blob: ddf9a87d27eb9978fe4cf246c23b62070eee94ab [file] [log] [blame]
/*
* linux/drivers/mmc/core/sd.c
*
* Copyright (C) 2003-2004 Russell King, All Rights Reserved.
* SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
* Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/pm_runtime.h>
#include "core.h"
#include "bus.h"
#include "mmc_ops.h"
#include "sd.h"
#include "sd_ops.h"
static const unsigned int tran_exp[] = {
10000, 100000, 1000000, 10000000,
0, 0, 0, 0
};
static const unsigned char tran_mant[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
static const unsigned int tacc_exp[] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
};
static const unsigned int tacc_mant[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
#define UNSTUFF_BITS(resp,start,size) \
({ \
const int __size = size; \
const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
const int __off = 3 - ((start) / 32); \
const int __shft = (start) & 31; \
u32 __res; \
\
__res = resp[__off] >> __shft; \
if (__size + __shft > 32) \
__res |= resp[__off-1] << ((32 - __shft) % 32); \
__res & __mask; \
})
/*
* Given the decoded CSD structure, decode the raw CID to our CID structure.
*/
void mmc_decode_cid(struct mmc_card *card)
{
u32 *resp = card->raw_cid;
memset(&card->cid, 0, sizeof(struct mmc_cid));
/*
* SD doesn't currently have a version field so we will
* have to assume we can parse this.
*/
card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4);
card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4);
card->cid.serial = UNSTUFF_BITS(resp, 24, 32);
card->cid.year = UNSTUFF_BITS(resp, 12, 8);
card->cid.month = UNSTUFF_BITS(resp, 8, 4);
card->cid.year += 2000; /* SD cards year offset */
}
/*
* Given a 128-bit response, decode to our card CSD structure.
*/
static int mmc_decode_csd(struct mmc_card *card)
{
struct mmc_csd *csd = &card->csd;
unsigned int e, m, csd_struct;
u32 *resp = card->raw_csd;
csd_struct = UNSTUFF_BITS(resp, 126, 2);
switch (csd_struct) {
case 0:
m = UNSTUFF_BITS(resp, 115, 4);
e = UNSTUFF_BITS(resp, 112, 3);
csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
m = UNSTUFF_BITS(resp, 99, 4);
e = UNSTUFF_BITS(resp, 96, 3);
csd->max_dtr = tran_exp[e] * tran_mant[m];
csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
e = UNSTUFF_BITS(resp, 47, 3);
m = UNSTUFF_BITS(resp, 62, 12);
csd->capacity = (1 + m) << (e + 2);
csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
if (UNSTUFF_BITS(resp, 46, 1)) {
csd->erase_size = 1;
} else if (csd->write_blkbits >= 9) {
csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
csd->erase_size <<= csd->write_blkbits - 9;
}
break;
case 1:
/*
* This is a block-addressed SDHC or SDXC card. Most
* interesting fields are unused and have fixed
* values. To avoid getting tripped by buggy cards,
* we assume those fixed values ourselves.
*/
mmc_card_set_blockaddr(card);
csd->tacc_ns = 0; /* Unused */
csd->tacc_clks = 0; /* Unused */
m = UNSTUFF_BITS(resp, 99, 4);
e = UNSTUFF_BITS(resp, 96, 3);
csd->max_dtr = tran_exp[e] * tran_mant[m];
csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
csd->c_size = UNSTUFF_BITS(resp, 48, 22);
/* SDXC cards have a minimum C_SIZE of 0x00FFFF */
if (csd->c_size >= 0xFFFF)
mmc_card_set_ext_capacity(card);
m = UNSTUFF_BITS(resp, 48, 22);
csd->capacity = (1 + m) << 10;
csd->read_blkbits = 9;
csd->read_partial = 0;
csd->write_misalign = 0;
csd->read_misalign = 0;
csd->r2w_factor = 4; /* Unused */
csd->write_blkbits = 9;
csd->write_partial = 0;
csd->erase_size = 1;
break;
default:
pr_err("%s: unrecognised CSD structure version %d\n",
mmc_hostname(card->host), csd_struct);
return -EINVAL;
}
card->erase_size = csd->erase_size;
return 0;
}
/*
* Given a 64-bit response, decode to our card SCR structure.
