 | 		} | 
 | 	case CCISS_SETINTINFO: | 
 | 		{ | 
 | 			cciss_coalint_struct intinfo; | 
 | 			unsigned long flags; | 
 | 			int i; | 
 |  | 
 | 			if (!arg) | 
 | 				return -EINVAL; | 
 | 			if (!capable(CAP_SYS_ADMIN)) | 
 | 				return -EPERM; | 
 | 			if (copy_from_user | 
 | 			    (&intinfo, argp, sizeof(cciss_coalint_struct))) | 
 | 				return -EFAULT; | 
 | 			if ((intinfo.delay == 0) && (intinfo.count == 0)) | 
 | 			{ | 
 | //                      printk("cciss_ioctl: delay and count cannot be 0\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			spin_lock_irqsave(CCISS_LOCK(ctlr), flags); | 
 | 			/* Update the field, and then ring the doorbell */ | 
 | 			writel(intinfo.delay, | 
 | 			       &(host->cfgtable->HostWrite.CoalIntDelay)); | 
 | 			writel(intinfo.count, | 
 | 			       &(host->cfgtable->HostWrite.CoalIntCount)); | 
 | 			writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL); | 
 |  | 
 | 			for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) { | 
 | 				if (!(readl(host->vaddr + SA5_DOORBELL) | 
 | 				      & CFGTBL_ChangeReq)) | 
 | 					break; | 
 | 				/* delay and try again */ | 
 | 				udelay(1000); | 
 | 			} | 
 | 			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); | 
 | 			if (i >= MAX_IOCTL_CONFIG_WAIT) | 
 | 				return -EAGAIN; | 
 | 			return 0; | 
 | 		} | 
 | 	case CCISS_GETNODENAME: | 
 | 		{ | 
 | 			NodeName_type NodeName; | 
 | 			int i; | 
 |  | 
 | 			if (!arg) | 
 | 				return -EINVAL; | 
 | 			for (i = 0; i < 16; i++) | 
 | 				NodeName[i] = | 
 | 				    readb(&host->cfgtable->ServerName[i]); | 
 | 			if (copy_to_user(argp, NodeName, sizeof(NodeName_type))) | 
 | 				return -EFAULT; | 
 | 			return 0; | 
 | 		} | 
 | 	case CCISS_SETNODENAME: | 
 | 		{ | 
 | 			NodeName_type NodeName; | 
 | 			unsigned long flags; | 
 | 			int i; | 
 |  | 
 | 			if (!arg) | 
 | 				return -EINVAL; | 
 | 			if (!capable(CAP_SYS_ADMIN)) | 
 | 				return -EPERM; | 
 |  | 
 | 			if (copy_from_user | 
 | 			    (NodeName, argp, sizeof(NodeName_type))) | 
 | 				return -EFAULT; | 
 |  | 
 | 			spin_lock_irqsave(CCISS_LOCK(ctlr), flags); | 
 |  | 
 | 			/* Update the field, and then ring the doorbell */ | 
 | 			for (i = 0; i < 16; i++) | 
 | 				writeb(NodeName[i], | 
 | 				       &host->cfgtable->ServerName[i]); | 
 |  | 
 | 			writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL); | 
 |  | 
 | 			for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) { | 
 | 				if (!(readl(host->vaddr + SA5_DOORBELL) | 
 | 				      & CFGTBL_ChangeReq)) | 
 | 					break; | 
 | 				/* delay and try again */ | 
 | 				udelay(1000); | 
 | 			} | 
 | 			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); | 
 | 			if (i >= MAX_IOCTL_CONFIG_WAIT) | 
 | 				return -EAGAIN; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 	case CCISS_GETHEARTBEAT: | 
 | 		{ | 
 | 			Heartbeat_type heartbeat; | 
 |  | 
 | 			if (!arg) | 
 | 				return -EINVAL; | 
 | 			heartbeat = readl(&host->cfgtable->HeartBeat); | 
 | 			if (copy_to_user | 
 | 			    (argp, &heartbeat, sizeof(Heartbeat_type))) | 
 | 				return -EFAULT; | 
 | 			return 0; | 
 | 		} | 
 | 	case CCISS_GETBUSTYPES: | 
 | 		{ | 
 | 			BusTypes_type BusTypes; | 
 |  | 
 | 			if (!arg) | 
 | 				return -EINVAL; | 
 | 			BusTypes = readl(&host->cfgtable->BusTypes); | 
 | 			if (copy_to_user | 
 | 			    (argp, &BusTypes, sizeof(BusTypes_type))) | 
 | 				return -EFAULT; | 
 | 			return 0; | 
 | 		} | 
 | 	case CCISS_GETFIRMVER: | 
 | 		{ | 
 | 			FirmwareVer_type firmware; | 
 |  | 
 | 			if (!arg) | 
 | 				return -EINVAL; | 
 | 			memcpy(firmware, host->firm_ver, 4); | 
 |  | 
 | 			if (copy_to_user | 
 | 			    (argp, firmware, sizeof(FirmwareVer_type))) | 
 | 				return -EFAULT; | 
 | 			return 0; | 
 | 		} | 
 | 	case CCISS_GETDRIVVER: | 
 | 		{ | 
 | 			DriverVer_type DriverVer = DRIVER_VERSION; | 
 |  | 
 | 			if (!arg) | 
 | 				return -EINVAL; | 
 |  | 
 | 			if (copy_to_user | 
 | 			    (argp, &DriverVer, sizeof(DriverVer_type))) | 
 | 				return -EFAULT; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 	case CCISS_DEREGDISK: | 
 | 	case CCISS_REGNEWD: | 
 | 	case CCISS_REVALIDVOLS: | 
 | 		return rebuild_lun_table(host, 0, 1); | 
 |  | 
 | 	case CCISS_GETLUNINFO:{ | 
 | 			LogvolInfo_struct luninfo; | 
 |  | 
 | 			memcpy(&luninfo.LunID, drv->LunID, | 
 | 				sizeof(luninfo.LunID)); | 
 | 			luninfo.num_opens = drv->usage_count; | 
 | 			luninfo.num_parts = 0; | 
 | 			if (copy_to_user(argp, &luninfo, | 
 | 					 sizeof(LogvolInfo_struct))) | 
 | 				return -EFAULT; | 
 | 			return 0; | 
 | 		} | 
 | 	case CCISS_PASSTHRU: | 
 | 		{ | 
 | 			IOCTL_Command_struct iocommand; | 
 | 			CommandList_struct *c; | 
 | 			char *buff = NULL; | 
 | 			u64bit temp64; | 
 | 			unsigned long flags; | 
 | 			DECLARE_COMPLETION_ONSTACK(wait); | 
 |  | 
 | 			if (!arg) | 
 | 				return -EINVAL; | 
 |  | 
 | 			if (!capable(CAP_SYS_RAWIO)) | 
 | 				return -EPERM; | 
 |  | 
 | 			if (copy_from_user | 
 | 			    (&iocommand, argp, sizeof(IOCTL_Command_struct))) | 
 | 				return -EFAULT; | 
 | 			if ((iocommand.buf_size < 1) && | 
 | 			    (iocommand.Request.Type.Direction != XFER_NONE)) { | 
 | 				return -EINVAL; | 
 | 			} | 
 | #if 0				/* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */ | 
 | 			/* Check kmalloc limits */ | 
 | 			if (iocommand.buf_size > 128000) | 
 | 				return -EINVAL; | 
 | #endif | 
 | 			if (iocommand.buf_size > 0) { | 
 | 				buff = kmalloc(iocommand.buf_size, GFP_KERNEL); | 
 | 				if (buff == NULL) | 
 | 					return -EFAULT; | 
 | 			} | 
 | 			if (iocommand.Request.Type.Direction == XFER_WRITE) { | 
 | 				/* Copy the data into the buffer we created */ | 
 | 				if (copy_from_user | 
 | 				    (buff, iocommand.buf, iocommand.buf_size)) { | 
 | 					kfree(buff); | 
 | 					return -EFAULT; | 
 | 				} | 
 | 			} else { | 
 | 				memset(buff, 0, iocommand.buf_size); | 
 | 			} | 
 | 			if ((c = cmd_alloc(host, 0)) == NULL) { | 
 | 				kfree(buff); | 
 | 				return -ENOMEM; | 
 | 			} | 
 | 			/* Fill in the command type */ | 
 | 			c->cmd_type = CMD_IOCTL_PEND; | 
 | 			/* Fill in Command Header */ | 
 | 			c->Header.ReplyQueue = 0;   /* unused in simple mode */ | 
 | 			if (iocommand.buf_size > 0) /* buffer to fill */ | 
 | 			{ | 
 | 				c->Header.SGList = 1; | 
 | 				c->Header.SGTotal = 1; | 
 | 			} else /* no buffers to fill */ | 
 | 			{ | 
 | 				c->Header.SGList = 0; | 
 | 				c->Header.SGTotal = 0; | 
 | 			} | 
 | 			c->Header.LUN = iocommand.LUN_info; | 
 | 			/* use the kernel address the cmd block for tag */ | 
 | 			c->Header.Tag.lower = c->busaddr; | 
 |  | 
 | 			/* Fill in Request block */ | 
 | 			c->Request = iocommand.Request; | 
 |  | 
 | 			/* Fill in the scatter gather information */ | 
 | 			if (iocommand.buf_size > 0) { | 
 | 				temp64.val = pci_map_single(host->pdev, buff, | 
 | 					iocommand.buf_size, | 
 | 					PCI_DMA_BIDIRECTIONAL); | 
 | 				c->SG[0].Addr.lower = temp64.val32.lower; | 
 | 				c->SG[0].Addr.upper = temp64.val32.upper; | 
 | 				c->SG[0].Len = iocommand.buf_size; | 
 | 				c->SG[0].Ext = 0;  /* we are not chaining */ | 
 | 			} | 
 | 			c->waiting = &wait; | 
 |  | 
 | 			/* Put the request on the tail of the request queue */ | 
 | 			spin_lock_irqsave(CCISS_LOCK(ctlr), flags); | 
 | 			addQ(&host->reqQ, c); | 
 | 			host->Qdepth++; | 
 | 			start_io(host); | 
 | 			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); | 
 |  | 
 | 			wait_for_completion(&wait); | 
 |  | 
 | 			/* unlock the buffers from DMA */ | 
 | 			temp64.val32.lower = c->SG[0].Addr.lower; | 
 | 			temp64.val32.upper = c->SG[0].Addr.upper; | 
 | 			pci_unmap_single(host->pdev, (dma_addr_t) temp64.val, | 
 | 					 iocommand.buf_size, | 
 | 					 PCI_DMA_BIDIRECTIONAL); | 
 |  | 
 | 			check_ioctl_unit_attention(host, c); | 
 |  | 
 | 			/* Copy the error information out */ | 
 | 			iocommand.error_info = *(c->err_info); | 
 | 			if (copy_to_user | 
 | 			    (argp, &iocommand, sizeof(IOCTL_Command_struct))) { | 
 | 				kfree(buff); | 
 | 				cmd_free(host, c, 0); | 
 | 				return -EFAULT; | 
 | 			} | 
 |  | 
 | 			if (iocommand.Request.Type.Direction == XFER_READ) { | 
 | 				/* Copy the data out of the buffer we created */ | 
 | 				if (copy_to_user | 
 | 				    (iocommand.buf, buff, iocommand.buf_size)) { | 
 | 					kfree(buff); | 
 | 					cmd_free(host, c, 0); | 
 | 					return -EFAULT; | 
 | 				} | 
 | 			} | 
 | 			kfree(buff); | 
 | 			cmd_free(host, c, 0); | 
 | 			return 0; | 
 | 		} | 
 | 	case CCISS_BIG_PASSTHRU:{ | 
 | 			BIG_IOCTL_Command_struct *ioc; | 
 | 			CommandList_struct *c; | 
 | 			unsigned char **buff = NULL; | 
 | 			int *buff_size = NULL; | 
 | 			u64bit temp64; | 
 | 			unsigned long flags; | 
 | 			BYTE sg_used = 0; | 
 | 			int status = 0; | 
 | 			int i; | 
 | 			DECLARE_COMPLETION_ONSTACK(wait); | 
 | 			__u32 left; | 
 | 			__u32 sz; | 
 | 			BYTE __user *data_ptr; | 
 |  | 
 | 			if (!arg) | 
 | 				return -EINVAL; | 
 | 			if (!capable(CAP_SYS_RAWIO)) | 
 | 				return -EPERM; | 
 | 			ioc = (BIG_IOCTL_Command_struct *) | 
 | 			    kmalloc(sizeof(*ioc), GFP_KERNEL); | 
 | 			if (!ioc) { | 
 | 				status = -ENOMEM; | 
 | 				goto cleanup1; | 
 | 			} | 
 | 			if (copy_from_user(ioc, argp, sizeof(*ioc))) { | 
 | 				status = -EFAULT; | 
 | 				goto cleanup1; | 
 | 			} | 
 | 			if ((ioc->buf_size < 1) && | 
 | 			    (ioc->Request.Type.Direction != XFER_NONE)) { | 
 | 				status = -EINVAL; | 
 | 				goto cleanup1; | 
 | 			} | 
 | 			/* Check kmalloc limits  using all SGs */ | 
 | 			if (ioc->malloc_size > MAX_KMALLOC_SIZE) { | 
 | 				status = -EINVAL; | 
 | 				goto cleanup1; | 
 | 			} | 
 | 			if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { | 
 | 				status = -EINVAL; | 
 | 				goto cleanup1; | 
 | 			} | 
 | 			buff = | 
 | 			    kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); | 
 | 			if (!buff) { | 
 | 				status = -ENOMEM; | 
 | 				goto cleanup1; | 
 | 			} | 
 | 			buff_size = kmalloc(MAXSGENTRIES * sizeof(int), | 
 | 						   GFP_KERNEL); | 
 | 			if (!buff_size) { | 
 | 				status = -ENOMEM; | 
 | 				goto cleanup1; | 
 | 			} | 
 | 			left = ioc->buf_size; | 
 | 			data_ptr = ioc->buf; | 
 | 			while (left) { | 
 | 				sz = (left > | 
 | 				      ioc->malloc_size) ? ioc-> | 
 | 				    malloc_size : left; | 
 | 				buff_size[sg_used] = sz; | 
 | 				buff[sg_used] = kmalloc(sz, GFP_KERNEL); | 
 | 				if (buff[sg_used] == NULL) { | 
 | 					status = -ENOMEM; | 
 | 					goto cleanup1; | 
 | 				} | 
 | 				if (ioc->Request.Type.Direction == XFER_WRITE) { | 
 | 					if (copy_from_user | 
 | 					    (buff[sg_used], data_ptr, sz)) { | 
 | 						status = -EFAULT; | 
 | 						goto cleanup1; | 
 | 					} | 
 | 				} else { | 
 | 					memset(buff[sg_used], 0, sz); | 
 | 				} | 
 | 				left -= sz; | 
 | 				data_ptr += sz; | 
 | 				sg_used++; | 
 | 			} | 
 | 			if ((c = cmd_alloc(host, 0)) == NULL) { | 
 | 				status = -ENOMEM; | 
 | 				goto cleanup1; | 
 | 			} | 
 | 			c->cmd_type = CMD_IOCTL_PEND; | 
 | 			c->Header.ReplyQueue = 0; | 
 |  | 
 | 			if (ioc->buf_size > 0) { | 
 | 				c->Header.SGList = sg_used; | 
 | 				c->Header.SGTotal = sg_used; | 
 | 			} else { | 
 | 				c->Header.SGList = 0; | 
 | 				c->Header.SGTotal = 0; | 
 | 			} | 
 | 			c->Header.LUN = ioc->LUN_info; | 
 | 			c->Header.Tag.lower = c->busaddr; | 
 |  | 
 | 			c->Request = ioc->Request; | 
 | 			if (ioc->buf_size > 0) { | 
 | 				for (i = 0; i < sg_used; i++) { | 
 | 					temp64.val = | 
 | 					    pci_map_single(host->pdev, buff[i], | 
 | 						    buff_size[i], | 
 | 						    PCI_DMA_BIDIRECTIONAL); | 
 | 					c->SG[i].Addr.lower = | 
 | 					    temp64.val32.lower; | 
 | 					c->SG[i].Addr.upper = | 
 | 					    temp64.val32.upper; | 
 | 					c->SG[i].Len = buff_size[i]; | 
 | 					c->SG[i].Ext = 0;	/* we are not chaining */ | 
 | 				} | 
 | 			} | 
 | 			c->waiting = &wait; | 
 | 			/* Put the request on the tail of the request queue */ | 
 | 			spin_lock_irqsave(CCISS_LOCK(ctlr), flags); | 
 | 			addQ(&host->reqQ, c); | 
 | 			host->Qdepth++; | 
 | 			start_io(host); | 
 | 			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); | 
 | 			wait_for_completion(&wait); | 
 | 			/* unlock the buffers from DMA */ | 
 | 			for (i = 0; i < sg_used; i++) { | 
 | 				temp64.val32.lower = c->SG[i].Addr.lower; | 
 | 				temp64.val32.upper = c->SG[i].Addr.upper; | 
 | 				pci_unmap_single(host->pdev, | 
 | 					(dma_addr_t) temp64.val, buff_size[i], | 
 | 					PCI_DMA_BIDIRECTIONAL); | 
 | 			} | 
 | 			check_ioctl_unit_attention(host, c); | 
 | 			/* Copy the error information out */ | 
 | 			ioc->error_info = *(c->err_info); | 
 | 			if (copy_to_user(argp, ioc, sizeof(*ioc))) { | 
 | 				cmd_free(host, c, 0); | 
 | 				status = -EFAULT; | 
 | 				goto cleanup1; | 
 | 			} | 
 | 			if (ioc->Request.Type.Direction == XFER_READ) { | 
 | 				/* Copy the data out of the buffer we created */ | 
 | 				BYTE __user *ptr = ioc->buf; | 
 | 				for (i = 0; i < sg_used; i++) { | 
 | 					if (copy_to_user | 
 | 					    (ptr, buff[i], buff_size[i])) { | 
 | 						cmd_free(host, c, 0); | 
 | 						status = -EFAULT; | 
 | 						goto cleanup1; | 
 | 					} | 
 | 					ptr += buff_size[i]; | 
 | 				} | 
 | 			} | 
 | 			cmd_free(host, c, 0); | 
 | 			status = 0; | 
 | 		      cleanup1: | 
 | 			if (buff) { | 
 | 				for (i = 0; i < sg_used; i++) | 
 | 					kfree(buff[i]); | 
 | 				kfree(buff); | 
 | 			} | 
 | 			kfree(buff_size); | 
 | 			kfree(ioc); | 
 | 			return status; | 
 | 		} | 
 |  | 
 | 	/* scsi_cmd_ioctl handles these, below, though some are not */ | 
 | 	/* very meaningful for cciss.  SG_IO is the main one people want. */ | 
 |  | 
 | 	case SG_GET_VERSION_NUM: | 
 | 	case SG_SET_TIMEOUT: | 
 | 	case SG_GET_TIMEOUT: | 
 | 	case SG_GET_RESERVED_SIZE: | 
 | 	case SG_SET_RESERVED_SIZE: | 
 | 	case SG_EMULATED_HOST: | 
 | 	case SG_IO: | 
 | 	case SCSI_IOCTL_SEND_COMMAND: | 
 | 		return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp); | 
 |  | 
 | 	/* scsi_cmd_ioctl would normally handle these, below, but */ | 
 | 	/* they aren't a good fit for cciss, as CD-ROMs are */ | 
 | 	/* not supported, and we don't have any bus/target/lun */ | 
 | 	/* which we present to the kernel. */ | 
 |  | 
 | 	case CDROM_SEND_PACKET: | 
 | 	case CDROMCLOSETRAY: | 
 | 	case CDROMEJECT: | 
 | 	case SCSI_IOCTL_GET_IDLUN: | 
 | 	case SCSI_IOCTL_GET_BUS_NUMBER: | 
 | 	default: | 
 | 		return -ENOTTY; | 
 | 	} | 
 | } | 
 |  | 
 | static void cciss_check_queues(ctlr_info_t *h) | 
