| /**************************************************************************** |
| * Driver for Solarflare Solarstorm network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2006-2008 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/pci.h> |
| #include <linux/module.h> |
| #include <linux/seq_file.h> |
| #include <linux/i2c.h> |
| #include <linux/i2c-algo-bit.h> |
| #include <linux/mii.h> |
| #include "net_driver.h" |
| #include "bitfield.h" |
| #include "efx.h" |
| #include "mac.h" |
| #include "spi.h" |
| #include "falcon.h" |
| #include "falcon_hwdefs.h" |
| #include "falcon_io.h" |
| #include "mdio_10g.h" |
| #include "phy.h" |
| #include "boards.h" |
| #include "workarounds.h" |
| |
| /* Falcon hardware control. |
| * Falcon is the internal codename for the SFC4000 controller that is |
| * present in SFE400X evaluation boards |
| */ |
| |
| /** |
| * struct falcon_nic_data - Falcon NIC state |
| * @next_buffer_table: First available buffer table id |
| * @pci_dev2: The secondary PCI device if present |
| * @i2c_data: Operations and state for I2C bit-bashing algorithm |
| * @int_error_count: Number of internal errors seen recently |
| * @int_error_expire: Time at which error count will be expired |
| */ |
| struct falcon_nic_data { |
| unsigned next_buffer_table; |
| struct pci_dev *pci_dev2; |
| struct i2c_algo_bit_data i2c_data; |
| |
| unsigned int_error_count; |
| unsigned long int_error_expire; |
| }; |
| |
| /************************************************************************** |
| * |
| * Configurable values |
| * |
| ************************************************************************** |
| */ |
| |
| static int disable_dma_stats; |
| |
| /* This is set to 16 for a good reason. In summary, if larger than |
| * 16, the descriptor cache holds more than a default socket |
| * buffer's worth of packets (for UDP we can only have at most one |
| * socket buffer's worth outstanding). This combined with the fact |
| * that we only get 1 TX event per descriptor cache means the NIC |
| * goes idle. |
| */ |
| #define TX_DC_ENTRIES 16 |
| #define TX_DC_ENTRIES_ORDER 0 |
| #define TX_DC_BASE 0x130000 |
| |
| #define RX_DC_ENTRIES 64 |
| #define RX_DC_ENTRIES_ORDER 2 |
| #define RX_DC_BASE 0x100000 |
| |
| static const unsigned int |
| /* "Large" EEPROM device: Atmel AT25640 or similar |
| * 8 KB, 16-bit address, 32 B write block */ |
| large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN) |
| | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN) |
| | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)), |
| /* Default flash device: Atmel AT25F1024 |
| * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */ |
| default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN) |
| | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN) |
| | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN) |
| | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN) |
| | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)); |
| |
| /* RX FIFO XOFF watermark |
| * |
| * When the amount of the RX FIFO increases used increases past this |
| * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A) |
| * This also has an effect on RX/TX arbitration |
| */ |
| static int rx_xoff_thresh_bytes = -1; |
| module_param(rx_xoff_thresh_bytes, int, 0644); |
| MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold"); |
| |
| /* RX FIFO XON watermark |
| * |
| * When the amount of the RX FIFO used decreases below this |
| * watermark send XON. Only used if TX flow control is enabled (ethtool -A) |
| * This also has an effect on RX/TX arbitration |
| */ |
| static int rx_xon_thresh_bytes = -1; |
| module_param(rx_xon_thresh_bytes, int, 0644); |
| MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold"); |
| |
| /* TX descriptor ring size - min 512 max 4k */ |