*/
static int mmc_decode_scr(struct mmc_card *card)
{
struct sd_scr *scr = &card->scr;
unsigned int scr_struct;
u32 resp[4];
resp[3] = card->raw_scr[1];
resp[2] = card->raw_scr[0];
scr_struct = UNSTUFF_BITS(resp, 60, 4);
if (scr_struct != 0) {
pr_err("%s: unrecognised SCR structure version %d\n",
mmc_hostname(card->host), scr_struct);
return -EINVAL;
}
scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4);
scr->bus_widths = UNSTUFF_BITS(resp, 48, 4);
if (scr->sda_vsn == SCR_SPEC_VER_2)
/* Check if Physical Layer Spec v3.0 is supported */
scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1);
if (UNSTUFF_BITS(resp, 55, 1))
card->erased_byte = 0xFF;
else
card->erased_byte = 0x0;
if (scr->sda_spec3)
scr->cmds = UNSTUFF_BITS(resp, 32, 2);
return 0;
}
/*
* Fetch and process SD Status register.
*/
static int mmc_read_ssr(struct mmc_card *card)
{
unsigned int au, es, et, eo;
int err, i;
u32 *ssr;
if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
pr_warning("%s: card lacks mandatory SD Status "
"function.\n", mmc_hostname(card->host));
return 0;
}
ssr = kmalloc(64, GFP_KERNEL);
if (!ssr)
return -ENOMEM;
err = mmc_app_sd_status(card, ssr);
if (err) {
pr_warning("%s: problem reading SD Status "
"register.\n", mmc_hostname(card->host));
err = 0;
goto out;
}
for (i = 0; i < 16; i++)
ssr[i] = be32_to_cpu(ssr[i]);
/*
* UNSTUFF_BITS only works with four u32s so we have to offset the
* bitfield positions accordingly.
*/
au = UNSTUFF_BITS(ssr, 428 - 384, 4);
if (au > 0 || au <= 9) {
card->ssr.au = 1 << (au + 4);
es = UNSTUFF_BITS(ssr, 408 - 384, 16);
et = UNSTUFF_BITS(ssr, 402 - 384, 6);
eo = UNSTUFF_BITS(ssr, 400 - 384, 2);
if (es && et) {
card->ssr.erase_timeout = (et * 1000) / es;
card->ssr.erase_offset = eo * 1000;
}
} else {
pr_warning("%s: SD Status: Invalid Allocation Unit "
"size.\n", mmc_hostname(card->host));
}
out:
kfree(ssr);
return err;
}
/*
* Fetches and decodes switch information
*/
static int mmc_read_switch(struct mmc_card *card)
{
int err;
u8 *status;
if (card->scr.sda_vsn < SCR_SPEC_VER_1)
return 0;
if (!(card->csd.cmdclass & CCC_SWITCH)) {
pr_warning("%s: card lacks mandatory switch "
"function, performance might suffer.\n",
mmc_hostname(card->host));
return 0;
}
err = -EIO;
status = kmalloc(64, GFP_KERNEL);
if (!status) {
pr_err("%s: could not allocate a buffer for "
"switch capabilities.\n",
mmc_hostname(card->host));
return -ENOMEM;
}
/* Find out the supported Bus Speed Modes. */
err = mmc_sd_switch(card, 0, 0, 1, status);
if (err) {
/*
* If the host or the card can't do the switch,
* fail more gracefully.
*/
if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
goto out;
pr_warning("%s: problem reading Bus Speed modes.\n",
mmc_hostname(card->host));
err = 0;
goto out;
}
if (status[13] & SD_MODE_HIGH_SPEED)
card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
if (card->scr.sda_spec3) {
card->sw_caps.sd3_bus_mode = status[13];
/* Find out Driver Strengths supported by the card */
err = mmc_sd_switch(card, 0, 2, 1, status);
if (err) {
/*
* If the host or the card can't do the switch,
* fail more gracefully.
*/
if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
goto out;
pr_warning("%s: problem reading "
"Driver Strength.\n",
mmc_hostname(card->host));
err = 0;
goto out;
}
card->sw_caps.sd3_drv_type = status[9];
/* Find out Current Limits supported by the card */
err = mmc_sd_switch(card, 0, 3, 1, status);
if (err) {
/*
* If the host or the card can't do the switch,
* fail more gracefully.
*/
if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
goto out;
pr_warning("%s: problem reading "
"Current Limit.\n",
mmc_hostname(card->host));
err = 0;
goto out;
}
card->sw_caps.sd3_curr_limit = status[7];
}
out:
kfree(status);
return err;
}
/*
* Test if the card supports high-speed mode and, if so, switch to it.