 | { | 
 | 	int start_queue = h->next_to_run; | 
 | 	int i; | 
 |  | 
 | 	/* check to see if we have maxed out the number of commands that can | 
 | 	 * be placed on the queue.  If so then exit.  We do this check here | 
 | 	 * in case the interrupt we serviced was from an ioctl and did not | 
 | 	 * free any new commands. | 
 | 	 */ | 
 | 	if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) | 
 | 		return; | 
 |  | 
 | 	/* We have room on the queue for more commands.  Now we need to queue | 
 | 	 * them up.  We will also keep track of the next queue to run so | 
 | 	 * that every queue gets a chance to be started first. | 
 | 	 */ | 
 | 	for (i = 0; i < h->highest_lun + 1; i++) { | 
 | 		int curr_queue = (start_queue + i) % (h->highest_lun + 1); | 
 | 		/* make sure the disk has been added and the drive is real | 
 | 		 * because this can be called from the middle of init_one. | 
 | 		 */ | 
 | 		if (!h->drv[curr_queue]) | 
 | 			continue; | 
 | 		if (!(h->drv[curr_queue]->queue) || | 
 | 			!(h->drv[curr_queue]->heads)) | 
 | 			continue; | 
 | 		blk_start_queue(h->gendisk[curr_queue]->queue); | 
 |  | 
 | 		/* check to see if we have maxed out the number of commands | 
 | 		 * that can be placed on the queue. | 
 | 		 */ | 
 | 		if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) { | 
 | 			if (curr_queue == start_queue) { | 
 | 				h->next_to_run = | 
 | 				    (start_queue + 1) % (h->highest_lun + 1); | 
 | 				break; | 
 | 			} else { | 
 | 				h->next_to_run = curr_queue; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void cciss_softirq_done(struct request *rq) | 
 | { | 
 | 	CommandList_struct *cmd = rq->completion_data; | 
 | 	ctlr_info_t *h = hba[cmd->ctlr]; | 
 | 	SGDescriptor_struct *curr_sg = cmd->SG; | 
 | 	unsigned long flags; | 
 | 	u64bit temp64; | 
 | 	int i, ddir; | 
 | 	int sg_index = 0; | 
 |  | 
 | 	if (cmd->Request.Type.Direction == XFER_READ) | 
 | 		ddir = PCI_DMA_FROMDEVICE; | 
 | 	else | 
 | 		ddir = PCI_DMA_TODEVICE; | 
 |  | 
 | 	/* command did not need to be retried */ | 
 | 	/* unmap the DMA mapping for all the scatter gather elements */ | 
 | 	for (i = 0; i < cmd->Header.SGList; i++) { | 
 | 		if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) { | 
 | 			cciss_unmap_sg_chain_block(h, cmd); | 
 | 			/* Point to the next block */ | 
 | 			curr_sg = h->cmd_sg_list[cmd->cmdindex]; | 
 | 			sg_index = 0; | 
 | 		} | 
 | 		temp64.val32.lower = curr_sg[sg_index].Addr.lower; | 
 | 		temp64.val32.upper = curr_sg[sg_index].Addr.upper; | 
 | 		pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len, | 
 | 				ddir); | 
 | 		++sg_index; | 
 | 	} | 
 |  | 
 | #ifdef CCISS_DEBUG | 
 | 	printk("Done with %p\n", rq); | 
 | #endif				/* CCISS_DEBUG */ | 
 |  | 
 | 	/* set the residual count for pc requests */ | 
 | 	if (blk_pc_request(rq)) | 
 | 		rq->resid_len = cmd->err_info->ResidualCnt; | 
 |  | 
 | 	blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO); | 
 |  | 
 | 	spin_lock_irqsave(&h->lock, flags); | 
 | 	cmd_free(h, cmd, 1); | 
 | 	cciss_check_queues(h); | 
 | 	spin_unlock_irqrestore(&h->lock, flags); | 
 | } | 
 |  | 
 | static inline void log_unit_to_scsi3addr(ctlr_info_t *h, | 
 | 	unsigned char scsi3addr[], uint32_t log_unit) | 
 | { | 
 | 	memcpy(scsi3addr, h->drv[log_unit]->LunID, | 
 | 		sizeof(h->drv[log_unit]->LunID)); | 
 | } | 
 |  | 
 | /* This function gets the SCSI vendor, model, and revision of a logical drive | 
 |  * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if | 
 |  * they cannot be read. | 
 |  */ | 
 | static void cciss_get_device_descr(int ctlr, int logvol, | 
 | 				   char *vendor, char *model, char *rev) | 
 | { | 
 | 	int rc; | 
 | 	InquiryData_struct *inq_buf; | 
 | 	unsigned char scsi3addr[8]; | 
 |  | 
 | 	*vendor = '\0'; | 
 | 	*model = '\0'; | 
 | 	*rev = '\0'; | 
 |  | 
 | 	inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL); | 
 | 	if (!inq_buf) | 
 | 		return; | 
 |  | 
 | 	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol); | 
 | 	rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(*inq_buf), 0, | 
 | 			scsi3addr, TYPE_CMD); | 
 | 	if (rc == IO_OK) { | 
 | 		memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN); | 
 | 		vendor[VENDOR_LEN] = '\0'; | 
 | 		memcpy(model, &inq_buf->data_byte[16], MODEL_LEN); | 
 | 		model[MODEL_LEN] = '\0'; | 
 | 		memcpy(rev, &inq_buf->data_byte[32], REV_LEN); | 
 | 		rev[REV_LEN] = '\0'; | 
 | 	} | 
 |  | 
 | 	kfree(inq_buf); | 
 | 	return; | 
 | } | 
 |  | 
 | /* This function gets the serial number of a logical drive via | 
 |  * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial | 
 |  * number cannot be had, for whatever reason, 16 bytes of 0xff | 
 |  * are returned instead. | 
 |  */ | 
 | static void cciss_get_serial_no(int ctlr, int logvol, | 
 | 				unsigned char *serial_no, int buflen) | 
 | { | 
 | #define PAGE_83_INQ_BYTES 64 | 
 | 	int rc; | 
 | 	unsigned char *buf; | 
 | 	unsigned char scsi3addr[8]; | 
 |  | 
 | 	if (buflen > 16) | 
 | 		buflen = 16; | 
 | 	memset(serial_no, 0xff, buflen); | 
 | 	buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		return; | 
 | 	memset(serial_no, 0, buflen); | 
 | 	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol); | 
 | 	rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf, | 
 | 		PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD); | 
 | 	if (rc == IO_OK) | 
 | 		memcpy(serial_no, &buf[8], buflen); | 
 | 	kfree(buf); | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * cciss_add_disk sets up the block device queue for a logical drive | 
 |  */ | 
 | static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk, | 
 | 				int drv_index) | 
 | { | 
 | 	disk->queue = blk_init_queue(do_cciss_request, &h->lock); | 
 | 	if (!disk->queue) | 
 | 		goto init_queue_failure; | 
 | 	sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index); | 
 | 	disk->major = h->major; | 
 | 	disk->first_minor = drv_index << NWD_SHIFT; | 
 | 	disk->fops = &cciss_fops; | 
 | 	if (cciss_create_ld_sysfs_entry(h, drv_index)) | 
 | 		goto cleanup_queue; | 
 | 	disk->private_data = h->drv[drv_index]; | 
 | 	disk->driverfs_dev = &h->drv[drv_index]->dev; | 
 |  | 
 | 	/* Set up queue information */ | 
 | 	blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask); | 
 |  | 
 | 	/* This is a hardware imposed limit. */ | 
 | 	blk_queue_max_segments(disk->queue, h->maxsgentries); | 
 |  | 
 | 	blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors); | 
 |  | 
 | 	blk_queue_softirq_done(disk->queue, cciss_softirq_done); | 
 |  | 
 | 	disk->queue->queuedata = h; | 
 |  | 
 | 	blk_queue_logical_block_size(disk->queue, | 
 | 				     h->drv[drv_index]->block_size); | 
 |  | 
 | 	/* Make sure all queue data is written out before */ | 
 | 	/* setting h->drv[drv_index]->queue, as setting this */ | 
 | 	/* allows the interrupt handler to start the queue */ | 
 | 	wmb(); | 
 | 	h->drv[drv_index]->queue = disk->queue; | 
 | 	add_disk(disk); | 
 | 	return 0; | 
 |  | 
 | cleanup_queue: | 
 | 	blk_cleanup_queue(disk->queue); | 
 | 	disk->queue = NULL; | 
 | init_queue_failure: | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* This function will check the usage_count of the drive to be updated/added. | 
 |  * If the usage_count is zero and it is a heretofore unknown drive, or, | 
 |  * the drive's capacity, geometry, or serial number has changed, | 
 |  * then the drive information will be updated and the disk will be | 
 |  * re-registered with the kernel.  If these conditions don't hold, | 
 |  * then it will be left alone for the next reboot.  The exception to this | 
 |  * is disk 0 which will always be left registered with the kernel since it | 
 |  * is also the controller node.  Any changes to disk 0 will show up on | 
 |  * the next reboot. | 
 |  */ | 
 | static void cciss_update_drive_info(int ctlr, int drv_index, int first_time, | 
 | 	int via_ioctl) | 
 | { | 
 | 	ctlr_info_t *h = hba[ctlr]; | 
 | 	struct gendisk *disk; | 
 | 	InquiryData_struct *inq_buff = NULL; | 
 | 	unsigned int block_size; | 
 | 	sector_t total_size; | 
 | 	unsigned long flags = 0; | 
 | 	int ret = 0; | 
 | 	drive_info_struct *drvinfo; | 
 |  | 
 | 	/* Get information about the disk and modify the driver structure */ | 
 | 	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL); | 
 | 	drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL); | 
 | 	if (inq_buff == NULL || drvinfo == NULL) | 
 | 		goto mem_msg; | 
 |  | 
 | 	/* testing to see if 16-byte CDBs are already being used */ | 
 | 	if (h->cciss_read == CCISS_READ_16) { | 
 | 		cciss_read_capacity_16(h->ctlr, drv_index, | 
 | 			&total_size, &block_size); | 
 |  | 
 | 	} else { | 
 | 		cciss_read_capacity(ctlr, drv_index, &total_size, &block_size); | 
 | 		/* if read_capacity returns all F's this volume is >2TB */ | 
 | 		/* in size so we switch to 16-byte CDB's for all */ | 
 | 		/* read/write ops */ | 
 | 		if (total_size == 0xFFFFFFFFULL) { | 
 | 			cciss_read_capacity_16(ctlr, drv_index, | 
 | 			&total_size, &block_size); | 
 | 			h->cciss_read = CCISS_READ_16; | 
 | 			h->cciss_write = CCISS_WRITE_16; | 
 | 		} else { | 
 | 			h->cciss_read = CCISS_READ_10; | 
 | 			h->cciss_write = CCISS_WRITE_10; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cciss_geometry_inquiry(ctlr, drv_index, total_size, block_size, | 
 | 			       inq_buff, drvinfo); | 
 | 	drvinfo->block_size = block_size; | 
 | 	drvinfo->nr_blocks = total_size + 1; | 
 |  | 
 | 	cciss_get_device_descr(ctlr, drv_index, drvinfo->vendor, | 
 | 				drvinfo->model, drvinfo->rev); | 
 | 	cciss_get_serial_no(ctlr, drv_index, drvinfo->serial_no, | 
 | 			sizeof(drvinfo->serial_no)); | 
 | 	/* Save the lunid in case we deregister the disk, below. */ | 
 | 	memcpy(drvinfo->LunID, h->drv[drv_index]->LunID, | 
 | 		sizeof(drvinfo->LunID)); | 
 |  | 
 | 	/* Is it the same disk we already know, and nothing's changed? */ | 
 | 	if (h->drv[drv_index]->raid_level != -1 && | 
 | 		((memcmp(drvinfo->serial_no, | 
 | 				h->drv[drv_index]->serial_no, 16) == 0) && | 
 | 		drvinfo->block_size == h->drv[drv_index]->block_size && | 
 | 		drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks && | 
 | 		drvinfo->heads == h->drv[drv_index]->heads && | 
 | 		drvinfo->sectors == h->drv[drv_index]->sectors && | 
 | 		drvinfo->cylinders == h->drv[drv_index]->cylinders)) | 
 | 			/* The disk is unchanged, nothing to update */ | 
 | 			goto freeret; | 
 |  | 
 | 	/* If we get here it's not the same disk, or something's changed, | 
 | 	 * so we need to * deregister it, and re-register it, if it's not | 
 | 	 * in use. | 
 | 	 * If the disk already exists then deregister it before proceeding | 
 | 	 * (unless it's the first disk (for the controller node). | 
 | 	 */ | 
 | 	if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) { | 
 | 		printk(KERN_WARNING "disk %d has changed.\n", drv_index); | 
 | 		spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); | 
 | 		h->drv[drv_index]->busy_configuring = 1; | 
 | 		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 |  | 
 | 		/* deregister_disk sets h->drv[drv_index]->queue = NULL | 
 | 		 * which keeps the interrupt handler from starting | 
 | 		 * the queue. | 
 | 		 */ | 
 | 		ret = deregister_disk(h, drv_index, 0, via_ioctl); | 
 | 	} | 
 |  | 
 | 	/* If the disk is in use return */ | 
 | 	if (ret) | 
 | 		goto freeret; | 
 |  | 
 | 	/* Save the new information from cciss_geometry_inquiry | 
 | 	 * and serial number inquiry.  If the disk was deregistered | 
 | 	 * above, then h->drv[drv_index] will be NULL. | 
 | 	 */ | 
 | 	if (h->drv[drv_index] == NULL) { | 
 | 		drvinfo->device_initialized = 0; | 
 | 		h->drv[drv_index] = drvinfo; | 
 | 		drvinfo = NULL; /* so it won't be freed below. */ | 
 | 	} else { | 
 | 		/* special case for cxd0 */ | 
 | 		h->drv[drv_index]->block_size = drvinfo->block_size; | 
 | 		h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks; | 
 | 		h->drv[drv_index]->heads = drvinfo->heads; | 
 | 		h->drv[drv_index]->sectors = drvinfo->sectors; | 
 | 		h->drv[drv_index]->cylinders = drvinfo->cylinders; | 
 | 		h->drv[drv_index]->raid_level = drvinfo->raid_level; | 
 | 		memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16); | 
 | 		memcpy(h->drv[drv_index]->vendor, drvinfo->vendor, | 
 | 			VENDOR_LEN + 1); | 
 | 		memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1); | 
 | 		memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1); | 
 | 	} | 
 |  | 
 | 	++h->num_luns; | 
 | 	disk = h->gendisk[drv_index]; | 
 | 	set_capacity(disk, h->drv[drv_index]->nr_blocks); | 
 |  | 
 | 	/* If it's not disk 0 (drv_index != 0) | 
 | 	 * or if it was disk 0, but there was previously | 
 | 	 * no actual corresponding configured logical drive | 
 | 	 * (raid_leve == -1) then we want to update the | 
 | 	 * logical drive's information. | 
 | 	 */ | 
 | 	if (drv_index || first_time) { | 
 | 		if (cciss_add_disk(h, disk, drv_index) != 0) { | 
 | 			cciss_free_gendisk(h, drv_index); | 
 | 			cciss_free_drive_info(h, drv_index); | 
 | 			printk(KERN_WARNING "cciss:%d could not update " | 
 | 				"disk %d\n", h->ctlr, drv_index); | 
 | 			--h->num_luns; | 
 | 		} | 
 | 	} | 
 |  | 
 | freeret: | 
 | 	kfree(inq_buff); | 
 | 	kfree(drvinfo); | 
 | 	return; | 
 | mem_msg: | 
 | 	printk(KERN_ERR "cciss: out of memory\n"); | 
 | 	goto freeret; | 
 | } | 
 |  | 
 | /* This function will find the first index of the controllers drive array | 
 |  * that has a null drv pointer and allocate the drive info struct and | 
 |  * will return that index   This is where new drives will be added. | 
 |  * If the index to be returned is greater than the highest_lun index for | 
 |  * the controller then highest_lun is set * to this new index. | 
 |  * If there are no available indexes or if tha allocation fails, then -1 | 
 |  * is returned.  * "controller_node" is used to know if this is a real | 
 |  * logical drive, or just the controller node, which determines if this | 
 |  * counts towards highest_lun. | 
 |  */ | 
 | static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node) | 
 | { | 
 | 	int i; | 
 | 	drive_info_struct *drv; | 
 |  | 
 | 	/* Search for an empty slot for our drive info */ | 
 | 	for (i = 0; i < CISS_MAX_LUN; i++) { | 
 |  | 
 | 		/* if not cxd0 case, and it's occupied, skip it. */ | 
 | 		if (h->drv[i] && i != 0) | 
 | 			continue; | 
 | 		/* | 
 | 		 * If it's cxd0 case, and drv is alloc'ed already, and a | 
 | 		 * disk is configured there, skip it. | 