| #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K |
| #define FALCON_TXD_RING_SIZE 1024 |
| #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1) |
| |
| /* RX descriptor ring size - min 512 max 4k */ |
| #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K |
| #define FALCON_RXD_RING_SIZE 1024 |
| #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1) |
| |
| /* Event queue size - max 32k */ |
| #define FALCON_EVQ_ORDER EVQ_SIZE_4K |
| #define FALCON_EVQ_SIZE 4096 |
| #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1) |
| |
| /* If FALCON_MAX_INT_ERRORS internal errors occur within |
| * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and |
| * disable it. |
| */ |
| #define FALCON_INT_ERROR_EXPIRE 3600 |
| #define FALCON_MAX_INT_ERRORS 5 |
| |
| /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times |
| */ |
| #define FALCON_FLUSH_INTERVAL 10 |
| #define FALCON_FLUSH_POLL_COUNT 100 |
| |
| /************************************************************************** |
| * |
| * Falcon constants |
| * |
| ************************************************************************** |
| */ |
| |
| /* DMA address mask */ |
| #define FALCON_DMA_MASK DMA_BIT_MASK(46) |
| |
| /* TX DMA length mask (13-bit) */ |
| #define FALCON_TX_DMA_MASK (4096 - 1) |
| |
| /* Size and alignment of special buffers (4KB) */ |
| #define FALCON_BUF_SIZE 4096 |
| |
| /* Dummy SRAM size code */ |
| #define SRM_NB_BSZ_ONCHIP_ONLY (-1) |
| |
| #define FALCON_IS_DUAL_FUNC(efx) \ |
| (falcon_rev(efx) < FALCON_REV_B0) |
| |
| /************************************************************************** |
| * |
| * Falcon hardware access |
| * |
| **************************************************************************/ |
| |
| /* Read the current event from the event queue */ |
| static inline efx_qword_t *falcon_event(struct efx_channel *channel, |
| unsigned int index) |
| { |
| return (((efx_qword_t *) (channel->eventq.addr)) + index); |
| } |
| |
| /* See if an event is present |
| * |
| * We check both the high and low dword of the event for all ones. We |
| * wrote all ones when we cleared the event, and no valid event can |
| * have all ones in either its high or low dwords. This approach is |
| * robust against reordering. |
| * |
| * Note that using a single 64-bit comparison is incorrect; even |
| * though the CPU read will be atomic, the DMA write may not be. |
| */ |
| static inline int falcon_event_present(efx_qword_t *event) |
| { |
| return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | |
| EFX_DWORD_IS_ALL_ONES(event->dword[1]))); |
| } |
| |
| /************************************************************************** |
| * |
| * I2C bus - this is a bit-bashing interface using GPIO pins |
| * Note that it uses the output enables to tristate the outputs |
| * SDA is the data pin and SCL is the clock |
| * |
| ************************************************************************** |
| */ |
| static void falcon_setsda(void *data, int state) |
| { |
| struct efx_nic *efx = (struct efx_nic *)data; |
| efx_oword_t reg; |
| |
| falcon_read(efx, ®, GPIO_CTL_REG_KER); |
| EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state); |
| falcon_write(efx, ®, GPIO_CTL_REG_KER); |
| } |
| |
| static void falcon_setscl(void *data, int state) |
| { |
| struct efx_nic *efx = (struct efx_nic *)data; |
| efx_oword_t reg; |
| |
| falcon_read(efx, ®, GPIO_CTL_REG_KER); |
| EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state); |
| falcon_write(efx, ®, GPIO_CTL_REG_KER); |
| } |
| |
| static int falcon_getsda(void *data) |
| { |
| struct efx_nic *efx = (struct efx_nic *)data; |
| efx_oword_t reg; |
| |
| falcon_read(efx, ®, GPIO_CTL_REG_KER); |
| return EFX_OWORD_FIELD(reg, GPIO3_IN); |
| } |
| |
| static int falcon_getscl(void *data) |
| { |
| struct efx_nic *efx = (struct efx_nic *)data; |