*/
int mmc_sd_switch_hs(struct mmc_card *card)
{
int err;
u8 *status;
if (card->scr.sda_vsn < SCR_SPEC_VER_1)
return 0;
if (!(card->csd.cmdclass & CCC_SWITCH))
return 0;
if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
return 0;
if (card->sw_caps.hs_max_dtr == 0)
return 0;
err = -EIO;
status = kmalloc(64, GFP_KERNEL);
if (!status) {
pr_err("%s: could not allocate a buffer for "
"switch capabilities.\n", mmc_hostname(card->host));
return -ENOMEM;
}
err = mmc_sd_switch(card, 1, 0, 1, status);
if (err)
goto out;
if ((status[16] & 0xF) != 1) {
pr_warning("%s: Problem switching card "
"into high-speed mode!\n",
mmc_hostname(card->host));
err = 0;
} else {
err = 1;
}
out:
kfree(status);
return err;
}
static int sd_select_driver_type(struct mmc_card *card, u8 *status)
{
int host_drv_type = SD_DRIVER_TYPE_B;
int card_drv_type = SD_DRIVER_TYPE_B;
int drive_strength;
int err;
/*
* If the host doesn't support any of the Driver Types A,C or D,
* or there is no board specific handler then default Driver
* Type B is used.
*/
if (!(card->host->caps & (MMC_CAP_DRIVER_TYPE_A | MMC_CAP_DRIVER_TYPE_C
| MMC_CAP_DRIVER_TYPE_D)))
return 0;
if (!card->host->ops->select_drive_strength)
return 0;
if (card->host->caps & MMC_CAP_DRIVER_TYPE_A)
host_drv_type |= SD_DRIVER_TYPE_A;
if (card->host->caps & MMC_CAP_DRIVER_TYPE_C)
host_drv_type |= SD_DRIVER_TYPE_C;
if (card->host->caps & MMC_CAP_DRIVER_TYPE_D)
host_drv_type |= SD_DRIVER_TYPE_D;
if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_A)
card_drv_type |= SD_DRIVER_TYPE_A;
if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_C)
card_drv_type |= SD_DRIVER_TYPE_C;
if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_D)
card_drv_type |= SD_DRIVER_TYPE_D;
/*
* The drive strength that the hardware can support
* depends on the board design. Pass the appropriate
* information and let the hardware specific code
* return what is possible given the options
*/
mmc_host_clk_hold(card->host);
drive_strength = card->host->ops->select_drive_strength(
card->sw_caps.uhs_max_dtr,
host_drv_type, card_drv_type);
mmc_host_clk_release(card->host);
err = mmc_sd_switch(card, 1, 2, drive_strength, status);
if (err)
return err;
if ((status[15] & 0xF) != drive_strength) {
pr_warning("%s: Problem setting drive strength!\n",
mmc_hostname(card->host));
return 0;
}
mmc_set_driver_type(card->host, drive_strength);
return 0;
}
static void sd_update_bus_speed_mode(struct mmc_card *card)
{
/*
* If the host doesn't support any of the UHS-I modes, fallback on
* default speed.
*/
if (!(card->host->caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_DDR50))) {
card->sd_bus_speed = 0;
return;
}
if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
(card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
} else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
(card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
SD_MODE_UHS_SDR50)) {
card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
(card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
SD_MODE_UHS_SDR12)) {
card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
}
}
static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
{
int err;
unsigned int timing = 0;
switch (card->sd_bus_speed) {
case UHS_SDR104_BUS_SPEED:
timing = MMC_TIMING_UHS_SDR104;
card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
break;
case UHS_DDR50_BUS_SPEED:
timing = MMC_TIMING_UHS_DDR50;
card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
break;
case UHS_SDR50_BUS_SPEED:
timing = MMC_TIMING_UHS_SDR50;
card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
break;
case UHS_SDR25_BUS_SPEED:
timing = MMC_TIMING_UHS_SDR25;
card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
break;
case UHS_SDR12_BUS_SPEED:
timing = MMC_TIMING_UHS_SDR12;
card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
break;
default:
return 0;
}
err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status);
if (err)
return err;
if ((status[16] & 0xF) != card->sd_bus_speed)
pr_warning("%s: Problem setting bus speed mode!\n",
mmc_hostname(card->host));
else {
mmc_set_timing(card->host, timing);
mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
}
return 0;
}
static int sd_set_current_limit(struct mmc_card *card, u8 *status)
{
int current_limit = 0;
int err;
/*
* Current limit switch is only defined for SDR50, SDR104, and DDR50
* bus speed modes. For other bus speed modes, we set the default
* current limit of 200mA.