 | 		 */ | 
 | 		if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * We've found an empty slot.  Update highest_lun | 
 | 		 * provided this isn't just the fake cxd0 controller node. | 
 | 		 */ | 
 | 		if (i > h->highest_lun && !controller_node) | 
 | 			h->highest_lun = i; | 
 |  | 
 | 		/* If adding a real disk at cxd0, and it's already alloc'ed */ | 
 | 		if (i == 0 && h->drv[i] != NULL) | 
 | 			return i; | 
 |  | 
 | 		/* | 
 | 		 * Found an empty slot, not already alloc'ed.  Allocate it. | 
 | 		 * Mark it with raid_level == -1, so we know it's new later on. | 
 | 		 */ | 
 | 		drv = kzalloc(sizeof(*drv), GFP_KERNEL); | 
 | 		if (!drv) | 
 | 			return -1; | 
 | 		drv->raid_level = -1; /* so we know it's new */ | 
 | 		h->drv[i] = drv; | 
 | 		return i; | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | static void cciss_free_drive_info(ctlr_info_t *h, int drv_index) | 
 | { | 
 | 	kfree(h->drv[drv_index]); | 
 | 	h->drv[drv_index] = NULL; | 
 | } | 
 |  | 
 | static void cciss_free_gendisk(ctlr_info_t *h, int drv_index) | 
 | { | 
 | 	put_disk(h->gendisk[drv_index]); | 
 | 	h->gendisk[drv_index] = NULL; | 
 | } | 
 |  | 
 | /* cciss_add_gendisk finds a free hba[]->drv structure | 
 |  * and allocates a gendisk if needed, and sets the lunid | 
 |  * in the drvinfo structure.   It returns the index into | 
 |  * the ->drv[] array, or -1 if none are free. | 
 |  * is_controller_node indicates whether highest_lun should | 
 |  * count this disk, or if it's only being added to provide | 
 |  * a means to talk to the controller in case no logical | 
 |  * drives have yet been configured. | 
 |  */ | 
 | static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[], | 
 | 	int controller_node) | 
 | { | 
 | 	int drv_index; | 
 |  | 
 | 	drv_index = cciss_alloc_drive_info(h, controller_node); | 
 | 	if (drv_index == -1) | 
 | 		return -1; | 
 |  | 
 | 	/*Check if the gendisk needs to be allocated */ | 
 | 	if (!h->gendisk[drv_index]) { | 
 | 		h->gendisk[drv_index] = | 
 | 			alloc_disk(1 << NWD_SHIFT); | 
 | 		if (!h->gendisk[drv_index]) { | 
 | 			printk(KERN_ERR "cciss%d: could not " | 
 | 				"allocate a new disk %d\n", | 
 | 				h->ctlr, drv_index); | 
 | 			goto err_free_drive_info; | 
 | 		} | 
 | 	} | 
 | 	memcpy(h->drv[drv_index]->LunID, lunid, | 
 | 		sizeof(h->drv[drv_index]->LunID)); | 
 | 	if (cciss_create_ld_sysfs_entry(h, drv_index)) | 
 | 		goto err_free_disk; | 
 | 	/* Don't need to mark this busy because nobody */ | 
 | 	/* else knows about this disk yet to contend */ | 
 | 	/* for access to it. */ | 
 | 	h->drv[drv_index]->busy_configuring = 0; | 
 | 	wmb(); | 
 | 	return drv_index; | 
 |  | 
 | err_free_disk: | 
 | 	cciss_free_gendisk(h, drv_index); | 
 | err_free_drive_info: | 
 | 	cciss_free_drive_info(h, drv_index); | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* This is for the special case of a controller which | 
 |  * has no logical drives.  In this case, we still need | 
 |  * to register a disk so the controller can be accessed | 
 |  * by the Array Config Utility. | 
 |  */ | 
 | static void cciss_add_controller_node(ctlr_info_t *h) | 
 | { | 
 | 	struct gendisk *disk; | 
 | 	int drv_index; | 
 |  | 
 | 	if (h->gendisk[0] != NULL) /* already did this? Then bail. */ | 
 | 		return; | 
 |  | 
 | 	drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1); | 
 | 	if (drv_index == -1) | 
 | 		goto error; | 
 | 	h->drv[drv_index]->block_size = 512; | 
 | 	h->drv[drv_index]->nr_blocks = 0; | 
 | 	h->drv[drv_index]->heads = 0; | 
 | 	h->drv[drv_index]->sectors = 0; | 
 | 	h->drv[drv_index]->cylinders = 0; | 
 | 	h->drv[drv_index]->raid_level = -1; | 
 | 	memset(h->drv[drv_index]->serial_no, 0, 16); | 
 | 	disk = h->gendisk[drv_index]; | 
 | 	if (cciss_add_disk(h, disk, drv_index) == 0) | 
 | 		return; | 
 | 	cciss_free_gendisk(h, drv_index); | 
 | 	cciss_free_drive_info(h, drv_index); | 
 | error: | 
 | 	printk(KERN_WARNING "cciss%d: could not " | 
 | 		"add disk 0.\n", h->ctlr); | 
 | 	return; | 
 | } | 
 |  | 
 | /* This function will add and remove logical drives from the Logical | 
 |  * drive array of the controller and maintain persistency of ordering | 
 |  * so that mount points are preserved until the next reboot.  This allows | 
 |  * for the removal of logical drives in the middle of the drive array | 
 |  * without a re-ordering of those drives. | 
 |  * INPUT | 
 |  * h		= The controller to perform the operations on | 
 |  */ | 
 | static int rebuild_lun_table(ctlr_info_t *h, int first_time, | 
 | 	int via_ioctl) | 
 | { | 
 | 	int ctlr = h->ctlr; | 
 | 	int num_luns; | 
 | 	ReportLunData_struct *ld_buff = NULL; | 
 | 	int return_code; | 
 | 	int listlength = 0; | 
 | 	int i; | 
 | 	int drv_found; | 
 | 	int drv_index = 0; | 
 | 	unsigned char lunid[8] = CTLR_LUNID; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!capable(CAP_SYS_RAWIO)) | 
 | 		return -EPERM; | 
 |  | 
 | 	/* Set busy_configuring flag for this operation */ | 
 | 	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); | 
 | 	if (h->busy_configuring) { | 
 | 		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	h->busy_configuring = 1; | 
 | 	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 |  | 
 | 	ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL); | 
 | 	if (ld_buff == NULL) | 
 | 		goto mem_msg; | 
 |  | 
 | 	return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff, | 
 | 				      sizeof(ReportLunData_struct), | 
 | 				      0, CTLR_LUNID, TYPE_CMD); | 
 |  | 
 | 	if (return_code == IO_OK) | 
 | 		listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength); | 
 | 	else {	/* reading number of logical volumes failed */ | 
 | 		printk(KERN_WARNING "cciss: report logical volume" | 
 | 		       " command failed\n"); | 
 | 		listlength = 0; | 
 | 		goto freeret; | 
 | 	} | 
 |  | 
 | 	num_luns = listlength / 8;	/* 8 bytes per entry */ | 
 | 	if (num_luns > CISS_MAX_LUN) { | 
 | 		num_luns = CISS_MAX_LUN; | 
 | 		printk(KERN_WARNING "cciss: more luns configured" | 
 | 		       " on controller than can be handled by" | 
 | 		       " this driver.\n"); | 
 | 	} | 
 |  | 
 | 	if (num_luns == 0) | 
 | 		cciss_add_controller_node(h); | 
 |  | 
 | 	/* Compare controller drive array to driver's drive array | 
 | 	 * to see if any drives are missing on the controller due | 
 | 	 * to action of Array Config Utility (user deletes drive) | 
 | 	 * and deregister logical drives which have disappeared. | 
 | 	 */ | 
 | 	for (i = 0; i <= h->highest_lun; i++) { | 
 | 		int j; | 
 | 		drv_found = 0; | 
 |  | 
 | 		/* skip holes in the array from already deleted drives */ | 
 | 		if (h->drv[i] == NULL) | 
 | 			continue; | 
 |  | 
 | 		for (j = 0; j < num_luns; j++) { | 
 | 			memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid)); | 
 | 			if (memcmp(h->drv[i]->LunID, lunid, | 
 | 				sizeof(lunid)) == 0) { | 
 | 				drv_found = 1; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		if (!drv_found) { | 
 | 			/* Deregister it from the OS, it's gone. */ | 
 | 			spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); | 
 | 			h->drv[i]->busy_configuring = 1; | 
 | 			spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 | 			return_code = deregister_disk(h, i, 1, via_ioctl); | 
 | 			if (h->drv[i] != NULL) | 
 | 				h->drv[i]->busy_configuring = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Compare controller drive array to driver's drive array. | 
 | 	 * Check for updates in the drive information and any new drives | 
 | 	 * on the controller due to ACU adding logical drives, or changing | 
 | 	 * a logical drive's size, etc.  Reregister any new/changed drives | 
 | 	 */ | 
 | 	for (i = 0; i < num_luns; i++) { | 
 | 		int j; | 
 |  | 
 | 		drv_found = 0; | 
 |  | 
 | 		memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid)); | 
 | 		/* Find if the LUN is already in the drive array | 
 | 		 * of the driver.  If so then update its info | 
 | 		 * if not in use.  If it does not exist then find | 
 | 		 * the first free index and add it. | 
 | 		 */ | 
 | 		for (j = 0; j <= h->highest_lun; j++) { | 
 | 			if (h->drv[j] != NULL && | 
 | 				memcmp(h->drv[j]->LunID, lunid, | 
 | 					sizeof(h->drv[j]->LunID)) == 0) { | 
 | 				drv_index = j; | 
 | 				drv_found = 1; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* check if the drive was found already in the array */ | 
 | 		if (!drv_found) { | 
 | 			drv_index = cciss_add_gendisk(h, lunid, 0); | 
 | 			if (drv_index == -1) | 
 | 				goto freeret; | 
 | 		} | 
 | 		cciss_update_drive_info(ctlr, drv_index, first_time, | 
 | 			via_ioctl); | 
 | 	}		/* end for */ | 
 |  | 
 | freeret: | 
 | 	kfree(ld_buff); | 
 | 	h->busy_configuring = 0; | 
 | 	/* We return -1 here to tell the ACU that we have registered/updated | 
 | 	 * all of the drives that we can and to keep it from calling us | 
 | 	 * additional times. | 
 | 	 */ | 
 | 	return -1; | 
 | mem_msg: | 
 | 	printk(KERN_ERR "cciss: out of memory\n"); | 
 | 	h->busy_configuring = 0; | 
 | 	goto freeret; | 
 | } | 
 |  | 
 | static void cciss_clear_drive_info(drive_info_struct *drive_info) | 
 | { | 
 | 	/* zero out the disk size info */ | 
 | 	drive_info->nr_blocks = 0; | 
 | 	drive_info->block_size = 0; | 
 | 	drive_info->heads = 0; | 
 | 	drive_info->sectors = 0; | 
 | 	drive_info->cylinders = 0; | 
 | 	drive_info->raid_level = -1; | 
 | 	memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no)); | 
 | 	memset(drive_info->model, 0, sizeof(drive_info->model)); | 
 | 	memset(drive_info->rev, 0, sizeof(drive_info->rev)); | 
 | 	memset(drive_info->vendor, 0, sizeof(drive_info->vendor)); | 
 | 	/* | 
 | 	 * don't clear the LUNID though, we need to remember which | 
 | 	 * one this one is. | 
 | 	 */ | 
 | } | 
 |  | 
 | /* This function will deregister the disk and it's queue from the | 
 |  * kernel.  It must be called with the controller lock held and the | 
 |  * drv structures busy_configuring flag set.  It's parameters are: | 
 |  * | 
 |  * disk = This is the disk to be deregistered | 
 |  * drv  = This is the drive_info_struct associated with the disk to be | 
 |  *        deregistered.  It contains information about the disk used | 
 |  *        by the driver. | 
 |  * clear_all = This flag determines whether or not the disk information | 
 |  *             is going to be completely cleared out and the highest_lun | 
 |  *             reset.  Sometimes we want to clear out information about | 
 |  *             the disk in preparation for re-adding it.  In this case | 
 |  *             the highest_lun should be left unchanged and the LunID | 
 |  *             should not be cleared. | 
 |  * via_ioctl | 
 |  *    This indicates whether we've reached this path via ioctl. | 
 |  *    This affects the maximum usage count allowed for c0d0 to be messed with. | 
 |  *    If this path is reached via ioctl(), then the max_usage_count will | 
 |  *    be 1, as the process calling ioctl() has got to have the device open. | 
 |  *    If we get here via sysfs, then the max usage count will be zero. | 
 | */ | 
 | static int deregister_disk(ctlr_info_t *h, int drv_index, | 
 | 			   int clear_all, int via_ioctl) | 
 | { | 
 | 	int i; | 
 | 	struct gendisk *disk; | 
 | 	drive_info_struct *drv; | 
 | 	int recalculate_highest_lun; | 
 |  | 
 | 	if (!capable(CAP_SYS_RAWIO)) | 
 | 		return -EPERM; | 
 |  | 
 | 	drv = h->drv[drv_index]; | 
 | 	disk = h->gendisk[drv_index]; | 
 |  | 
 | 	/* make sure logical volume is NOT is use */ | 
 | 	if (clear_all || (h->gendisk[0] == disk)) { | 
 | 		if (drv->usage_count > via_ioctl) | 
 | 			return -EBUSY; | 
 | 	} else if (drv->usage_count > 0) | 
 | 		return -EBUSY; | 
 |  | 
 | 	recalculate_highest_lun = (drv == h->drv[h->highest_lun]); | 
 |  | 
 | 	/* invalidate the devices and deregister the disk.  If it is disk | 
 | 	 * zero do not deregister it but just zero out it's values.  This | 
 | 	 * allows us to delete disk zero but keep the controller registered. | 
 | 	 */ | 
 | 	if (h->gendisk[0] != disk) { | 
 | 		struct request_queue *q = disk->queue; | 
 | 		if (disk->flags & GENHD_FL_UP) { | 
 | 			cciss_destroy_ld_sysfs_entry(h, drv_index, 0); | 
 | 			del_gendisk(disk); | 
 | 		} | 
 | 		if (q) | 
 | 			blk_cleanup_queue(q); | 
 | 		/* If clear_all is set then we are deleting the logical | 
 | 		 * drive, not just refreshing its info.  For drives | 
 | 		 * other than disk 0 we will call put_disk.  We do not | 
 | 		 * do this for disk 0 as we need it to be able to | 
 | 		 * configure the controller. | 
 | 		 */ | 
 | 		if (clear_all){ | 
 | 			/* This isn't pretty, but we need to find the | 
 | 			 * disk in our array and NULL our the pointer. | 
 | 			 * This is so that we will call alloc_disk if | 
 | 			 * this index is used again later. | 
 | 			 */ | 
 | 			for (i=0; i < CISS_MAX_LUN; i++){ | 
 | 				if (h->gendisk[i] == disk) { | 
 | 					h->gendisk[i] = NULL; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 			put_disk(disk); | 
 | 		} | 
 | 	} else { | 
 | 		set_capacity(disk, 0); | 
 | 		cciss_clear_drive_info(drv); | 
 | 	} | 
 |  | 
 | 	--h->num_luns; | 
 |  | 
 | 	/* if it was the last disk, find the new hightest lun */ | 
 | 	if (clear_all && recalculate_highest_lun) { | 
 | 		int newhighest = -1; | 
 | 		for (i = 0; i <= h->highest_lun; i++) { | 
 | 			/* if the disk has size > 0, it is available */ | 
 | 			if (h->drv[i] && h->drv[i]->heads) | 
 | 				newhighest = i; | 
 | 		} | 
 | 		h->highest_lun = newhighest; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, | 
 | 		size_t size, __u8 page_code, unsigned char *scsi3addr, | 
 | 		int cmd_type) | 
 | { | 
 | 	ctlr_info_t *h = hba[ctlr]; | 
 | 	u64bit buff_dma_handle; | 
 | 	int status = IO_OK; | 
 |  | 
 | 	c->cmd_type = CMD_IOCTL_PEND; | 
 | 	c->Header.ReplyQueue = 0; | 
 | 	if (buff != NULL) { | 
 | 		c->Header.SGList = 1; | 
 | 		c->Header.SGTotal = 1; | 
 | 	} else { | 
 | 		c->Header.SGList = 0; | 
 | 		c->Header.SGTotal = 0; | 
 | 	} | 
 | 	c->Header.Tag.lower = c->busaddr; | 
 | 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); | 
 |  | 
 | 	c->Request.Type.Type = cmd_type; | 
 | 	if (cmd_type == TYPE_CMD) { | 
 | 		switch (cmd) { | 
 | 		case CISS_INQUIRY: | 
 | 			/* are we trying to read a vital product page */ | 
 | 			if (page_code != 0) { | 
 | 				c->Request.CDB[1] = 0x01; | 
 | 				c->Request.CDB[2] = page_code; | 
 | 			} | 
 | 			c->Request.CDBLen = 6; | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_READ; | 