| efx_oword_t reg; |
| |
| falcon_read(efx, ®, GPIO_CTL_REG_KER); |
| return EFX_OWORD_FIELD(reg, GPIO0_IN); |
| } |
| |
| static struct i2c_algo_bit_data falcon_i2c_bit_operations = { |
| .setsda = falcon_setsda, |
| .setscl = falcon_setscl, |
| .getsda = falcon_getsda, |
| .getscl = falcon_getscl, |
| .udelay = 5, |
| /* Wait up to 50 ms for slave to let us pull SCL high */ |
| .timeout = DIV_ROUND_UP(HZ, 20), |
| }; |
| |
| /************************************************************************** |
| * |
| * Falcon special buffer handling |
| * Special buffers are used for event queues and the TX and RX |
| * descriptor rings. |
| * |
| *************************************************************************/ |
| |
| /* |
| * Initialise a Falcon special buffer |
| * |
| * This will define a buffer (previously allocated via |
| * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing |
| * it to be used for event queues, descriptor rings etc. |
| */ |
| static void |
| falcon_init_special_buffer(struct efx_nic *efx, |
| struct efx_special_buffer *buffer) |
| { |
| efx_qword_t buf_desc; |
| int index; |
| dma_addr_t dma_addr; |
| int i; |
| |
| EFX_BUG_ON_PARANOID(!buffer->addr); |
| |
| /* Write buffer descriptors to NIC */ |
| for (i = 0; i < buffer->entries; i++) { |
| index = buffer->index + i; |
| dma_addr = buffer->dma_addr + (i * 4096); |
| EFX_LOG(efx, "mapping special buffer %d at %llx\n", |
| index, (unsigned long long)dma_addr); |
| EFX_POPULATE_QWORD_4(buf_desc, |
| IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K, |
| BUF_ADR_REGION, 0, |
| BUF_ADR_FBUF, (dma_addr >> 12), |
| BUF_OWNER_ID_FBUF, 0); |
| falcon_write_sram(efx, &buf_desc, index); |
| } |
| } |
| |
| /* Unmaps a buffer from Falcon and clears the buffer table entries */ |
| static void |
| falcon_fini_special_buffer(struct efx_nic *efx, |
| struct efx_special_buffer *buffer) |
| { |
| efx_oword_t buf_tbl_upd; |
| unsigned int start = buffer->index; |
| unsigned int end = (buffer->index + buffer->entries - 1); |
| |
| if (!buffer->entries) |
| return; |
| |
| EFX_LOG(efx, "unmapping special buffers %d-%d\n", |
| buffer->index, buffer->index + buffer->entries - 1); |
| |
| EFX_POPULATE_OWORD_4(buf_tbl_upd, |
| BUF_UPD_CMD, 0, |
| BUF_CLR_CMD, 1, |
| BUF_CLR_END_ID, end, |
| BUF_CLR_START_ID, start); |
| falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER); |
| } |
| |
| /* |
| * Allocate a new Falcon special buffer |
| * |
| * This allocates memory for a new buffer, clears it and allocates a |
| * new buffer ID range. It does not write into Falcon's buffer table. |
| * |
| * This call will allocate 4KB buffers, since Falcon can't use 8KB |
| * buffers for event queues and descriptor rings. |
| */ |
| static int falcon_alloc_special_buffer(struct efx_nic *efx, |
| struct efx_special_buffer *buffer, |
| unsigned int len) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| |
| len = ALIGN(len, FALCON_BUF_SIZE); |
| |
| buffer->addr = pci_alloc_consistent(efx->pci_dev, len, |
| &buffer->dma_addr); |
| if (!buffer->addr) |
| return -ENOMEM; |
| buffer->len = len; |
| buffer->entries = len / FALCON_BUF_SIZE; |
| BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1)); |
| |
| /* All zeros is a potentially valid event so memset to 0xff */ |
| memset(buffer->addr, 0xff, len); |
| |
| /* Select new buffer ID */ |
| buffer->index = nic_data->next_buffer_table; |
| nic_data->next_buffer_table += buffer->entries; |
| |
| EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x " |
| "(virt %p phys %lx)\n", buffer->index, |
| buffer->index + buffer->entries - 1, |
| (unsigned long long)buffer->dma_addr, len, |
| buffer->addr, virt_to_phys(buffer->addr)); |
| |
| return 0; |
| } |
| |
| static void falcon_free_special_buffer(struct efx_nic *efx, |
| struct efx_special_buffer *buffer) |
| { |
| if (!buffer->addr) |