*/
if ((card->sd_bus_speed == UHS_SDR50_BUS_SPEED) ||
(card->sd_bus_speed == UHS_SDR104_BUS_SPEED) ||
(card->sd_bus_speed == UHS_DDR50_BUS_SPEED)) {
if (card->host->caps & MMC_CAP_MAX_CURRENT_800) {
if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
current_limit = SD_SET_CURRENT_LIMIT_800;
else if (card->sw_caps.sd3_curr_limit &
SD_MAX_CURRENT_600)
current_limit = SD_SET_CURRENT_LIMIT_600;
else if (card->sw_caps.sd3_curr_limit &
SD_MAX_CURRENT_400)
current_limit = SD_SET_CURRENT_LIMIT_400;
else if (card->sw_caps.sd3_curr_limit &
SD_MAX_CURRENT_200)
current_limit = SD_SET_CURRENT_LIMIT_200;
} else if (card->host->caps & MMC_CAP_MAX_CURRENT_600) {
if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
current_limit = SD_SET_CURRENT_LIMIT_600;
else if (card->sw_caps.sd3_curr_limit &
SD_MAX_CURRENT_400)
current_limit = SD_SET_CURRENT_LIMIT_400;
else if (card->sw_caps.sd3_curr_limit &
SD_MAX_CURRENT_200)
current_limit = SD_SET_CURRENT_LIMIT_200;
} else if (card->host->caps & MMC_CAP_MAX_CURRENT_400) {
if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
current_limit = SD_SET_CURRENT_LIMIT_400;
else if (card->sw_caps.sd3_curr_limit &
SD_MAX_CURRENT_200)
current_limit = SD_SET_CURRENT_LIMIT_200;
} else if (card->host->caps & MMC_CAP_MAX_CURRENT_200) {
if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
current_limit = SD_SET_CURRENT_LIMIT_200;
}
} else
current_limit = SD_SET_CURRENT_LIMIT_200;
err = mmc_sd_switch(card, 1, 3, current_limit, status);
if (err)
return err;
if (((status[15] >> 4) & 0x0F) != current_limit)
pr_warning("%s: Problem setting current limit!\n",
mmc_hostname(card->host));
return 0;
}
/**
* mmc_sd_change_bus_speed() - Change SD card bus frequency at runtime
* @host: pointer to mmc host structure
* @freq: pointer to desired frequency to be set
*
* Change the SD card bus frequency at runtime after the card is
* initialized. Callers are expected to make sure of the card's
* state (DATA/RCV/TRANSFER) beforing changing the frequency at runtime.
*
* If the frequency to change is greater than max. supported by card,
* *freq is changed to max. supported by card and if it is less than min.
* supported by host, *freq is changed to min. supported by host.
*/
static int mmc_sd_change_bus_speed(struct mmc_host *host, unsigned long *freq)
{
int err = 0;
struct mmc_card *card;
mmc_claim_host(host);
/*
* Assign card pointer after claiming host to avoid race
* conditions that may arise during removal of the card.
*/
card = host->card;
/* sanity checks */
if (!card || !freq) {
err = -EINVAL;
goto out;
}
if (mmc_card_uhs(card)) {
if (*freq > card->sw_caps.uhs_max_dtr)
*freq = card->sw_caps.uhs_max_dtr;
} else {
if (*freq > mmc_sd_get_max_clock(card))
*freq = mmc_sd_get_max_clock(card);
}
if (*freq < host->f_min)
*freq = host->f_min;
mmc_set_clock(host, (unsigned int) (*freq));
if (!mmc_host_is_spi(card->host) && mmc_sd_card_uhs(card)
&& card->host->ops->execute_tuning) {
/*
* We try to probe host driver for tuning for any
* frequency, it is host driver responsibility to
* perform actual tuning only when required.