 | 			c->Request.Timeout = 0; | 
 | 			c->Request.CDB[0] = CISS_INQUIRY; | 
 | 			c->Request.CDB[4] = size & 0xFF; | 
 | 			break; | 
 | 		case CISS_REPORT_LOG: | 
 | 		case CISS_REPORT_PHYS: | 
 | 			/* Talking to controller so It's a physical command | 
 | 			   mode = 00 target = 0.  Nothing to write. | 
 | 			 */ | 
 | 			c->Request.CDBLen = 12; | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_READ; | 
 | 			c->Request.Timeout = 0; | 
 | 			c->Request.CDB[0] = cmd; | 
 | 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ | 
 | 			c->Request.CDB[7] = (size >> 16) & 0xFF; | 
 | 			c->Request.CDB[8] = (size >> 8) & 0xFF; | 
 | 			c->Request.CDB[9] = size & 0xFF; | 
 | 			break; | 
 |  | 
 | 		case CCISS_READ_CAPACITY: | 
 | 			c->Request.CDBLen = 10; | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_READ; | 
 | 			c->Request.Timeout = 0; | 
 | 			c->Request.CDB[0] = cmd; | 
 | 			break; | 
 | 		case CCISS_READ_CAPACITY_16: | 
 | 			c->Request.CDBLen = 16; | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_READ; | 
 | 			c->Request.Timeout = 0; | 
 | 			c->Request.CDB[0] = cmd; | 
 | 			c->Request.CDB[1] = 0x10; | 
 | 			c->Request.CDB[10] = (size >> 24) & 0xFF; | 
 | 			c->Request.CDB[11] = (size >> 16) & 0xFF; | 
 | 			c->Request.CDB[12] = (size >> 8) & 0xFF; | 
 | 			c->Request.CDB[13] = size & 0xFF; | 
 | 			c->Request.Timeout = 0; | 
 | 			c->Request.CDB[0] = cmd; | 
 | 			break; | 
 | 		case CCISS_CACHE_FLUSH: | 
 | 			c->Request.CDBLen = 12; | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_WRITE; | 
 | 			c->Request.Timeout = 0; | 
 | 			c->Request.CDB[0] = BMIC_WRITE; | 
 | 			c->Request.CDB[6] = BMIC_CACHE_FLUSH; | 
 | 			break; | 
 | 		case TEST_UNIT_READY: | 
 | 			c->Request.CDBLen = 6; | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_NONE; | 
 | 			c->Request.Timeout = 0; | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_WARNING | 
 | 			       "cciss%d:  Unknown Command 0x%c\n", ctlr, cmd); | 
 | 			return IO_ERROR; | 
 | 		} | 
 | 	} else if (cmd_type == TYPE_MSG) { | 
 | 		switch (cmd) { | 
 | 		case 0:	/* ABORT message */ | 
 | 			c->Request.CDBLen = 12; | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_WRITE; | 
 | 			c->Request.Timeout = 0; | 
 | 			c->Request.CDB[0] = cmd;	/* abort */ | 
 | 			c->Request.CDB[1] = 0;	/* abort a command */ | 
 | 			/* buff contains the tag of the command to abort */ | 
 | 			memcpy(&c->Request.CDB[4], buff, 8); | 
 | 			break; | 
 | 		case 1:	/* RESET message */ | 
 | 			c->Request.CDBLen = 16; | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_NONE; | 
 | 			c->Request.Timeout = 0; | 
 | 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); | 
 | 			c->Request.CDB[0] = cmd;	/* reset */ | 
 | 			c->Request.CDB[1] = 0x03;	/* reset a target */ | 
 | 			break; | 
 | 		case 3:	/* No-Op message */ | 
 | 			c->Request.CDBLen = 1; | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_WRITE; | 
 | 			c->Request.Timeout = 0; | 
 | 			c->Request.CDB[0] = cmd; | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_WARNING | 
 | 			       "cciss%d: unknown message type %d\n", ctlr, cmd); | 
 | 			return IO_ERROR; | 
 | 		} | 
 | 	} else { | 
 | 		printk(KERN_WARNING | 
 | 		       "cciss%d: unknown command type %d\n", ctlr, cmd_type); | 
 | 		return IO_ERROR; | 
 | 	} | 
 | 	/* Fill in the scatter gather information */ | 
 | 	if (size > 0) { | 
 | 		buff_dma_handle.val = (__u64) pci_map_single(h->pdev, | 
 | 							     buff, size, | 
 | 							     PCI_DMA_BIDIRECTIONAL); | 
 | 		c->SG[0].Addr.lower = buff_dma_handle.val32.lower; | 
 | 		c->SG[0].Addr.upper = buff_dma_handle.val32.upper; | 
 | 		c->SG[0].Len = size; | 
 | 		c->SG[0].Ext = 0;	/* we are not chaining */ | 
 | 	} | 
 | 	return status; | 
 | } | 
 |  | 
 | static int check_target_status(ctlr_info_t *h, CommandList_struct *c) | 
 | { | 
 | 	switch (c->err_info->ScsiStatus) { | 
 | 	case SAM_STAT_GOOD: | 
 | 		return IO_OK; | 
 | 	case SAM_STAT_CHECK_CONDITION: | 
 | 		switch (0xf & c->err_info->SenseInfo[2]) { | 
 | 		case 0: return IO_OK; /* no sense */ | 
 | 		case 1: return IO_OK; /* recovered error */ | 
 | 		default: | 
 | 			if (check_for_unit_attention(h, c)) | 
 | 				return IO_NEEDS_RETRY; | 
 | 			printk(KERN_WARNING "cciss%d: cmd 0x%02x " | 
 | 				"check condition, sense key = 0x%02x\n", | 
 | 				h->ctlr, c->Request.CDB[0], | 
 | 				c->err_info->SenseInfo[2]); | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_WARNING "cciss%d: cmd 0x%02x" | 
 | 			"scsi status = 0x%02x\n", h->ctlr, | 
 | 			c->Request.CDB[0], c->err_info->ScsiStatus); | 
 | 		break; | 
 | 	} | 
 | 	return IO_ERROR; | 
 | } | 
 |  | 
 | static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c) | 
 | { | 
 | 	int return_status = IO_OK; | 
 |  | 
 | 	if (c->err_info->CommandStatus == CMD_SUCCESS) | 
 | 		return IO_OK; | 
 |  | 
 | 	switch (c->err_info->CommandStatus) { | 
 | 	case CMD_TARGET_STATUS: | 
 | 		return_status = check_target_status(h, c); | 
 | 		break; | 
 | 	case CMD_DATA_UNDERRUN: | 
 | 	case CMD_DATA_OVERRUN: | 
 | 		/* expected for inquiry and report lun commands */ | 
 | 		break; | 
 | 	case CMD_INVALID: | 
 | 		printk(KERN_WARNING "cciss: cmd 0x%02x is " | 
 | 		       "reported invalid\n", c->Request.CDB[0]); | 
 | 		return_status = IO_ERROR; | 
 | 		break; | 
 | 	case CMD_PROTOCOL_ERR: | 
 | 		printk(KERN_WARNING "cciss: cmd 0x%02x has " | 
 | 		       "protocol error \n", c->Request.CDB[0]); | 
 | 		return_status = IO_ERROR; | 
 | 		break; | 
 | 	case CMD_HARDWARE_ERR: | 
 | 		printk(KERN_WARNING "cciss: cmd 0x%02x had " | 
 | 		       " hardware error\n", c->Request.CDB[0]); | 
 | 		return_status = IO_ERROR; | 
 | 		break; | 
 | 	case CMD_CONNECTION_LOST: | 
 | 		printk(KERN_WARNING "cciss: cmd 0x%02x had " | 
 | 		       "connection lost\n", c->Request.CDB[0]); | 
 | 		return_status = IO_ERROR; | 
 | 		break; | 
 | 	case CMD_ABORTED: | 
 | 		printk(KERN_WARNING "cciss: cmd 0x%02x was " | 
 | 		       "aborted\n", c->Request.CDB[0]); | 
 | 		return_status = IO_ERROR; | 
 | 		break; | 
 | 	case CMD_ABORT_FAILED: | 
 | 		printk(KERN_WARNING "cciss: cmd 0x%02x reports " | 
 | 		       "abort failed\n", c->Request.CDB[0]); | 
 | 		return_status = IO_ERROR; | 
 | 		break; | 
 | 	case CMD_UNSOLICITED_ABORT: | 
 | 		printk(KERN_WARNING | 
 | 		       "cciss%d: unsolicited abort 0x%02x\n", h->ctlr, | 
 | 			c->Request.CDB[0]); | 
 | 		return_status = IO_NEEDS_RETRY; | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_WARNING "cciss: cmd 0x%02x returned " | 
 | 		       "unknown status %x\n", c->Request.CDB[0], | 
 | 		       c->err_info->CommandStatus); | 
 | 		return_status = IO_ERROR; | 
 | 	} | 
 | 	return return_status; | 
 | } | 
 |  | 
 | static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c, | 
 | 	int attempt_retry) | 
 | { | 
 | 	DECLARE_COMPLETION_ONSTACK(wait); | 
 | 	u64bit buff_dma_handle; | 
 | 	unsigned long flags; | 
 | 	int return_status = IO_OK; | 
 |  | 
 | resend_cmd2: | 
 | 	c->waiting = &wait; | 
 | 	/* Put the request on the tail of the queue and send it */ | 
 | 	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); | 
 | 	addQ(&h->reqQ, c); | 
 | 	h->Qdepth++; | 
 | 	start_io(h); | 
 | 	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 |  | 
 | 	wait_for_completion(&wait); | 
 |  | 
 | 	if (c->err_info->CommandStatus == 0 || !attempt_retry) | 
 | 		goto command_done; | 
 |  | 
 | 	return_status = process_sendcmd_error(h, c); | 
 |  | 
 | 	if (return_status == IO_NEEDS_RETRY && | 
 | 		c->retry_count < MAX_CMD_RETRIES) { | 
 | 		printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr, | 
 | 			c->Request.CDB[0]); | 
 | 		c->retry_count++; | 
 | 		/* erase the old error information */ | 
 | 		memset(c->err_info, 0, sizeof(ErrorInfo_struct)); | 
 | 		return_status = IO_OK; | 
 | 		INIT_COMPLETION(wait); | 
 | 		goto resend_cmd2; | 
 | 	} | 
 |  | 
 | command_done: | 
 | 	/* unlock the buffers from DMA */ | 
 | 	buff_dma_handle.val32.lower = c->SG[0].Addr.lower; | 
 | 	buff_dma_handle.val32.upper = c->SG[0].Addr.upper; | 
 | 	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val, | 
 | 			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL); | 
 | 	return return_status; | 
 | } | 
 |  | 
 | static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size, | 
 | 			   __u8 page_code, unsigned char scsi3addr[], | 
 | 			int cmd_type) | 
 | { | 
 | 	ctlr_info_t *h = hba[ctlr]; | 
 | 	CommandList_struct *c; | 
 | 	int return_status; | 
 |  | 
 | 	c = cmd_alloc(h, 0); | 
 | 	if (!c) | 
 | 		return -ENOMEM; | 
 | 	return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code, | 
 | 		scsi3addr, cmd_type); | 
 | 	if (return_status == IO_OK) | 
 | 		return_status = sendcmd_withirq_core(h, c, 1); | 
 |  | 
 | 	cmd_free(h, c, 0); | 
 | 	return return_status; | 
 | } | 
 |  | 
 | static void cciss_geometry_inquiry(int ctlr, int logvol, | 
 | 				   sector_t total_size, | 
 | 				   unsigned int block_size, | 
 | 				   InquiryData_struct *inq_buff, | 
 | 				   drive_info_struct *drv) | 
 | { | 
 | 	int return_code; | 
 | 	unsigned long t; | 
 | 	unsigned char scsi3addr[8]; | 
 |  | 
 | 	memset(inq_buff, 0, sizeof(InquiryData_struct)); | 
 | 	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol); | 
 | 	return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff, | 
 | 			sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD); | 
 | 	if (return_code == IO_OK) { | 
 | 		if (inq_buff->data_byte[8] == 0xFF) { | 
 | 			printk(KERN_WARNING | 
 | 			       "cciss: reading geometry failed, volume " | 
 | 			       "does not support reading geometry\n"); | 
 | 			drv->heads = 255; | 
 | 			drv->sectors = 32;	/* Sectors per track */ | 
 | 			drv->cylinders = total_size + 1; | 
 | 			drv->raid_level = RAID_UNKNOWN; | 
 | 		} else { | 
 | 			drv->heads = inq_buff->data_byte[6]; | 
 | 			drv->sectors = inq_buff->data_byte[7]; | 
 | 			drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8; | 
 | 			drv->cylinders += inq_buff->data_byte[5]; | 
 | 			drv->raid_level = inq_buff->data_byte[8]; | 
 | 		} | 
 | 		drv->block_size = block_size; | 
 | 		drv->nr_blocks = total_size + 1; | 
 | 		t = drv->heads * drv->sectors; | 
 | 		if (t > 1) { | 
 | 			sector_t real_size = total_size + 1; | 
 | 			unsigned long rem = sector_div(real_size, t); | 
 | 			if (rem) | 
 | 				real_size++; | 
 | 			drv->cylinders = real_size; | 
 | 		} | 
 | 	} else {		/* Get geometry failed */ | 
 | 		printk(KERN_WARNING "cciss: reading geometry failed\n"); | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | cciss_read_capacity(int ctlr, int logvol, sector_t *total_size, | 
 | 		    unsigned int *block_size) | 
 | { | 
 | 	ReadCapdata_struct *buf; | 
 | 	int return_code; | 
 | 	unsigned char scsi3addr[8]; | 
 |  | 
 | 	buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL); | 
 | 	if (!buf) { | 
 | 		printk(KERN_WARNING "cciss: out of memory\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol); | 
 | 	return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf, | 
 | 		sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD); | 
 | 	if (return_code == IO_OK) { | 
 | 		*total_size = be32_to_cpu(*(__be32 *) buf->total_size); | 
 | 		*block_size = be32_to_cpu(*(__be32 *) buf->block_size); | 
 | 	} else {		/* read capacity command failed */ | 
 | 		printk(KERN_WARNING "cciss: read capacity failed\n"); | 
 | 		*total_size = 0; | 
 | 		*block_size = BLOCK_SIZE; | 
 | 	} | 
 | 	kfree(buf); | 
 | } | 
 |  | 
 | static void cciss_read_capacity_16(int ctlr, int logvol, | 
 | 	sector_t *total_size, unsigned int *block_size) | 
 | { | 
 | 	ReadCapdata_struct_16 *buf; | 
 | 	int return_code; | 
 | 	unsigned char scsi3addr[8]; | 
 |  | 
 | 	buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL); | 
 | 	if (!buf) { | 
 | 		printk(KERN_WARNING "cciss: out of memory\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol); | 
 | 	return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16, | 
 | 		ctlr, buf, sizeof(ReadCapdata_struct_16), | 
 | 			0, scsi3addr, TYPE_CMD); | 
 | 	if (return_code == IO_OK) { | 
 | 		*total_size = be64_to_cpu(*(__be64 *) buf->total_size); | 
 | 		*block_size = be32_to_cpu(*(__be32 *) buf->block_size); | 
 | 	} else {		/* read capacity command failed */ | 
 | 		printk(KERN_WARNING "cciss: read capacity failed\n"); | 
 | 		*total_size = 0; | 
 | 		*block_size = BLOCK_SIZE; | 
 | 	} | 
 | 	printk(KERN_INFO "      blocks= %llu block_size= %d\n", | 
 | 	       (unsigned long long)*total_size+1, *block_size); | 
 | 	kfree(buf); | 
 | } | 
 |  | 
 | static int cciss_revalidate(struct gendisk *disk) | 
 | { | 
 | 	ctlr_info_t *h = get_host(disk); | 
 | 	drive_info_struct *drv = get_drv(disk); | 
 | 	int logvol; | 
 | 	int FOUND = 0; | 
 | 	unsigned int block_size; | 
 | 	sector_t total_size; | 
 | 	InquiryData_struct *inq_buff = NULL; | 
 |  | 
 | 	for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) { | 
 | 		if (memcmp(h->drv[logvol]->LunID, drv->LunID, | 
 | 			sizeof(drv->LunID)) == 0) { | 
 | 			FOUND = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!FOUND) | 
 | 		return 1; | 
 |  | 
 | 	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL); | 
 | 	if (inq_buff == NULL) { | 
 | 		printk(KERN_WARNING "cciss: out of memory\n"); | 
 | 		return 1; | 
 | 	} | 
 | 	if (h->cciss_read == CCISS_READ_10) { | 
 | 		cciss_read_capacity(h->ctlr, logvol, | 
 | 					&total_size, &block_size); | 
 | 	} else { | 
 | 		cciss_read_capacity_16(h->ctlr, logvol, | 
 | 					&total_size, &block_size); | 
 | 	} | 
 | 	cciss_geometry_inquiry(h->ctlr, logvol, total_size, block_size, | 
 | 			       inq_buff, drv); | 
 |  | 
 | 	blk_queue_logical_block_size(drv->queue, drv->block_size); | 
 | 	set_capacity(disk, drv->nr_blocks); | 
 |  | 
 | 	kfree(inq_buff); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Map (physical) PCI mem into (virtual) kernel space | 
 |  */ | 
 | static void __iomem *remap_pci_mem(ulong base, ulong size) | 
 | { | 
 | 	ulong page_base = ((ulong) base) & PAGE_MASK; | 
 | 	ulong page_offs = ((ulong) base) - page_base; | 
 | 	void __iomem *page_remapped = ioremap(page_base, page_offs + size); | 
 |  | 
 | 	return page_remapped ? (page_remapped + page_offs) : NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Takes jobs of the Q and sends them to the hardware, then puts it on | 
 |  * the Q to wait for completion. | 
 |  */ | 
 | static void start_io(ctlr_info_t *h) | 
 | { | 
 | 	CommandList_struct *c; | 
 |  | 