*/
mmc_host_clk_hold(card->host);
err = card->host->ops->execute_tuning(card->host,
MMC_SEND_TUNING_BLOCK);
mmc_host_clk_release(card->host);
if (err)
pr_warn("%s: %s: tuning execution failed %d\n",
mmc_hostname(card->host), __func__, err);
}
out:
mmc_release_host(host);
return err;
}
/*
* UHS-I specific initialization procedure
*/
static int mmc_sd_init_uhs_card(struct mmc_card *card)
{
int err;
u8 *status;
if (!card->scr.sda_spec3)
return 0;
if (!(card->csd.cmdclass & CCC_SWITCH))
return 0;
status = kmalloc(64, GFP_KERNEL);
if (!status) {
pr_err("%s: could not allocate a buffer for "
"switch capabilities.\n", mmc_hostname(card->host));
return -ENOMEM;
}
/* Set 4-bit bus width */
if ((card->host->caps & MMC_CAP_4_BIT_DATA) &&
(card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
if (err)
goto out;
mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
}
/*
* Select the bus speed mode depending on host
* and card capability.
*/
sd_update_bus_speed_mode(card);
/* Set the driver strength for the card */
err = sd_select_driver_type(card, status);
if (err)
goto out;
/* Set current limit for the card */
err = sd_set_current_limit(card, status);
if (err)
goto out;
/* Set bus speed mode of the card */
err = sd_set_bus_speed_mode(card, status);
if (err)
goto out;
/* SPI mode doesn't define CMD19 */
if (!mmc_host_is_spi(card->host) && card->host->ops->execute_tuning) {
mmc_host_clk_hold(card->host);
err = card->host->ops->execute_tuning(card->host,
MMC_SEND_TUNING_BLOCK);
mmc_host_clk_release(card->host);
}
out:
kfree(status);
return err;
}
MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
card->raw_cid[2], card->raw_cid[3]);
MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
card->raw_csd[2], card->raw_csd[3]);
MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
static struct attribute *sd_std_attrs[] = {
&dev_attr_cid.attr,
&dev_attr_csd.attr,
&dev_attr_scr.attr,
&dev_attr_date.attr,
&dev_attr_erase_size.attr,
&dev_attr_preferred_erase_size.attr,
&dev_attr_fwrev.attr,
&dev_attr_hwrev.attr,
&dev_attr_manfid.attr,
&dev_attr_name.attr,
&dev_attr_oemid.attr,
&dev_attr_serial.attr,
NULL,
};
static struct attribute_group sd_std_attr_group = {
.attrs = sd_std_attrs,
};
static const struct attribute_group *sd_attr_groups[] = {
&sd_std_attr_group,
NULL,
};
struct device_type sd_type = {
.groups = sd_attr_groups,
};
/*
* Fetch CID from card.
*/
int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
{
int err;
/*
* Since we're changing the OCR value, we seem to
* need to tell some cards to go back to the idle
* state. We wait 1ms to give cards time to
* respond.
*/
mmc_go_idle(host);
/*
* If SD_SEND_IF_COND indicates an SD 2.0
* compliant card and we should set bit 30
* of the ocr to indicate that we can handle
* block-addressed SDHC cards.
*/
err = mmc_send_if_cond(host, ocr);
if (!err)
ocr |= SD_OCR_CCS;
/*
* If the host supports one of UHS-I modes, request the card
* to switch to 1.8V signaling level.
*/
if (host->caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_DDR50))
ocr |= SD_OCR_S18R;
/* If the host can supply more than 150mA, XPC should be set to 1. */
if (host->caps & (MMC_CAP_SET_XPC_330 | MMC_CAP_SET_XPC_300 |
MMC_CAP_SET_XPC_180))
ocr |= SD_OCR_XPC;
try_again:
err = mmc_send_app_op_cond(host, ocr, rocr);
if (err)
return err;
/*
* In case CCS and S18A in the response is set, start Signal Voltage
* Switch procedure. SPI mode doesn't support CMD11.
*/
if (!mmc_host_is_spi(host) && rocr &&
((*rocr & 0x41000000) == 0x41000000)) {
err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180, true);
if (err) {
ocr &= ~SD_OCR_S18R;
goto try_again;
}
}
if (mmc_host_is_spi(host))
err = mmc_send_cid(host, cid);
else
err = mmc_all_send_cid(host, cid);
return err;
}
int mmc_sd_get_csd(struct mmc_host *host, struct mmc_card *card)
{
int err;
/*
* Fetch CSD from card.
*/
err = mmc_send_csd(card, card->raw_csd);
if (err)
return err;
err = mmc_decode_csd(card);
if (err)
return err;
return 0;
}
int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
bool reinit)
{
int err;
#ifdef CONFIG_MMC_PARANOID_SD_INIT
int retries;
#endif
if (!reinit) {
/*
* Fetch SCR from card.
*/
err = mmc_app_send_scr(card, card->raw_scr);
if (err)
return err;
err = mmc_decode_scr(card);
if (err)
return err;
/*
* Fetch and process SD Status register.
*/
err = mmc_read_ssr(card);
if (err)
return err;
/* Erase init depends on CSD and SSR */
mmc_init_erase(card);
/*
* Fetch switch information from card.
*/
#ifdef CONFIG_MMC_PARANOID_SD_INIT
for (retries = 1; retries <= 3; retries++) {
err = mmc_read_switch(card);
if (!err) {
if (retries > 1) {
printk(KERN_WARNING
"%s: recovered\n",
mmc_hostname(host));
}
break;
} else {
printk(KERN_WARNING
"%s: read switch failed (attempt %d)\n",
mmc_hostname(host), retries);
}
}
#else
err = mmc_read_switch(card);
#endif
if (err)
return err;
}
/*
* For SPI, enable CRC as appropriate.
* This CRC enable is located AFTER the reading of the
* card registers because some SDHC cards are not able
* to provide valid CRCs for non-512-byte blocks.
*/
if (mmc_host_is_spi(host)) {
err = mmc_spi_set_crc(host, use_spi_crc);
if (err)
return err;
}
/*
* Check if read-only switch is active.
*/
if (!reinit) {
int ro = -1;
if (host->ops->get_ro) {
mmc_host_clk_hold(card->host);
ro = host->ops->get_ro(host);
mmc_host_clk_release(card->host);
}
if (ro < 0) {
pr_warning("%s: host does not "
"support reading read-only "
"switch. assuming write-enable.\n",
mmc_hostname(host));
} else if (ro > 0) {
mmc_card_set_readonly(card);
}
}
return 0;
}
unsigned mmc_sd_get_max_clock(struct mmc_card *card)
{
unsigned max_dtr = (unsigned int)-1;
if (mmc_card_highspeed(card)) {
if (max_dtr > card->sw_caps.hs_max_dtr)
max_dtr = card->sw_caps.hs_max_dtr;
} else if (max_dtr > card->csd.max_dtr) {
max_dtr = card->csd.max_dtr;
}
return max_dtr;
}
void mmc_sd_go_highspeed(struct mmc_card *card)
{
mmc_card_set_highspeed(card);
mmc_set_timing(card->host, MMC_TIMING_SD_HS);
}
/*
* Handle the detection and initialisation of a card.
*
* In the case of a resume, "oldcard" will contain the card
* we're trying to reinitialise.
*/
static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
struct mmc_card *oldcard)
{
struct mmc_card *card;
int err;
u32 cid[4];
u32 rocr = 0;
BUG_ON(!host);
WARN_ON(!host->claimed);
/* The initialization should be done at 3.3 V I/O voltage. */
mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0);
err = mmc_sd_get_cid(host, ocr, cid, &rocr);
if (err)
return err;
if (oldcard) {
if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0)
return -ENOENT;
card = oldcard;
} else {
/*
* Allocate card structure.
*/
card = mmc_alloc_card(host, &sd_type);
if (IS_ERR(card))
return PTR_ERR(card);
card->type = MMC_TYPE_SD;
memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
}
/*
* For native busses: get card RCA and quit open drain mode.
*/
if (!mmc_host_is_spi(host)) {
err = mmc_send_relative_addr(host, &card->rca);
if (err)
return err;
}
if (!oldcard) {
err = mmc_sd_get_csd(host, card);
if (err)
return err;
mmc_decode_cid(card);
}
/*
* Select card, as all following commands rely on that.
*/
if (!mmc_host_is_spi(host)) {
err = mmc_select_card(card);
if (err)
return err;
}
err = mmc_sd_setup_card(host, card, oldcard != NULL);
if (err)
goto free_card;
/* Initialization sequence for UHS-I cards */
if (rocr & SD_ROCR_S18A) {
err = mmc_sd_init_uhs_card(card);
if (err)
goto free_card;
/* Card is an ultra-high-speed card */
mmc_card_set_uhs(card);
/*
* Since initialization is now complete, enable preset
* value registers for UHS-I cards.