 | 	while (!hlist_empty(&h->reqQ)) { | 
 | 		c = hlist_entry(h->reqQ.first, CommandList_struct, list); | 
 | 		/* can't do anything if fifo is full */ | 
 | 		if ((h->access.fifo_full(h))) { | 
 | 			printk(KERN_WARNING "cciss: fifo full\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Get the first entry from the Request Q */ | 
 | 		removeQ(c); | 
 | 		h->Qdepth--; | 
 |  | 
 | 		/* Tell the controller execute command */ | 
 | 		h->access.submit_command(h, c); | 
 |  | 
 | 		/* Put job onto the completed Q */ | 
 | 		addQ(&h->cmpQ, c); | 
 | 	} | 
 | } | 
 |  | 
 | /* Assumes that CCISS_LOCK(h->ctlr) is held. */ | 
 | /* Zeros out the error record and then resends the command back */ | 
 | /* to the controller */ | 
 | static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c) | 
 | { | 
 | 	/* erase the old error information */ | 
 | 	memset(c->err_info, 0, sizeof(ErrorInfo_struct)); | 
 |  | 
 | 	/* add it to software queue and then send it to the controller */ | 
 | 	addQ(&h->reqQ, c); | 
 | 	h->Qdepth++; | 
 | 	if (h->Qdepth > h->maxQsinceinit) | 
 | 		h->maxQsinceinit = h->Qdepth; | 
 |  | 
 | 	start_io(h); | 
 | } | 
 |  | 
 | static inline unsigned int make_status_bytes(unsigned int scsi_status_byte, | 
 | 	unsigned int msg_byte, unsigned int host_byte, | 
 | 	unsigned int driver_byte) | 
 | { | 
 | 	/* inverse of macros in scsi.h */ | 
 | 	return (scsi_status_byte & 0xff) | | 
 | 		((msg_byte & 0xff) << 8) | | 
 | 		((host_byte & 0xff) << 16) | | 
 | 		((driver_byte & 0xff) << 24); | 
 | } | 
 |  | 
 | static inline int evaluate_target_status(ctlr_info_t *h, | 
 | 			CommandList_struct *cmd, int *retry_cmd) | 
 | { | 
 | 	unsigned char sense_key; | 
 | 	unsigned char status_byte, msg_byte, host_byte, driver_byte; | 
 | 	int error_value; | 
 |  | 
 | 	*retry_cmd = 0; | 
 | 	/* If we get in here, it means we got "target status", that is, scsi status */ | 
 | 	status_byte = cmd->err_info->ScsiStatus; | 
 | 	driver_byte = DRIVER_OK; | 
 | 	msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */ | 
 |  | 
 | 	if (blk_pc_request(cmd->rq)) | 
 | 		host_byte = DID_PASSTHROUGH; | 
 | 	else | 
 | 		host_byte = DID_OK; | 
 |  | 
 | 	error_value = make_status_bytes(status_byte, msg_byte, | 
 | 		host_byte, driver_byte); | 
 |  | 
 | 	if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) { | 
 | 		if (!blk_pc_request(cmd->rq)) | 
 | 			printk(KERN_WARNING "cciss: cmd %p " | 
 | 			       "has SCSI Status 0x%x\n", | 
 | 			       cmd, cmd->err_info->ScsiStatus); | 
 | 		return error_value; | 
 | 	} | 
 |  | 
 | 	/* check the sense key */ | 
 | 	sense_key = 0xf & cmd->err_info->SenseInfo[2]; | 
 | 	/* no status or recovered error */ | 
 | 	if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq)) | 
 | 		error_value = 0; | 
 |  | 
 | 	if (check_for_unit_attention(h, cmd)) { | 
 | 		*retry_cmd = !blk_pc_request(cmd->rq); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */ | 
 | 		if (error_value != 0) | 
 | 			printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION" | 
 | 			       " sense key = 0x%x\n", cmd, sense_key); | 
 | 		return error_value; | 
 | 	} | 
 |  | 
 | 	/* SG_IO or similar, copy sense data back */ | 
 | 	if (cmd->rq->sense) { | 
 | 		if (cmd->rq->sense_len > cmd->err_info->SenseLen) | 
 | 			cmd->rq->sense_len = cmd->err_info->SenseLen; | 
 | 		memcpy(cmd->rq->sense, cmd->err_info->SenseInfo, | 
 | 			cmd->rq->sense_len); | 
 | 	} else | 
 | 		cmd->rq->sense_len = 0; | 
 |  | 
 | 	return error_value; | 
 | } | 
 |  | 
 | /* checks the status of the job and calls complete buffers to mark all | 
 |  * buffers for the completed job. Note that this function does not need | 
 |  * to hold the hba/queue lock. | 
 |  */ | 
 | static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd, | 
 | 				    int timeout) | 
 | { | 
 | 	int retry_cmd = 0; | 
 | 	struct request *rq = cmd->rq; | 
 |  | 
 | 	rq->errors = 0; | 
 |  | 
 | 	if (timeout) | 
 | 		rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT); | 
 |  | 
 | 	if (cmd->err_info->CommandStatus == 0)	/* no error has occurred */ | 
 | 		goto after_error_processing; | 
 |  | 
 | 	switch (cmd->err_info->CommandStatus) { | 
 | 	case CMD_TARGET_STATUS: | 
 | 		rq->errors = evaluate_target_status(h, cmd, &retry_cmd); | 
 | 		break; | 
 | 	case CMD_DATA_UNDERRUN: | 
 | 		if (blk_fs_request(cmd->rq)) { | 
 | 			printk(KERN_WARNING "cciss: cmd %p has" | 
 | 			       " completed with data underrun " | 
 | 			       "reported\n", cmd); | 
 | 			cmd->rq->resid_len = cmd->err_info->ResidualCnt; | 
 | 		} | 
 | 		break; | 
 | 	case CMD_DATA_OVERRUN: | 
 | 		if (blk_fs_request(cmd->rq)) | 
 | 			printk(KERN_WARNING "cciss: cmd %p has" | 
 | 			       " completed with data overrun " | 
 | 			       "reported\n", cmd); | 
 | 		break; | 
 | 	case CMD_INVALID: | 
 | 		printk(KERN_WARNING "cciss: cmd %p is " | 
 | 		       "reported invalid\n", cmd); | 
 | 		rq->errors = make_status_bytes(SAM_STAT_GOOD, | 
 | 			cmd->err_info->CommandStatus, DRIVER_OK, | 
 | 			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); | 
 | 		break; | 
 | 	case CMD_PROTOCOL_ERR: | 
 | 		printk(KERN_WARNING "cciss: cmd %p has " | 
 | 		       "protocol error \n", cmd); | 
 | 		rq->errors = make_status_bytes(SAM_STAT_GOOD, | 
 | 			cmd->err_info->CommandStatus, DRIVER_OK, | 
 | 			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); | 
 | 		break; | 
 | 	case CMD_HARDWARE_ERR: | 
 | 		printk(KERN_WARNING "cciss: cmd %p had " | 
 | 		       " hardware error\n", cmd); | 
 | 		rq->errors = make_status_bytes(SAM_STAT_GOOD, | 
 | 			cmd->err_info->CommandStatus, DRIVER_OK, | 
 | 			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); | 
 | 		break; | 
 | 	case CMD_CONNECTION_LOST: | 
 | 		printk(KERN_WARNING "cciss: cmd %p had " | 
 | 		       "connection lost\n", cmd); | 
 | 		rq->errors = make_status_bytes(SAM_STAT_GOOD, | 
 | 			cmd->err_info->CommandStatus, DRIVER_OK, | 
 | 			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); | 
 | 		break; | 
 | 	case CMD_ABORTED: | 
 | 		printk(KERN_WARNING "cciss: cmd %p was " | 
 | 		       "aborted\n", cmd); | 
 | 		rq->errors = make_status_bytes(SAM_STAT_GOOD, | 
 | 			cmd->err_info->CommandStatus, DRIVER_OK, | 
 | 			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT); | 
 | 		break; | 
 | 	case CMD_ABORT_FAILED: | 
 | 		printk(KERN_WARNING "cciss: cmd %p reports " | 
 | 		       "abort failed\n", cmd); | 
 | 		rq->errors = make_status_bytes(SAM_STAT_GOOD, | 
 | 			cmd->err_info->CommandStatus, DRIVER_OK, | 
 | 			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); | 
 | 		break; | 
 | 	case CMD_UNSOLICITED_ABORT: | 
 | 		printk(KERN_WARNING "cciss%d: unsolicited " | 
 | 		       "abort %p\n", h->ctlr, cmd); | 
 | 		if (cmd->retry_count < MAX_CMD_RETRIES) { | 
 | 			retry_cmd = 1; | 
 | 			printk(KERN_WARNING | 
 | 			       "cciss%d: retrying %p\n", h->ctlr, cmd); | 
 | 			cmd->retry_count++; | 
 | 		} else | 
 | 			printk(KERN_WARNING | 
 | 			       "cciss%d: %p retried too " | 
 | 			       "many times\n", h->ctlr, cmd); | 
 | 		rq->errors = make_status_bytes(SAM_STAT_GOOD, | 
 | 			cmd->err_info->CommandStatus, DRIVER_OK, | 
 | 			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT); | 
 | 		break; | 
 | 	case CMD_TIMEOUT: | 
 | 		printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd); | 
 | 		rq->errors = make_status_bytes(SAM_STAT_GOOD, | 
 | 			cmd->err_info->CommandStatus, DRIVER_OK, | 
 | 			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_WARNING "cciss: cmd %p returned " | 
 | 		       "unknown status %x\n", cmd, | 
 | 		       cmd->err_info->CommandStatus); | 
 | 		rq->errors = make_status_bytes(SAM_STAT_GOOD, | 
 | 			cmd->err_info->CommandStatus, DRIVER_OK, | 
 | 			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); | 
 | 	} | 
 |  | 
 | after_error_processing: | 
 |  | 
 | 	/* We need to return this command */ | 
 | 	if (retry_cmd) { | 
 | 		resend_cciss_cmd(h, cmd); | 
 | 		return; | 
 | 	} | 
 | 	cmd->rq->completion_data = cmd; | 
 | 	blk_complete_request(cmd->rq); | 
 | } | 
 |  | 
 | /* | 
 |  * Get a request and submit it to the controller. | 
 |  */ | 
 | static void do_cciss_request(struct request_queue *q) | 
 | { | 
 | 	ctlr_info_t *h = q->queuedata; | 
 | 	CommandList_struct *c; | 
 | 	sector_t start_blk; | 
 | 	int seg; | 
 | 	struct request *creq; | 
 | 	u64bit temp64; | 
 | 	struct scatterlist *tmp_sg; | 
 | 	SGDescriptor_struct *curr_sg; | 
 | 	drive_info_struct *drv; | 
 | 	int i, dir; | 
 | 	int sg_index = 0; | 
 | 	int chained = 0; | 
 |  | 
 | 	/* We call start_io here in case there is a command waiting on the | 
 | 	 * queue that has not been sent. | 
 | 	 */ | 
 | 	if (blk_queue_plugged(q)) | 
 | 		goto startio; | 
 |  | 
 |       queue: | 
 | 	creq = blk_peek_request(q); | 
 | 	if (!creq) | 
 | 		goto startio; | 
 |  | 
 | 	BUG_ON(creq->nr_phys_segments > h->maxsgentries); | 
 |  | 
 | 	if ((c = cmd_alloc(h, 1)) == NULL) | 
 | 		goto full; | 
 |  | 
 | 	blk_start_request(creq); | 
 |  | 
 | 	tmp_sg = h->scatter_list[c->cmdindex]; | 
 | 	spin_unlock_irq(q->queue_lock); | 
 |  | 
 | 	c->cmd_type = CMD_RWREQ; | 
 | 	c->rq = creq; | 
 |  | 
 | 	/* fill in the request */ | 
 | 	drv = creq->rq_disk->private_data; | 
 | 	c->Header.ReplyQueue = 0;	/* unused in simple mode */ | 
 | 	/* got command from pool, so use the command block index instead */ | 
 | 	/* for direct lookups. */ | 
 | 	/* The first 2 bits are reserved for controller error reporting. */ | 
 | 	c->Header.Tag.lower = (c->cmdindex << 3); | 
 | 	c->Header.Tag.lower |= 0x04;	/* flag for direct lookup. */ | 
 | 	memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID)); | 
 | 	c->Request.CDBLen = 10;	/* 12 byte commands not in FW yet; */ | 
 | 	c->Request.Type.Type = TYPE_CMD;	/* It is a command. */ | 
 | 	c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 	c->Request.Type.Direction = | 
 | 	    (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE; | 
 | 	c->Request.Timeout = 0;	/* Don't time out */ | 
 | 	c->Request.CDB[0] = | 
 | 	    (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write; | 
 | 	start_blk = blk_rq_pos(creq); | 
 | #ifdef CCISS_DEBUG | 
 | 	printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", | 
 | 	       (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq)); | 
 | #endif				/* CCISS_DEBUG */ | 
 |  | 
 | 	sg_init_table(tmp_sg, h->maxsgentries); | 
 | 	seg = blk_rq_map_sg(q, creq, tmp_sg); | 
 |  | 
 | 	/* get the DMA records for the setup */ | 
 | 	if (c->Request.Type.Direction == XFER_READ) | 
 | 		dir = PCI_DMA_FROMDEVICE; | 
 | 	else | 
 | 		dir = PCI_DMA_TODEVICE; | 
 |  | 
 | 	curr_sg = c->SG; | 
 | 	sg_index = 0; | 
 | 	chained = 0; | 
 |  | 
 | 	for (i = 0; i < seg; i++) { | 
 | 		if (((sg_index+1) == (h->max_cmd_sgentries)) && | 
 | 			!chained && ((seg - i) > 1)) { | 
 | 			/* Point to next chain block. */ | 
 | 			curr_sg = h->cmd_sg_list[c->cmdindex]; | 
 | 			sg_index = 0; | 
 | 			chained = 1; | 
 | 		} | 
 | 		curr_sg[sg_index].Len = tmp_sg[i].length; | 
 | 		temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]), | 
 | 						tmp_sg[i].offset, | 
 | 						tmp_sg[i].length, dir); | 
 | 		curr_sg[sg_index].Addr.lower = temp64.val32.lower; | 
 | 		curr_sg[sg_index].Addr.upper = temp64.val32.upper; | 
 | 		curr_sg[sg_index].Ext = 0;  /* we are not chaining */ | 
 | 		++sg_index; | 
 | 	} | 
 | 	if (chained) | 
 | 		cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex], | 
 | 			(seg - (h->max_cmd_sgentries - 1)) * | 
 | 				sizeof(SGDescriptor_struct)); | 
 |  | 
 | 	/* track how many SG entries we are using */ | 
 | 	if (seg > h->maxSG) | 
 | 		h->maxSG = seg; | 
 |  | 
 | #ifdef CCISS_DEBUG | 
 | 	printk(KERN_DEBUG "cciss: Submitting %ld sectors in %d segments " | 
 | 			"chained[%d]\n", | 
 | 			blk_rq_sectors(creq), seg, chained); | 
 | #endif				/* CCISS_DEBUG */ | 
 |  | 
 | 	c->Header.SGList = c->Header.SGTotal = seg + chained; | 
 | 	if (seg > h->max_cmd_sgentries) | 
 | 		c->Header.SGList = h->max_cmd_sgentries; | 
 |  | 
 | 	if (likely(blk_fs_request(creq))) { | 
 | 		if(h->cciss_read == CCISS_READ_10) { | 
 | 			c->Request.CDB[1] = 0; | 
 | 			c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */ | 
 | 			c->Request.CDB[3] = (start_blk >> 16) & 0xff; | 
 | 			c->Request.CDB[4] = (start_blk >> 8) & 0xff; | 
 | 			c->Request.CDB[5] = start_blk & 0xff; | 
 | 			c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */ | 
 | 			c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff; | 
 | 			c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff; | 
 | 			c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0; | 
 | 		} else { | 
 | 			u32 upper32 = upper_32_bits(start_blk); | 
 |  | 
 | 			c->Request.CDBLen = 16; | 
 | 			c->Request.CDB[1]= 0; | 
 | 			c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */ | 
 | 			c->Request.CDB[3]= (upper32 >> 16) & 0xff; | 
 | 			c->Request.CDB[4]= (upper32 >>  8) & 0xff; | 
 | 			c->Request.CDB[5]= upper32 & 0xff; | 
 | 			c->Request.CDB[6]= (start_blk >> 24) & 0xff; | 
 | 			c->Request.CDB[7]= (start_blk >> 16) & 0xff; | 
 | 			c->Request.CDB[8]= (start_blk >>  8) & 0xff; | 
 | 			c->Request.CDB[9]= start_blk & 0xff; | 
 | 			c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff; | 
 | 			c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff; | 
 | 			c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff; | 
 | 			c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff; | 
 | 			c->Request.CDB[14] = c->Request.CDB[15] = 0; | 
 | 		} | 
 | 	} else if (blk_pc_request(creq)) { | 
 | 		c->Request.CDBLen = creq->cmd_len; | 
 | 		memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB); | 
 | 	} else { | 
 | 		printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(q->queue_lock); | 
 |  | 
 | 	addQ(&h->reqQ, c); | 
 | 	h->Qdepth++; | 
 | 	if (h->Qdepth > h->maxQsinceinit) | 
 | 		h->maxQsinceinit = h->Qdepth; | 
 |  | 
 | 	goto queue; | 
 | full: | 
 | 	blk_stop_queue(q); | 
 | startio: | 
 | 	/* We will already have the driver lock here so not need | 
 | 	 * to lock it. | 
 | 	 */ | 
 | 	start_io(h); | 
 | } | 
 |  | 
 | static inline unsigned long get_next_completion(ctlr_info_t *h) | 
 | { | 
 | 	return h->access.command_completed(h); | 
 | } | 
 |  | 
 | static inline int interrupt_pending(ctlr_info_t *h) | 
 | { | 
 | 	return h->access.intr_pending(h); | 
 | } | 
 |  | 
 | static inline long interrupt_not_for_us(ctlr_info_t *h) | 
 | { | 
 | 	return (((h->access.intr_pending(h) == 0) || | 