*/
if (host->ops->enable_preset_value) {
mmc_host_clk_hold(card->host);
host->ops->enable_preset_value(host, true);
mmc_host_clk_release(card->host);
}
} else {
/*
* Attempt to change to high-speed (if supported)
*/
err = mmc_sd_switch_hs(card);
if (err > 0)
mmc_sd_go_highspeed(card);
else if (err)
goto free_card;
/*
* Set bus speed.
*/
mmc_set_clock(host, mmc_sd_get_max_clock(card));
/*
* Switch to wider bus (if supported).
*/
if ((host->caps & MMC_CAP_4_BIT_DATA) &&
(card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
if (err)
goto free_card;
mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
}
}
host->card = card;
return 0;
free_card:
if (!oldcard)
mmc_remove_card(card);
return err;
}
/*
* Host is being removed. Free up the current card.
*/
static void mmc_sd_remove(struct mmc_host *host)
{
BUG_ON(!host);
BUG_ON(!host->card);
mmc_remove_card(host->card);
mmc_claim_host(host);
host->card = NULL;
mmc_exit_clk_scaling(host);
mmc_release_host(host);
}
/*
* Card detection - card is alive.
*/
static int mmc_sd_alive(struct mmc_host *host)
{
return mmc_send_status(host->card, NULL);
}
/*
* Card detection callback from host.
*/
static void mmc_sd_detect(struct mmc_host *host)
{
int err = 0;
#ifdef CONFIG_MMC_PARANOID_SD_INIT
int retries = 5;
#endif
BUG_ON(!host);
BUG_ON(!host->card);
mmc_rpm_hold(host, &host->card->dev);
mmc_claim_host(host);
/*
* Just check if our card has been removed.
*/
#ifdef CONFIG_MMC_PARANOID_SD_INIT
while(retries) {
err = mmc_send_status(host->card, NULL);
if (err) {
retries--;
udelay(5);
continue;
}
break;
}
if (!retries) {
printk(KERN_ERR "%s(%s): Unable to re-detect card (%d)\n",
__func__, mmc_hostname(host), err);
err = _mmc_detect_card_removed(host);
}
#else
err = _mmc_detect_card_removed(host);
#endif
mmc_release_host(host);
/*
* if detect fails, the device would be removed anyway;
* the rpm framework would mark the device state suspended.
*/
if (!err)
mmc_rpm_release(host, &host->card->dev);
if (err) {
mmc_sd_remove(host);
mmc_claim_host(host);
mmc_detach_bus(host);
mmc_power_off(host);
mmc_release_host(host);
}
}
/*
* Suspend callback from host.
*/
static int mmc_sd_suspend(struct mmc_host *host)
{
BUG_ON(!host);
BUG_ON(!host->card);
/*
* Disable clock scaling before suspend and enable it after resume so
* as to avoid clock scaling decisions kicking in during this window.
*/
mmc_disable_clk_scaling(host);
mmc_claim_host(host);
if (!mmc_host_is_spi(host))
mmc_deselect_cards(host);
host->card->state &= ~MMC_STATE_HIGHSPEED;
mmc_release_host(host);
return 0;
}
/*
* Resume callback from host.
*
* This function tries to determine if the same card is still present
* and, if so, restore all state to it.
*/
static int mmc_sd_resume(struct mmc_host *host)
{
int err;
#ifdef CONFIG_MMC_PARANOID_SD_INIT
int retries;
#endif
BUG_ON(!host);
BUG_ON(!host->card);
mmc_claim_host(host);
#ifdef CONFIG_MMC_PARANOID_SD_INIT
retries = 5;
while (retries) {
err = mmc_sd_init_card(host, host->ocr, host->card);
if (err) {
printk(KERN_ERR "%s: Re-init card rc = %d (retries = %d)\n",
mmc_hostname(host), err, retries);
retries--;
mmc_power_off(host);
usleep_range(5000, 5500);
mmc_power_up(host);
mmc_select_voltage(host, host->ocr);
continue;
}
break;
}
#else
err = mmc_sd_init_card(host, host->ocr, host->card);
#endif
mmc_release_host(host);
/*
* We have done full initialization of the card,
* reset the clk scale stats and current frequency.
*/
if (mmc_can_scale_clk(host))
mmc_init_clk_scaling(host);
return err;
}
static int mmc_sd_power_restore(struct mmc_host *host)
{
int ret;
/* Disable clk scaling to avoid switching frequencies intermittently */
mmc_disable_clk_scaling(host);
host->card->state &= ~MMC_STATE_HIGHSPEED;
mmc_claim_host(host);
ret = mmc_sd_init_card(host, host->ocr, host->card);
mmc_release_host(host);
if (mmc_can_scale_clk(host))
mmc_init_clk_scaling(host);
return ret;
}
static const struct mmc_bus_ops mmc_sd_ops = {
.remove = mmc_sd_remove,
.detect = mmc_sd_detect,
.suspend = NULL,
.resume = NULL,
.power_restore = mmc_sd_power_restore,
.alive = mmc_sd_alive,
.change_bus_speed = mmc_sd_change_bus_speed,
};
static const struct mmc_bus_ops mmc_sd_ops_unsafe = {
.remove = mmc_sd_remove,
.detect = mmc_sd_detect,
.suspend = mmc_sd_suspend,
.resume = mmc_sd_resume,
.power_restore = mmc_sd_power_restore,
.alive = mmc_sd_alive,
.change_bus_speed = mmc_sd_change_bus_speed,
};
static void mmc_sd_attach_bus_ops(struct mmc_host *host)
{
const struct mmc_bus_ops *bus_ops;
if (!mmc_card_is_removable(host))
bus_ops = &mmc_sd_ops_unsafe;
else
bus_ops = &mmc_sd_ops;
mmc_attach_bus(host, bus_ops);
}
/*
* Starting point for SD card init.
*/
int mmc_attach_sd(struct mmc_host *host)
{
int err;
u32 ocr;
#ifdef CONFIG_MMC_PARANOID_SD_INIT
int retries;
#endif
BUG_ON(!host);
WARN_ON(!host->claimed);
/* Disable preset value enable if already set since last time */
if (host->ops->enable_preset_value) {
mmc_host_clk_hold(host);
host->ops->enable_preset_value(host, false);
mmc_host_clk_release(host);
}
err = mmc_send_app_op_cond(host, 0, &ocr);
if (err)
return err;
mmc_sd_attach_bus_ops(host);
if (host->ocr_avail_sd)
host->ocr_avail = host->ocr_avail_sd;
/*
* We need to get OCR a different way for SPI.
*/
if (mmc_host_is_spi(host)) {
mmc_go_idle(host);
err = mmc_spi_read_ocr(host, 0, &ocr);
if (err)
goto err;
}
/*
* Sanity check the voltages that the card claims to
* support.
*/
if (ocr & 0x7F) {
pr_warning("%s: card claims to support voltages "
"below the defined range. These will be ignored.\n",
mmc_hostname(host));
ocr &= ~0x7F;
}
if ((ocr & MMC_VDD_165_195) &&
!(host->ocr_avail_sd & MMC_VDD_165_195)) {
pr_warning("%s: SD card claims to support the "
"incompletely defined 'low voltage range'. This "
"will be ignored.\n", mmc_hostname(host));
ocr &= ~MMC_VDD_165_195;
}
host->ocr = mmc_select_voltage(host, ocr);
/*
* Can we support the voltage(s) of the card(s)?
*/
if (!host->ocr) {
err = -EINVAL;
goto err;
}
/*
* Detect and init the card.
*/
#ifdef CONFIG_MMC_PARANOID_SD_INIT
retries = 5;
while (retries) {
err = mmc_sd_init_card(host, host->ocr, NULL);
if (err) {
retries--;
mmc_power_off(host);
usleep_range(5000, 5500);
mmc_power_up(host);
mmc_select_voltage(host, host->ocr);
continue;
}
break;
}
if (!retries) {
printk(KERN_ERR "%s: mmc_sd_init_card() failure (err = %d)\n",
mmc_hostname(host), err);
goto err;
}
#else
err = mmc_sd_init_card(host, host->ocr, NULL);
if (err)
goto err;
#endif
mmc_release_host(host);
err = mmc_add_card(host->card);
mmc_claim_host(host);
if (err)
goto remove_card;
mmc_init_clk_scaling(host);
return 0;
remove_card:
mmc_release_host(host);
mmc_remove_card(host->card);
host->card = NULL;
mmc_claim_host(host);
err:
mmc_detach_bus(host);
pr_err("%s: error %d whilst initialising SD card\n",
mmc_hostname(host), err);
return err;
}