 | 		 (h->interrupts_enabled == 0))); | 
 | } | 
 |  | 
 | static irqreturn_t do_cciss_intr(int irq, void *dev_id) | 
 | { | 
 | 	ctlr_info_t *h = dev_id; | 
 | 	CommandList_struct *c; | 
 | 	unsigned long flags; | 
 | 	__u32 a, a1, a2; | 
 |  | 
 | 	if (interrupt_not_for_us(h)) | 
 | 		return IRQ_NONE; | 
 | 	/* | 
 | 	 * If there are completed commands in the completion queue, | 
 | 	 * we had better do something about it. | 
 | 	 */ | 
 | 	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); | 
 | 	while (interrupt_pending(h)) { | 
 | 		while ((a = get_next_completion(h)) != FIFO_EMPTY) { | 
 | 			a1 = a; | 
 | 			if ((a & 0x04)) { | 
 | 				a2 = (a >> 3); | 
 | 				if (a2 >= h->nr_cmds) { | 
 | 					printk(KERN_WARNING | 
 | 					       "cciss: controller cciss%d failed, stopping.\n", | 
 | 					       h->ctlr); | 
 | 					spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 | 					fail_all_cmds(h->ctlr); | 
 | 					return IRQ_HANDLED; | 
 | 				} | 
 |  | 
 | 				c = h->cmd_pool + a2; | 
 | 				a = c->busaddr; | 
 |  | 
 | 			} else { | 
 | 				struct hlist_node *tmp; | 
 |  | 
 | 				a &= ~3; | 
 | 				c = NULL; | 
 | 				hlist_for_each_entry(c, tmp, &h->cmpQ, list) { | 
 | 					if (c->busaddr == a) | 
 | 						break; | 
 | 				} | 
 | 			} | 
 | 			/* | 
 | 			 * If we've found the command, take it off the | 
 | 			 * completion Q and free it | 
 | 			 */ | 
 | 			if (c && c->busaddr == a) { | 
 | 				removeQ(c); | 
 | 				if (c->cmd_type == CMD_RWREQ) { | 
 | 					complete_command(h, c, 0); | 
 | 				} else if (c->cmd_type == CMD_IOCTL_PEND) { | 
 | 					complete(c->waiting); | 
 | 				} | 
 | #				ifdef CONFIG_CISS_SCSI_TAPE | 
 | 				else if (c->cmd_type == CMD_SCSI) | 
 | 					complete_scsi_command(c, 0, a1); | 
 | #				endif | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /** | 
 |  * add_to_scan_list() - add controller to rescan queue | 
 |  * @h:		      Pointer to the controller. | 
 |  * | 
 |  * Adds the controller to the rescan queue if not already on the queue. | 
 |  * | 
 |  * returns 1 if added to the queue, 0 if skipped (could be on the | 
 |  * queue already, or the controller could be initializing or shutting | 
 |  * down). | 
 |  **/ | 
 | static int add_to_scan_list(struct ctlr_info *h) | 
 | { | 
 | 	struct ctlr_info *test_h; | 
 | 	int found = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (h->busy_initializing) | 
 | 		return 0; | 
 |  | 
 | 	if (!mutex_trylock(&h->busy_shutting_down)) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&scan_mutex); | 
 | 	list_for_each_entry(test_h, &scan_q, scan_list) { | 
 | 		if (test_h == h) { | 
 | 			found = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (!found && !h->busy_scanning) { | 
 | 		INIT_COMPLETION(h->scan_wait); | 
 | 		list_add_tail(&h->scan_list, &scan_q); | 
 | 		ret = 1; | 
 | 	} | 
 | 	mutex_unlock(&scan_mutex); | 
 | 	mutex_unlock(&h->busy_shutting_down); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * remove_from_scan_list() - remove controller from rescan queue | 
 |  * @h:			   Pointer to the controller. | 
 |  * | 
 |  * Removes the controller from the rescan queue if present. Blocks if | 
 |  * the controller is currently conducting a rescan.  The controller | 
 |  * can be in one of three states: | 
 |  * 1. Doesn't need a scan | 
 |  * 2. On the scan list, but not scanning yet (we remove it) | 
 |  * 3. Busy scanning (and not on the list). In this case we want to wait for | 
 |  *    the scan to complete to make sure the scanning thread for this | 
 |  *    controller is completely idle. | 
 |  **/ | 
 | static void remove_from_scan_list(struct ctlr_info *h) | 
 | { | 
 | 	struct ctlr_info *test_h, *tmp_h; | 
 |  | 
 | 	mutex_lock(&scan_mutex); | 
 | 	list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) { | 
 | 		if (test_h == h) { /* state 2. */ | 
 | 			list_del(&h->scan_list); | 
 | 			complete_all(&h->scan_wait); | 
 | 			mutex_unlock(&scan_mutex); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	if (h->busy_scanning) { /* state 3. */ | 
 | 		mutex_unlock(&scan_mutex); | 
 | 		wait_for_completion(&h->scan_wait); | 
 | 	} else { /* state 1, nothing to do. */ | 
 | 		mutex_unlock(&scan_mutex); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * scan_thread() - kernel thread used to rescan controllers | 
 |  * @data:	 Ignored. | 
 |  * | 
 |  * A kernel thread used scan for drive topology changes on | 
 |  * controllers. The thread processes only one controller at a time | 
 |  * using a queue.  Controllers are added to the queue using | 
 |  * add_to_scan_list() and removed from the queue either after done | 
 |  * processing or using remove_from_scan_list(). | 
 |  * | 
 |  * returns 0. | 
 |  **/ | 
 | static int scan_thread(void *data) | 
 | { | 
 | 	struct ctlr_info *h; | 
 |  | 
 | 	while (1) { | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 | 		schedule(); | 
 | 		if (kthread_should_stop()) | 
 | 			break; | 
 |  | 
 | 		while (1) { | 
 | 			mutex_lock(&scan_mutex); | 
 | 			if (list_empty(&scan_q)) { | 
 | 				mutex_unlock(&scan_mutex); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			h = list_entry(scan_q.next, | 
 | 				       struct ctlr_info, | 
 | 				       scan_list); | 
 | 			list_del(&h->scan_list); | 
 | 			h->busy_scanning = 1; | 
 | 			mutex_unlock(&scan_mutex); | 
 |  | 
 | 			rebuild_lun_table(h, 0, 0); | 
 | 			complete_all(&h->scan_wait); | 
 | 			mutex_lock(&scan_mutex); | 
 | 			h->busy_scanning = 0; | 
 | 			mutex_unlock(&scan_mutex); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c) | 
 | { | 
 | 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) | 
 | 		return 0; | 
 |  | 
 | 	switch (c->err_info->SenseInfo[12]) { | 
 | 	case STATE_CHANGED: | 
 | 		printk(KERN_WARNING "cciss%d: a state change " | 
 | 			"detected, command retried\n", h->ctlr); | 
 | 		return 1; | 
 | 	break; | 
 | 	case LUN_FAILED: | 
 | 		printk(KERN_WARNING "cciss%d: LUN failure " | 
 | 			"detected, action required\n", h->ctlr); | 
 | 		return 1; | 
 | 	break; | 
 | 	case REPORT_LUNS_CHANGED: | 
 | 		printk(KERN_WARNING "cciss%d: report LUN data " | 
 | 			"changed\n", h->ctlr); | 
 | 	/* | 
 | 	 * Here, we could call add_to_scan_list and wake up the scan thread, | 
 | 	 * except that it's quite likely that we will get more than one | 
 | 	 * REPORT_LUNS_CHANGED condition in quick succession, which means | 
 | 	 * that those which occur after the first one will likely happen | 
 | 	 * *during* the scan_thread's rescan.  And the rescan code is not | 
 | 	 * robust enough to restart in the middle, undoing what it has already | 
 | 	 * done, and it's not clear that it's even possible to do this, since | 
 | 	 * part of what it does is notify the block layer, which starts | 
 | 	 * doing it's own i/o to read partition tables and so on, and the | 
 | 	 * driver doesn't have visibility to know what might need undoing. | 
 | 	 * In any event, if possible, it is horribly complicated to get right | 
 | 	 * so we just don't do it for now. | 
 | 	 * | 
 | 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012. | 
 | 	 */ | 
 | 		return 1; | 
 | 	break; | 
 | 	case POWER_OR_RESET: | 
 | 		printk(KERN_WARNING "cciss%d: a power on " | 
 | 			"or device reset detected\n", h->ctlr); | 
 | 		return 1; | 
 | 	break; | 
 | 	case UNIT_ATTENTION_CLEARED: | 
 | 		printk(KERN_WARNING "cciss%d: unit attention " | 
 | 		    "cleared by another initiator\n", h->ctlr); | 
 | 		return 1; | 
 | 	break; | 
 | 	default: | 
 | 		printk(KERN_WARNING "cciss%d: unknown " | 
 | 			"unit attention detected\n", h->ctlr); | 
 | 				return 1; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  *  We cannot read the structure directly, for portability we must use | 
 |  *   the io functions. | 
 |  *   This is for debug only. | 
 |  */ | 
 | #ifdef CCISS_DEBUG | 
 | static void print_cfg_table(CfgTable_struct *tb) | 
 | { | 
 | 	int i; | 
 | 	char temp_name[17]; | 
 |  | 
 | 	printk("Controller Configuration information\n"); | 
 | 	printk("------------------------------------\n"); | 
 | 	for (i = 0; i < 4; i++) | 
 | 		temp_name[i] = readb(&(tb->Signature[i])); | 
 | 	temp_name[4] = '\0'; | 
 | 	printk("   Signature = %s\n", temp_name); | 
 | 	printk("   Spec Number = %d\n", readl(&(tb->SpecValence))); | 
 | 	printk("   Transport methods supported = 0x%x\n", | 
 | 	       readl(&(tb->TransportSupport))); | 
 | 	printk("   Transport methods active = 0x%x\n", | 
 | 	       readl(&(tb->TransportActive))); | 
 | 	printk("   Requested transport Method = 0x%x\n", | 
 | 	       readl(&(tb->HostWrite.TransportRequest))); | 
 | 	printk("   Coalesce Interrupt Delay = 0x%x\n", | 
 | 	       readl(&(tb->HostWrite.CoalIntDelay))); | 
 | 	printk("   Coalesce Interrupt Count = 0x%x\n", | 
 | 	       readl(&(tb->HostWrite.CoalIntCount))); | 
 | 	printk("   Max outstanding commands = 0x%d\n", | 
 | 	       readl(&(tb->CmdsOutMax))); | 
 | 	printk("   Bus Types = 0x%x\n", readl(&(tb->BusTypes))); | 
 | 	for (i = 0; i < 16; i++) | 
 | 		temp_name[i] = readb(&(tb->ServerName[i])); | 
 | 	temp_name[16] = '\0'; | 
 | 	printk("   Server Name = %s\n", temp_name); | 
 | 	printk("   Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat))); | 
 | } | 
 | #endif				/* CCISS_DEBUG */ | 
 |  | 
 | static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) | 
 | { | 
 | 	int i, offset, mem_type, bar_type; | 
 | 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */ | 
 | 		return 0; | 
 | 	offset = 0; | 
 | 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { | 
 | 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; | 
 | 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) | 
 | 			offset += 4; | 
 | 		else { | 
 | 			mem_type = pci_resource_flags(pdev, i) & | 
 | 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK; | 
 | 			switch (mem_type) { | 
 | 			case PCI_BASE_ADDRESS_MEM_TYPE_32: | 
 | 			case PCI_BASE_ADDRESS_MEM_TYPE_1M: | 
 | 				offset += 4;	/* 32 bit */ | 
 | 				break; | 
 | 			case PCI_BASE_ADDRESS_MEM_TYPE_64: | 
 | 				offset += 8; | 
 | 				break; | 
 | 			default:	/* reserved in PCI 2.2 */ | 
 | 				printk(KERN_WARNING | 
 | 				       "Base address is invalid\n"); | 
 | 				return -1; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) | 
 | 			return i + 1; | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* If MSI/MSI-X is supported by the kernel we will try to enable it on | 
 |  * controllers that are capable. If not, we use IO-APIC mode. | 
 |  */ | 
 |  | 
 | static void __devinit cciss_interrupt_mode(ctlr_info_t *c, | 
 | 					   struct pci_dev *pdev, __u32 board_id) | 
 | { | 
 | #ifdef CONFIG_PCI_MSI | 
 | 	int err; | 
 | 	struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1}, | 
 | 	{0, 2}, {0, 3} | 
 | 	}; | 
 |  | 
 | 	/* Some boards advertise MSI but don't really support it */ | 
 | 	if ((board_id == 0x40700E11) || | 
 | 	    (board_id == 0x40800E11) || | 
 | 	    (board_id == 0x40820E11) || (board_id == 0x40830E11)) | 
 | 		goto default_int_mode; | 
 |  | 
 | 	if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) { | 
 | 		err = pci_enable_msix(pdev, cciss_msix_entries, 4); | 
 | 		if (!err) { | 
 | 			c->intr[0] = cciss_msix_entries[0].vector; | 
 | 			c->intr[1] = cciss_msix_entries[1].vector; | 
 | 			c->intr[2] = cciss_msix_entries[2].vector; | 
 | 			c->intr[3] = cciss_msix_entries[3].vector; | 
 | 			c->msix_vector = 1; | 
 | 			return; | 
 | 		} | 
 | 		if (err > 0) { | 
 | 			printk(KERN_WARNING "cciss: only %d MSI-X vectors " | 
 | 			       "available\n", err); | 
 | 			goto default_int_mode; | 
 | 		} else { | 
 | 			printk(KERN_WARNING "cciss: MSI-X init failed %d\n", | 
 | 			       err); | 
 | 			goto default_int_mode; | 
 | 		} | 
 | 	} | 
 | 	if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) { | 
 | 		if (!pci_enable_msi(pdev)) { | 
 | 			c->msi_vector = 1; | 
 | 		} else { | 
 | 			printk(KERN_WARNING "cciss: MSI init failed\n"); | 
 | 		} | 
 | 	} | 
 | default_int_mode: | 
 | #endif				/* CONFIG_PCI_MSI */ | 
 | 	/* if we get here we're going to use the default interrupt mode */ | 
 | 	c->intr[SIMPLE_MODE_INT] = pdev->irq; | 
 | 	return; | 
 | } | 
 |  | 
 | static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev) | 
 | { | 
 | 	ushort subsystem_vendor_id, subsystem_device_id, command; | 
 | 	__u32 board_id, scratchpad = 0; | 
 | 	__u64 cfg_offset; | 
 | 	__u32 cfg_base_addr; | 
 | 	__u64 cfg_base_addr_index; | 
 | 	int i, prod_index, err; | 
 |  | 
 | 	subsystem_vendor_id = pdev->subsystem_vendor; | 
 | 	subsystem_device_id = pdev->subsystem_device; | 
 | 	board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) | | 
 | 		    subsystem_vendor_id); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(products); i++) { | 
 | 		/* Stand aside for hpsa driver on request */ | 
 | 		if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY) | 
 | 			return -ENODEV; | 
 | 		if (board_id == products[i].board_id) | 
 | 			break; | 
 | 	} | 
 | 	prod_index = i; | 
 | 	if (prod_index == ARRAY_SIZE(products)) { | 
 | 		dev_warn(&pdev->dev, | 
 | 			"unrecognized board ID: 0x%08lx, ignoring.\n", | 
 | 			(unsigned long) board_id); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* check to see if controller has been disabled */ | 
 | 	/* BEFORE trying to enable it */ | 
 | 	(void)pci_read_config_word(pdev, PCI_COMMAND, &command); | 
 | 	if (!(command & 0x02)) { | 
 | 		printk(KERN_WARNING | 
 | 		       "cciss: controller appears to be disabled\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	err = pci_enable_device(pdev); | 
 | 	if (err) { | 
 | 		printk(KERN_ERR "cciss: Unable to Enable PCI device\n"); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	err = pci_request_regions(pdev, "cciss"); | 
 | 	if (err) { | 
 | 		printk(KERN_ERR "cciss: Cannot obtain PCI resources, " | 
 | 		       "aborting\n"); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | #ifdef CCISS_DEBUG | 
 | 	printk("command = %x\n", command); | 
 | 	printk("irq = %x\n", pdev->irq); | 
 | 	printk("board_id = %x\n", board_id); | 
 | #endif				/* CCISS_DEBUG */ | 
 |  | 
 | /* If the kernel supports MSI/MSI-X we will try to enable that functionality, | 
 |  * else we use the IO-APIC interrupt assigned to us by system ROM. | 
 |  */ | 
 | 	cciss_interrupt_mode(c, pdev, board_id); | 
 |  | 
 | 	/* find the memory BAR */ | 
 | 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { | 
 | 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) | 
 | 			break; | 
 | 	} | 
 | 	if (i == DEVICE_COUNT_RESOURCE) { | 
 | 		printk(KERN_WARNING "cciss: No memory BAR found\n"); | 
 | 		err = -ENODEV; | 
 | 		goto err_out_free_res; | 
 | 	} | 
 |  | 
 | 	c->paddr = pci_resource_start(pdev, i); /* addressing mode bits | 
 | 						 * already removed | 
 | 						 */ | 
 |  | 
 | #ifdef CCISS_DEBUG | 
 | 	printk("address 0 = %lx\n", c->paddr); | 
 | #endif				/* CCISS_DEBUG */ | 
 | 	c->vaddr = remap_pci_mem(c->paddr, 0x250); | 
 |  | 
 | 	/* Wait for the board to become ready.  (PCI hotplug needs this.) | 
 | 	 * We poll for up to 120 secs, once per 100ms. */ | 
 | 	for (i = 0; i < 1200; i++) { | 
 | 		scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET); | 
 | 		if (scratchpad == CCISS_FIRMWARE_READY) | 
 | 			break; | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 | 		schedule_timeout(msecs_to_jiffies(100));	/* wait 100ms */ | 
 | 	} | 
 | 	if (scratchpad != CCISS_FIRMWARE_READY) { | 
 | 		printk(KERN_WARNING "cciss: Board not ready.  Timed out.\n"); | 
 | 		err = -ENODEV; | 
 | 		goto err_out_free_res; | 
 | 	} | 
 |  | 
 | 	/* get the address index number */ | 
 | 	cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET); | 
 | 	cfg_base_addr &= (__u32) 0x0000ffff; | 
 | #ifdef CCISS_DEBUG | 
 | 	printk("cfg base address = %x\n", cfg_base_addr); | 
 | #endif				/* CCISS_DEBUG */ | 
 | 	cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr); | 
 | #ifdef CCISS_DEBUG | 
 | 	printk("cfg base address index = %llx\n", | 
 | 		(unsigned long long)cfg_base_addr_index); | 
 | #endif				/* CCISS_DEBUG */ | 
 | 	if (cfg_base_addr_index == -1) { | 
 | 		printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n"); | 
 | 		err = -ENODEV; | 
 | 		goto err_out_free_res; | 
 | 	} | 
 |  | 
 | 	cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET); | 
 | #ifdef CCISS_DEBUG | 
 | 	printk("cfg offset = %llx\n", (unsigned long long)cfg_offset); | 
 | #endif				/* CCISS_DEBUG */ | 
 | 	c->cfgtable = remap_pci_mem(pci_resource_start(pdev, | 
 | 						       cfg_base_addr_index) + | 
 | 				    cfg_offset, sizeof(CfgTable_struct)); | 
 | 	c->board_id = board_id; | 
 |  | 
 | #ifdef CCISS_DEBUG | 
 | 	print_cfg_table(c->cfgtable); | 
 | #endif				/* CCISS_DEBUG */ | 
 |  | 
 | 	/* Some controllers support Zero Memory Raid (ZMR). | 
 | 	 * When configured in ZMR mode the number of supported | 
 | 	 * commands drops to 64. So instead of just setting an | 
 | 	 * arbitrary value we make the driver a little smarter. | 
 | 	 * We read the config table to tell us how many commands | 
 | 	 * are supported on the controller then subtract 4 to | 
 | 	 * leave a little room for ioctl calls. | 
 | 	 */ | 
 | 	c->max_commands = readl(&(c->cfgtable->CmdsOutMax)); | 
 | 	c->maxsgentries = readl(&(c->cfgtable->MaxSGElements)); | 
 |  | 
 | 	/* | 
 | 	 * Limit native command to 32 s/g elements to save dma'able memory. | 
 | 	 * Howvever spec says if 0, use 31 | 
 | 	 */ | 
 |  | 
 | 	c->max_cmd_sgentries = 31; | 
 | 	if (c->maxsgentries > 512) { | 
 | 		c->max_cmd_sgentries = 32; | 
 | 		c->chainsize = c->maxsgentries - c->max_cmd_sgentries + 1; | 
 | 		c->maxsgentries -= 1;   /* account for chain pointer */ | 
 | 	} else { | 
 | 		c->maxsgentries = 31;   /* Default to traditional value */ | 
 | 		c->chainsize = 0;       /* traditional */ | 
 | 	} | 
 |  | 
 | 	c->product_name = products[prod_index].product_name; | 
 | 	c->access = *(products[prod_index].access); | 
 | 	c->nr_cmds = c->max_commands - 4; | 
 | 	if ((readb(&c->cfgtable->Signature[0]) != 'C') || | 
 | 	    (readb(&c->cfgtable->Signature[1]) != 'I') || | 
 | 	    (readb(&c->cfgtable->Signature[2]) != 'S') || | 
 | 	    (readb(&c->cfgtable->Signature[3]) != 'S')) { | 
 | 		printk("Does not appear to be a valid CISS config table\n"); | 
 | 		err = -ENODEV; | 
 | 		goto err_out_free_res; | 
 | 	} | 
 | #ifdef CONFIG_X86 | 
 | 	{ | 
 | 		/* Need to enable prefetch in the SCSI core for 6400 in x86 */ | 
 | 		__u32 prefetch; | 
 | 		prefetch = readl(&(c->cfgtable->SCSI_Prefetch)); | 
 | 		prefetch |= 0x100; | 
 | 		writel(prefetch, &(c->cfgtable->SCSI_Prefetch)); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Disabling DMA prefetch and refetch for the P600. | 
 | 	 * An ASIC bug may result in accesses to invalid memory addresses. | 
 | 	 * We've disabled prefetch for some time now. Testing with XEN | 
 | 	 * kernels revealed a bug in the refetch if dom0 resides on a P600. | 
 | 	 */ | 
 | 	if(board_id == 0x3225103C) { | 
 | 		__u32 dma_prefetch; | 
 | 		__u32 dma_refetch; | 
 | 		dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG); | 
 | 		dma_prefetch |= 0x8000; | 
 | 		writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG); | 
 | 		pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch); | 
 | 		dma_refetch |= 0x1; | 
 | 		pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch); | 
 | 	} | 
 |  | 
 | #ifdef CCISS_DEBUG | 
 | 	printk("Trying to put board into Simple mode\n"); | 
 | #endif				/* CCISS_DEBUG */ | 
 | 	c->max_commands = readl(&(c->cfgtable->CmdsOutMax)); | 
 | 	/* Update the field, and then ring the doorbell */ | 
 | 	writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest)); | 
 | 	writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL); | 
 |  | 
 | 	/* under certain very rare conditions, this can take awhile. | 
 | 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right | 
 | 	 * as we enter this code.) */ | 
 | 	for (i = 0; i < MAX_CONFIG_WAIT; i++) { | 
 | 		if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) | 
 | 			break; | 
 | 		/* delay and try again */ | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 | 		schedule_timeout(msecs_to_jiffies(1)); | 
 | 	} | 
 |  | 
 | #ifdef CCISS_DEBUG | 
 | 	printk(KERN_DEBUG "I counter got to %d %x\n", i, | 
 | 	       readl(c->vaddr + SA5_DOORBELL)); | 
 | #endif				/* CCISS_DEBUG */ | 
 | #ifdef CCISS_DEBUG | 
 | 	print_cfg_table(c->cfgtable); | 
 | #endif				/* CCISS_DEBUG */ | 
 |  | 
 | 	if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { | 
 | 		printk(KERN_WARNING "cciss: unable to get board into" | 
 | 		       " simple mode\n"); | 
 | 		err = -ENODEV; | 
 | 		goto err_out_free_res; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | err_out_free_res: | 
 | 	/* | 
 | 	 * Deliberately omit pci_disable_device(): it does something nasty to | 
 | 	 * Smart Array controllers that pci_enable_device does not undo | 
 | 	 */ | 
 | 	pci_release_regions(pdev); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* Function to find the first free pointer into our hba[] array | 
 |  * Returns -1 if no free entries are left. | 
 |  */ | 
 | static int alloc_cciss_hba(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MAX_CTLR; i++) { | 
 | 		if (!hba[i]) { | 
 | 			ctlr_info_t *p; | 
 |  | 
 | 			p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL); | 
 | 			if (!p) | 
 | 				goto Enomem; | 
 | 			hba[i] = p; | 
 | 			return i; | 
 | 		} | 
 | 	} | 
 | 	printk(KERN_WARNING "cciss: This driver supports a maximum" | 
 | 	       " of %d controllers.\n", MAX_CTLR); | 
 | 	return -1; | 
 | Enomem: | 
 | 	printk(KERN_ERR "cciss: out of memory.\n"); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static void free_hba(int n) | 
 | { | 
 | 	ctlr_info_t *h = hba[n]; | 
 | 	int i; | 
 |  | 
 | 	hba[n] = NULL; | 
 | 	for (i = 0; i < h->highest_lun + 1; i++) | 
 | 		if (h->gendisk[i] != NULL) | 
 | 			put_disk(h->gendisk[i]); | 
 | 	kfree(h); | 
 | } | 
 |  | 
 | /* Send a message CDB to the firmware. */ | 
 | static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type) | 
 | { | 
 | 	typedef struct { | 
 | 		CommandListHeader_struct CommandHeader; | 
 | 		RequestBlock_struct Request; | 
 | 		ErrDescriptor_struct ErrorDescriptor; | 
 | 	} Command; | 
 | 	static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct); | 
 | 	Command *cmd; | 
 | 	dma_addr_t paddr64; | 
 | 	uint32_t paddr32, tag; | 
 | 	void __iomem *vaddr; | 
 | 	int i, err; | 
 |  | 
 | 	vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); | 
 | 	if (vaddr == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the | 
 | 	   CCISS commands, so they must be allocated from the lower 4GiB of | 
 | 	   memory. */ | 
 | 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); | 
 | 	if (err) { | 
 | 		iounmap(vaddr); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); | 
 | 	if (cmd == NULL) { | 
 | 		iounmap(vaddr); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* This must fit, because of the 32-bit consistent DMA mask.  Also, | 
 | 	   although there's no guarantee, we assume that the address is at | 
 | 	   least 4-byte aligned (most likely, it's page-aligned). */ | 
 | 	paddr32 = paddr64; | 
 |  | 
 | 	cmd->CommandHeader.ReplyQueue = 0; | 
 | 	cmd->CommandHeader.SGList = 0; | 
 | 	cmd->CommandHeader.SGTotal = 0; | 
 | 	cmd->CommandHeader.Tag.lower = paddr32; | 
 | 	cmd->CommandHeader.Tag.upper = 0; | 
 | 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); | 
 |  | 
 | 	cmd->Request.CDBLen = 16; | 
 | 	cmd->Request.Type.Type = TYPE_MSG; | 
 | 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; | 
 | 	cmd->Request.Type.Direction = XFER_NONE; | 
 | 	cmd->Request.Timeout = 0; /* Don't time out */ | 
 | 	cmd->Request.CDB[0] = opcode; | 
 | 	cmd->Request.CDB[1] = type; | 
 | 	memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */ | 
 |  | 
 | 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command); | 
 | 	cmd->ErrorDescriptor.Addr.upper = 0; | 
 | 	cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct); | 
 |  | 
 | 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); | 
 |  | 
 | 	for (i = 0; i < 10; i++) { | 
 | 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); | 
 | 		if ((tag & ~3) == paddr32) | 
 | 			break; | 
 | 		schedule_timeout_uninterruptible(HZ); | 
 | 	} | 
 |  | 
 | 	iounmap(vaddr); | 
 |  | 
 | 	/* we leak the DMA buffer here ... no choice since the controller could | 
 | 	   still complete the command. */ | 
 | 	if (i == 10) { | 
 | 		printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n", | 
 | 			opcode, type); | 
 | 		return -ETIMEDOUT; | 
 | 	} | 
 |  | 
 | 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64); | 
 |  | 
 | 	if (tag & 2) { | 
 | 		printk(KERN_ERR "cciss: controller message %02x:%02x failed\n", | 
 | 			opcode, type); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n", | 
 | 		opcode, type); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0) | 
 | #define cciss_noop(p) cciss_message(p, 3, 0) | 
 |  | 
 | static __devinit int cciss_reset_msi(struct pci_dev *pdev) | 
 | { | 
 | /* the #defines are stolen from drivers/pci/msi.h. */ | 
 | #define msi_control_reg(base)		(base + PCI_MSI_FLAGS) | 
 | #define PCI_MSIX_FLAGS_ENABLE		(1 << 15) | 
 |  | 
 | 	int pos; | 
 | 	u16 control = 0; | 
 |  | 
 | 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSI); | 
 | 	if (pos) { | 
 | 		pci_read_config_word(pdev, msi_control_reg(pos), &control); | 
 | 		if (control & PCI_MSI_FLAGS_ENABLE) { | 
 | 			printk(KERN_INFO "cciss: resetting MSI\n"); | 
 | 			pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); | 
 | 	if (pos) { | 
 | 		pci_read_config_word(pdev, msi_control_reg(pos), &control); | 
 | 		if (control & PCI_MSIX_FLAGS_ENABLE) { | 
 | 			printk(KERN_INFO "cciss: resetting MSI-X\n"); | 
 | 			pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This does a hard reset of the controller using PCI power management | 
 |  * states. */ | 
 | static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev) | 
 | { | 
 | 	u16 pmcsr, saved_config_space[32]; | 
 | 	int i, pos; | 
 |  | 
 | 	printk(KERN_INFO "cciss: using PCI PM to reset controller\n"); | 
 |  | 
 | 	/* This is very nearly the same thing as | 
 |  | 
 | 	   pci_save_state(pci_dev); | 
 | 	   pci_set_power_state(pci_dev, PCI_D3hot); | 
 | 	   pci_set_power_state(pci_dev, PCI_D0); | 
 | 	   pci_restore_state(pci_dev); | 
 |  | 
 | 	   but we can't use these nice canned kernel routines on | 
 | 	   kexec, because they also check the MSI/MSI-X state in PCI | 
 | 	   configuration space and do the wrong thing when it is | 
 | 	   set/cleared.  Also, the pci_save/restore_state functions | 
 | 	   violate the ordering requirements for restoring the | 
 | 	   configuration space from the CCISS document (see the | 
 | 	   comment below).  So we roll our own .... */ | 
 |  | 
 | 	for (i = 0; i < 32; i++) | 
 | 		pci_read_config_word(pdev, 2*i, &saved_config_space[i]); | 
 |  | 
 | 	pos = pci_find_capability(pdev, PCI_CAP_ID_PM); | 
 | 	if (pos == 0) { | 
 | 		printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Quoting from the Open CISS Specification: "The Power | 
 | 	 * Management Control/Status Register (CSR) controls the power | 
 | 	 * state of the device.  The normal operating state is D0, | 
 | 	 * CSR=00h.  The software off state is D3, CSR=03h.  To reset | 
 | 	 * the controller, place the interface device in D3 then to | 
 | 	 * D0, this causes a secondary PCI reset which will reset the | 
 | 	 * controller." */ | 
 |  | 
 | 	/* enter the D3hot power management state */ | 
 | 	pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); | 
 | 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | 
 | 	pmcsr |= PCI_D3hot; | 
 | 	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); | 
 |  | 
 | 	schedule_timeout_uninterruptible(HZ >> 1); | 
 |  | 
 | 	/* enter the D0 power management state */ | 
 | 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | 
 | 	pmcsr |= PCI_D0; | 
 | 	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); | 
 |  | 
 | 	schedule_timeout_uninterruptible(HZ >> 1); | 
 |  | 
 | 	/* Restore the PCI configuration space.  The Open CISS | 
 | 	 * Specification says, "Restore the PCI Configuration | 
 | 	 * Registers, offsets 00h through 60h. It is important to | 
 | 	 * restore the command register, 16-bits at offset 04h, | 
 | 	 * last. Do not restore the configuration status register, | 
 | 	 * 16-bits at offset 06h."  Note that the offset is 2*i. */ | 
 | 	for (i = 0; i < 32; i++) { | 
 | 		if (i == 2 || i == 3) | 
 | 			continue; | 
 | 		pci_write_config_word(pdev, 2*i, saved_config_space[i]); | 
 | 	} | 
 | 	wmb(); | 
 | 	pci_write_config_word(pdev, 4, saved_config_space[2]); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *  This is it.  Find all the controllers and register them.  I really hate | 
 |  *  stealing all these major device numbers. | 
 |  *  returns the number of block devices registered. | 
 |  */ | 
 | static int __devinit cciss_init_one(struct pci_dev *pdev, | 
 | 				    const struct pci_device_id *ent) | 
 | { | 
 | 	int i; | 
 | 	int j = 0; | 
 | 	int k = 0; | 
 | 	int rc; | 
 | 	int dac, return_code; | 
 | 	InquiryData_struct *inq_buff; | 
 |  | 
 | 	if (reset_devices) { | 
 | 		/* Reset the controller with a PCI power-cycle */ | 
 | 		if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev)) | 
 | 			return -ENODEV; | 
 |  | 
 | 		/* Now try to get the controller to respond to a no-op. Some | 
 | 		   devices (notably the HP Smart Array 5i Controller) need | 
 | 		   up to 30 seconds to respond. */ | 
 | 		for (i=0; i<30; i++) { | 
 | 			if (cciss_noop(pdev) == 0) | 
 | 				break; | 
 |  | 
 | 			schedule_timeout_uninterruptible(HZ); | 
 | 		} | 
 | 		if (i == 30) { | 
 | 			printk(KERN_ERR "cciss: controller seems dead\n"); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	i = alloc_cciss_hba(); | 
 | 	if (i < 0) | 
 | 		return -1; | 
 |  | 
 | 	hba[i]->busy_initializing = 1; | 
 | 	INIT_HLIST_HEAD(&hba[i]->cmpQ); | 
 | 	INIT_HLIST_HEAD(&hba[i]->reqQ); | 
 | 	mutex_init(&hba[i]->busy_shutting_down); | 
 |  | 
 | 	if (cciss_pci_init(hba[i], pdev) != 0) | 
 | 		goto clean_no_release_regions; | 
 |  | 
 | 	sprintf(hba[i]->devname, "cciss%d", i); | 
 | 	hba[i]->ctlr = i; | 
 | 	hba[i]->pdev = pdev; | 
 |  | 
 | 	init_completion(&hba[i]->scan_wait); | 
 |  | 
 | 	if (cciss_create_hba_sysfs_entry(hba[i])) | 
 | 		goto clean0; | 
 |  | 
 | 	/* configure PCI DMA stuff */ | 
 | 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) | 
 | 		dac = 1; | 
 | 	else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) | 
 | 		dac = 0; | 
 | 	else { | 
 | 		printk(KERN_ERR "cciss: no suitable DMA available\n"); | 
 | 		goto clean1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * register with the major number, or get a dynamic major number | 
 | 	 * by passing 0 as argument.  This is done for greater than | 
 | 	 * 8 controller support. | 
 | 	 */ | 
 | 	if (i < MAX_CTLR_ORIG) | 
 | 		hba[i]->major = COMPAQ_CISS_MAJOR + i; | 
 | 	rc = register_blkdev(hba[i]->major, hba[i]->devname); | 
 | 	if (rc == -EBUSY || rc == -EINVAL) { | 
 | 		printk(KERN_ERR | 
 | 		       "cciss:  Unable to get major number %d for %s " | 
 | 		       "on hba %d\n", hba[i]->major, hba[i]->devname, i); | 
 | 		goto clean1; | 
 | 	} else { | 
 | 		if (i >= MAX_CTLR_ORIG) | 
 | 			hba[i]->major = rc; | 
 | 	} | 
 |  | 
 | 	/* make sure the board interrupts are off */ | 
 | 	hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF); | 
 | 	if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr, | 
 | 			IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) { | 
 | 		printk(KERN_ERR "cciss: Unable to get irq %d for %s\n", | 
 | 		       hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname); | 
 | 		goto clean2; | 
 | 	} | 
 |  | 
 | 	printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n", | 
 | 	       hba[i]->devname, pdev->device, pci_name(pdev), | 
 | 	       hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not"); | 
 |  | 
 | 	hba[i]->cmd_pool_bits = | 
 | 	    kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG) | 
 | 			* sizeof(unsigned long), GFP_KERNEL); | 
 | 	hba[i]->cmd_pool = (CommandList_struct *) | 
 | 	    pci_alloc_consistent(hba[i]->pdev, | 
 | 		    hba[i]->nr_cmds * sizeof(CommandList_struct), | 
 | 		    &(hba[i]->cmd_pool_dhandle)); | 
 | 	hba[i]->errinfo_pool = (ErrorInfo_struct *) | 
 | 	    pci_alloc_consistent(hba[i]->pdev, | 
 | 		    hba[i]->nr_cmds * sizeof(ErrorInfo_struct), | 
 | 		    &(hba[i]->errinfo_pool_dhandle)); | 
 | 	if ((hba[i]->cmd_pool_bits == NULL) | 
 | 	    || (hba[i]->cmd_pool == NULL) | 
 | 	    || (hba[i]->errinfo_pool == NULL)) { | 
 | 		printk(KERN_ERR "cciss: out of memory"); | 
 | 		goto clean4; | 
 | 	} | 
 |  | 
 | 	/* Need space for temp scatter list */ | 
 | 	hba[i]->scatter_list = kmalloc(hba[i]->max_commands * | 
 | 						sizeof(struct scatterlist *), | 
 | 						GFP_KERNEL); | 
 | 	for (k = 0; k < hba[i]->nr_cmds; k++) { | 
 | 		hba[i]->scatter_list[k] = kmalloc(sizeof(struct scatterlist) * | 
 | 							hba[i]->maxsgentries, | 
 | 							GFP_KERNEL); | 
 | 		if (hba[i]->scatter_list[k] == NULL) { | 
 | 			printk(KERN_ERR "cciss%d: could not allocate " | 
 | 				"s/g lists\n", i); | 
 | 			goto clean4; | 
 | 		} | 
 | 	} | 
 | 	hba[i]->cmd_sg_list = cciss_allocate_sg_chain_blocks(hba[i], | 
 | 		hba[i]->chainsize, hba[i]->nr_cmds); | 
 | 	if (!hba[i]->cmd_sg_list && hba[i]->chainsize > 0) | 
 | 		goto clean4; | 
 |  | 
 | 	spin_lock_init(&hba[i]->lock); | 
 |  | 
 | 	/* Initialize the pdev driver private data. | 
 | 	   have it point to hba[i].  */ | 
 | 	pci_set_drvdata(pdev, hba[i]); | 
 | 	/* command and error info recs zeroed out before | 
 | 	   they are used */ | 
 | 	memset(hba[i]->cmd_pool_bits, 0, | 
 | 	       DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG) | 
 | 			* sizeof(unsigned long)); | 
 |  | 
 | 	hba[i]->num_luns = 0; | 
 | 	hba[i]->highest_lun = -1; | 
 | 	for (j = 0; j < CISS_MAX_LUN; j++) { | 
 | 		hba[i]->drv[j] = NULL; | 
 | 		hba[i]->gendisk[j] = NULL; | 
 | 	} | 
 |  | 
 | 	cciss_scsi_setup(i); | 
 |  | 
 | 	/* Turn the interrupts on so we can service requests */ | 
 | 	hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON); | 
 |  | 
 | 	/* Get the firmware version */ | 
 | 	inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL); | 
 | 	if (inq_buff == NULL) { | 
 | 		printk(KERN_ERR "cciss: out of memory\n"); | 
 | 		goto clean4; | 
 | 	} | 
 |  | 
 | 	return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff, | 
 | 		sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD); | 
 | 	if (return_code == IO_OK) { | 
 | 		hba[i]->firm_ver[0] = inq_buff->data_byte[32]; | 
 | 		hba[i]->firm_ver[1] = inq_buff->data_byte[33]; | 
 | 		hba[i]->firm_ver[2] = inq_buff->data_byte[34]; | 
 | 		hba[i]->firm_ver[3] = inq_buff->data_byte[35]; | 
 | 	} else {	 /* send command failed */ | 
 | 		printk(KERN_WARNING "cciss: unable to determine firmware" | 
 | 			" version of controller\n"); | 
 | 	} | 
 | 	kfree(inq_buff); | 
 |  | 
 | 	cciss_procinit(i); | 
 |  | 
 | 	hba[i]->cciss_max_sectors = 8192; | 
 |  | 
 | 	rebuild_lun_table(hba[i], 1, 0); | 
 | 	hba[i]->busy_initializing = 0; | 
 | 	return 1; | 
 |  | 
 | clean4: | 
 | 	kfree(hba[i]->cmd_pool_bits); | 
 | 	/* Free up sg elements */ | 
 | 	for (k = 0; k < hba[i]->nr_cmds; k++) | 
 | 		kfree(hba[i]->scatter_list[k]); | 
 | 	kfree(hba[i]->scatter_list); | 
 | 	cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds); | 
 | 	if (hba[i]->cmd_pool) | 
 | 		pci_free_consistent(hba[i]->pdev, | 
 | 				    hba[i]->nr_cmds * sizeof(CommandList_struct), | 
 | 				    hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle); | 
 | 	if (hba[i]->errinfo_pool) | 
 | 		pci_free_consistent(hba[i]->pdev, | 
 | 				    hba[i]->nr_cmds * sizeof(ErrorInfo_struct), | 
 | 				    hba[i]->errinfo_pool, | 
 | 				    hba[i]->errinfo_pool_dhandle); | 
 | 	free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]); | 
 | clean2: | 
 | 	unregister_blkdev(hba[i]->major, hba[i]->devname); | 
 | clean1: | 
 | 	cciss_destroy_hba_sysfs_entry(hba[i]); | 
 | clean0: | 
 | 	pci_release_regions(pdev); | 
 | clean_no_release_regions: | 
 | 	hba[i]->busy_initializing = 0; | 
 |  | 
 | 	/* | 
 | 	 * Deliberately omit pci_disable_device(): it does something nasty to | 
 | 	 * Smart Array controllers that pci_enable_device does not undo | 
 | 	 */ | 
 | 	pci_set_drvdata(pdev, NULL); | 
 | 	free_hba(i); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static void cciss_shutdown(struct pci_dev *pdev) | 
 | { | 
 | 	ctlr_info_t *h; | 
 | 	char *flush_buf; | 
 | 	int return_code; | 
 |  | 
 | 	h = pci_get_drvdata(pdev); | 
 | 	flush_buf = kzalloc(4, GFP_KERNEL); | 
 | 	if (!flush_buf) { | 
 | 		printk(KERN_WARNING | 
 | 			"cciss:%d cache not flushed, out of memory.\n", | 
 | 			h->ctlr); | 
 | 		return; | 
 | 	} | 
 | 	/* write all data in the battery backed cache to disk */ | 
 | 	memset(flush_buf, 0, 4); | 
 | 	return_code = sendcmd_withirq(CCISS_CACHE_FLUSH, h->ctlr, flush_buf, | 
 | 		4, 0, CTLR_LUNID, TYPE_CMD); | 
 | 	kfree(flush_buf); | 
 | 	if (return_code != IO_OK) | 
 | 		printk(KERN_WARNING "cciss%d: Error flushing cache\n", | 
 | 			h->ctlr); | 
 | 	h->access.set_intr_mask(h, CCISS_INTR_OFF); | 
 | 	free_irq(h->intr[2], h); | 
 | } | 
 |  | 
 | static void __devexit cciss_remove_one(struct pci_dev *pdev) | 
 | { | 
 | 	ctlr_info_t *tmp_ptr; | 
 | 	int i, j; | 
 |  | 
 | 	if (pci_get_drvdata(pdev) == NULL) { | 
 | 		printk(KERN_ERR "cciss: Unable to remove device \n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tmp_ptr = pci_get_drvdata(pdev); | 
 | 	i = tmp_ptr->ctlr; | 
 | 	if (hba[i] == NULL) { | 
 | 		printk(KERN_ERR "cciss: device appears to " | 
 | 		       "already be removed \n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&hba[i]->busy_shutting_down); | 
 |  | 
 | 	remove_from_scan_list(hba[i]); | 
 | 	remove_proc_entry(hba[i]->devname, proc_cciss); | 
 | 	unregister_blkdev(hba[i]->major, hba[i]->devname); | 
 |  | 
 | 	/* remove it from the disk list */ | 
 | 	for (j = 0; j < CISS_MAX_LUN; j++) { | 
 | 		struct gendisk *disk = hba[i]->gendisk[j]; | 
 | 		if (disk) { | 
 | 			struct request_queue *q = disk->queue; | 
 |  | 
 | 			if (disk->flags & GENHD_FL_UP) { | 
 | 				cciss_destroy_ld_sysfs_entry(hba[i], j, 1); | 
 | 				del_gendisk(disk); | 
 | 			} | 
 | 			if (q) | 
 | 				blk_cleanup_queue(q); | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_CISS_SCSI_TAPE | 
 | 	cciss_unregister_scsi(i);	/* unhook from SCSI subsystem */ | 
 | #endif | 
 |  | 
 | 	cciss_shutdown(pdev); | 
 |  | 
 | #ifdef CONFIG_PCI_MSI | 
 | 	if (hba[i]->msix_vector) | 
 | 		pci_disable_msix(hba[i]->pdev); | 
 | 	else if (hba[i]->msi_vector) | 
 | 		pci_disable_msi(hba[i]->pdev); | 
 | #endif				/* CONFIG_PCI_MSI */ | 
 |  | 
 | 	iounmap(hba[i]->vaddr); | 
 |  | 
 | 	pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct), | 
 | 			    hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle); | 
 | 	pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct), | 
 | 			    hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle); | 
 | 	kfree(hba[i]->cmd_pool_bits); | 
 | 	/* Free up sg elements */ | 
 | 	for (j = 0; j < hba[i]->nr_cmds; j++) | 
 | 		kfree(hba[i]->scatter_list[j]); | 
 | 	kfree(hba[i]->scatter_list); | 
 | 	cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds); | 
 | 	/* | 
 | 	 * Deliberately omit pci_disable_device(): it does something nasty to | 
 | 	 * Smart Array controllers that pci_enable_device does not undo | 
 | 	 */ | 
 | 	pci_release_regions(pdev); | 
 | 	pci_set_drvdata(pdev, NULL); | 
 | 	cciss_destroy_hba_sysfs_entry(hba[i]); | 
 | 	mutex_unlock(&hba[i]->busy_shutting_down); | 
 | 	free_hba(i); | 
 | } | 
 |  | 
 | static struct pci_driver cciss_pci_driver = { | 
 | 	.name = "cciss", | 
 | 	.probe = cciss_init_one, | 
 | 	.remove = __devexit_p(cciss_remove_one), | 
 | 	.id_table = cciss_pci_device_id,	/* id_table */ | 
 | 	.shutdown = cciss_shutdown, | 
 | }; | 
 |  | 
 | /* | 
 |  *  This is it.  Register the PCI driver information for the cards we control | 
 |  *  the OS will call our registered routines when it finds one of our cards. | 
 |  */ | 
 | static int __init cciss_init(void) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * The hardware requires that commands are aligned on a 64-bit | 
 | 	 * boundary. Given that we use pci_alloc_consistent() to allocate an | 
 | 	 * array of them, the size must be a multiple of 8 bytes. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT); | 
 |  | 
 | 	printk(KERN_INFO DRIVER_NAME "\n"); | 
 |  | 
 | 	err = bus_register(&cciss_bus_type); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Start the scan thread */ | 
 | 	cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan"); | 
 | 	if (IS_ERR(cciss_scan_thread)) { | 
 | 		err = PTR_ERR(cciss_scan_thread); | 
 | 		goto err_bus_unregister; | 
 | 	} | 
 |  | 
 | 	/* Register for our PCI devices */ | 
 | 	err = pci_register_driver(&cciss_pci_driver); | 
 | 	if (err) | 
 | 		goto err_thread_stop; | 
 |  | 
 | 	return err; | 
 |  | 
 | err_thread_stop: | 
 | 	kthread_stop(cciss_scan_thread); | 
 | err_bus_unregister: | 
 | 	bus_unregister(&cciss_bus_type); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __exit cciss_cleanup(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	pci_unregister_driver(&cciss_pci_driver); | 
 | 	/* double check that all controller entrys have been removed */ | 
 | 	for (i = 0; i < MAX_CTLR; i++) { | 
 | 		if (hba[i] != NULL) { | 
 | 			printk(KERN_WARNING "cciss: had to remove" | 
 | 			       " controller %d\n", i); | 
 | 			cciss_remove_one(hba[i]->pdev); | 
 | 		} | 
 | 	} | 
 | 	kthread_stop(cciss_scan_thread); | 
 | 	remove_proc_entry("driver/cciss", NULL); | 
 | 	bus_unregister(&cciss_bus_type); | 
 | } | 
 |  | 
 | static void fail_all_cmds(unsigned long ctlr) | 
 | { | 
 | 	/* If we get here, the board is apparently dead. */ | 
 | 	ctlr_info_t *h = hba[ctlr]; | 
 | 	CommandList_struct *c; | 
 | 	unsigned long flags; | 
 |  | 
 | 	printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr); | 
 | 	h->alive = 0;		/* the controller apparently died... */ | 
 |  | 
 | 	spin_lock_irqsave(CCISS_LOCK(ctlr), flags); | 
 |  | 
 | 	pci_disable_device(h->pdev);	/* Make sure it is really dead. */ | 
 |  | 
 | 	/* move everything off the request queue onto the completed queue */ | 
 | 	while (!hlist_empty(&h->reqQ)) { | 
 | 		c = hlist_entry(h->reqQ.first, CommandList_struct, list); | 
 | 		removeQ(c); | 
 | 		h->Qdepth--; | 
 | 		addQ(&h->cmpQ, c); | 
 | 	} | 
 |  | 
 | 	/* Now, fail everything on the completed queue with a HW error */ | 
 | 	while (!hlist_empty(&h->cmpQ)) { | 
 | 		c = hlist_entry(h->cmpQ.first, CommandList_struct, list); | 
 | 		removeQ(c); | 
 | 		if (c->cmd_type != CMD_MSG_STALE) | 
 | 			c->err_info->CommandStatus = CMD_HARDWARE_ERR; | 
 | 		if (c->cmd_type == CMD_RWREQ) { | 
 | 			complete_command(h, c, 0); | 
 | 		} else if (c->cmd_type == CMD_IOCTL_PEND) | 
 | 			complete(c->waiting); | 
 | #ifdef CONFIG_CISS_SCSI_TAPE | 
 | 		else if (c->cmd_type == CMD_SCSI) | 
 | 			complete_scsi_command(c, 0, 0); | 
 | #endif | 
 | 	} | 
 | 	spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); | 
 | 	return; | 
 | } | 
 |  | 
 | module_init(cciss_init); | 
 | module_exit(cciss_cleanup); |