| return; |
| |
| EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x " |
| "(virt %p phys %lx)\n", buffer->index, |
| buffer->index + buffer->entries - 1, |
| (unsigned long long)buffer->dma_addr, buffer->len, |
| buffer->addr, virt_to_phys(buffer->addr)); |
| |
| pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr, |
| buffer->dma_addr); |
| buffer->addr = NULL; |
| buffer->entries = 0; |
| } |
| |
| /************************************************************************** |
| * |
| * Falcon generic buffer handling |
| * These buffers are used for interrupt status and MAC stats |
| * |
| **************************************************************************/ |
| |
| static int falcon_alloc_buffer(struct efx_nic *efx, |
| struct efx_buffer *buffer, unsigned int len) |
| { |
| buffer->addr = pci_alloc_consistent(efx->pci_dev, len, |
| &buffer->dma_addr); |
| if (!buffer->addr) |
| return -ENOMEM; |
| buffer->len = len; |
| memset(buffer->addr, 0, len); |
| return 0; |
| } |
| |
| static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) |
| { |
| if (buffer->addr) { |
| pci_free_consistent(efx->pci_dev, buffer->len, |
| buffer->addr, buffer->dma_addr); |
| buffer->addr = NULL; |
| } |
| } |
| |
| /************************************************************************** |
| * |
| * Falcon TX path |
| * |
| **************************************************************************/ |
| |
| /* Returns a pointer to the specified transmit descriptor in the TX |
| * descriptor queue belonging to the specified channel. |
| */ |
| static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue, |
| unsigned int index) |
| { |
| return (((efx_qword_t *) (tx_queue->txd.addr)) + index); |
| } |
| |
| /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ |
| static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue) |
| { |
| unsigned write_ptr; |
| efx_dword_t reg; |
| |
| write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK; |
| EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr); |
| falcon_writel_page(tx_queue->efx, ®, |
| TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue); |
| } |
| |
| |
| /* For each entry inserted into the software descriptor ring, create a |
| * descriptor in the hardware TX descriptor ring (in host memory), and |
| * write a doorbell. |
| */ |
| void falcon_push_buffers(struct efx_tx_queue *tx_queue) |
| { |
| |
| struct efx_tx_buffer *buffer; |
| efx_qword_t *txd; |
| unsigned write_ptr; |
| |
| BUG_ON(tx_queue->write_count == tx_queue->insert_count); |
| |
| do { |
| write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK; |
| buffer = &tx_queue->buffer[write_ptr]; |
| txd = falcon_tx_desc(tx_queue, write_ptr); |
| ++tx_queue->write_count; |
| |
| /* Create TX descriptor ring entry */ |
| EFX_POPULATE_QWORD_5(*txd, |
| TX_KER_PORT, 0, |
| TX_KER_CONT, buffer->continuation, |
| TX_KER_BYTE_CNT, buffer->len, |
| TX_KER_BUF_REGION, 0, |
| TX_KER_BUF_ADR, buffer->dma_addr); |
| } while (tx_queue->write_count != tx_queue->insert_count); |
| |
| wmb(); /* Ensure descriptors are written before they are fetched */ |
| falcon_notify_tx_desc(tx_queue); |
| } |
| |
| /* Allocate hardware resources for a TX queue */ |
| int falcon_probe_tx(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| return falcon_alloc_special_buffer(efx, &tx_queue->txd, |
| FALCON_TXD_RING_SIZE * |
| sizeof(efx_qword_t)); |
| } |
| |
| void falcon_init_tx(struct efx_tx_queue *tx_queue) |
| { |
| efx_oword_t tx_desc_ptr; |
| struct efx_nic *efx = tx_queue->efx; |
| |
| tx_queue->flushed = false; |
| |
| /* Pin TX descriptor ring */ |
| falcon_init_special_buffer(efx, &tx_queue->txd); |
| |
| /* Push TX descriptor ring to card */ |
| EFX_POPULATE_OWORD_10(tx_desc_ptr, |
| TX_DESCQ_EN, 1, |
| TX_ISCSI_DDIG_EN, 0, |
| TX_ISCSI_HDIG_EN, 0, |
| TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, |
| TX_DESCQ_EVQ_ID, tx_queue->channel->channel, |
| TX_DESCQ_OWNER_ID, 0, |
| TX_DESCQ_LABEL, tx_queue->queue, |
| TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER, |
| TX_DESCQ_TYPE, 0, |
| TX_NON_IP_DROP_DIS_B0, 1); |
| |
| if (falcon_rev(efx) >= FALCON_REV_B0) { |
| int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM; |
| EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum); |
| EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum); |
| } |
| |
| falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, |
| tx_queue->queue); |
| |
| if (falcon_rev(efx) < FALCON_REV_B0) { |
| efx_oword_t reg; |
| |
| /* Only 128 bits in this register */ |
| BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128); |
| |
| falcon_read(efx, ®, TX_CHKSM_CFG_REG_KER_A1); |
| if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM) |
| clear_bit_le(tx_queue->queue, (void *)®); |
| else |
| set_bit_le(tx_queue->queue, (void *)®); |
| falcon_write(efx, ®, TX_CHKSM_CFG_REG_KER_A1); |
| } |
| } |
| |
| static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| efx_oword_t tx_flush_descq; |
| |
| /* Post a flush command */ |
| EFX_POPULATE_OWORD_2(tx_flush_descq, |
| TX_FLUSH_DESCQ_CMD, 1, |
| TX_FLUSH_DESCQ, tx_queue->queue); |
| falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER); |
| } |
| |
| void falcon_fini_tx(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| efx_oword_t tx_desc_ptr; |
| |
| /* The queue should have been flushed */ |
| WARN_ON(!tx_queue->flushed); |
| |
| /* Remove TX descriptor ring from card */ |
| EFX_ZERO_OWORD(tx_desc_ptr); |
| falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, |
| tx_queue->queue); |
| |
| /* Unpin TX descriptor ring */ |
| falcon_fini_special_buffer(efx, &tx_queue->txd); |
| } |
| |
| /* Free buffers backing TX queue */ |
| void falcon_remove_tx(struct efx_tx_queue *tx_queue) |
| { |
| falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd); |
| } |
| |
| /************************************************************************** |
| * |
| * Falcon RX path |
| * |
| **************************************************************************/ |
| |
| /* Returns a pointer to the specified descriptor in the RX descriptor queue */ |
| static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue, |
| unsigned int index) |
| { |
| return (((efx_qword_t *) (rx_queue->rxd.addr)) + index); |
| } |
| |
| /* This creates an entry in the RX descriptor queue */ |
| static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue, |
| unsigned index) |
| { |
| struct efx_rx_buffer *rx_buf; |
| efx_qword_t *rxd; |
| |
| rxd = falcon_rx_desc(rx_queue, index); |
| rx_buf = efx_rx_buffer(rx_queue, index); |
| EFX_POPULATE_QWORD_3(*rxd, |
| RX_KER_BUF_SIZE, |
| rx_buf->len - |
| rx_queue->efx->type->rx_buffer_padding, |
| RX_KER_BUF_REGION, 0, |
| RX_KER_BUF_ADR, rx_buf->dma_addr); |
| } |
| |
| /* This writes to the RX_DESC_WPTR register for the specified receive |
| * descriptor ring. |
| */ |
| void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue) |
| { |
| efx_dword_t reg; |
| unsigned write_ptr; |
| |
| while (rx_queue->notified_count != rx_queue->added_count) { |
| falcon_build_rx_desc(rx_queue, |
| rx_queue->notified_count & |
| FALCON_RXD_RING_MASK); |
| ++rx_queue->notified_count; |
| } |
| |
| wmb(); |
| write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK; |
| EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr); |
| falcon_writel_page(rx_queue->efx, ®, |
| RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue); |
| } |
| |
| int falcon_probe_rx(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| return falcon_alloc_special_buffer(efx, &rx_queue->rxd, |
| FALCON_RXD_RING_SIZE * |
| sizeof(efx_qword_t)); |
| } |
| |
| void falcon_init_rx(struct efx_rx_queue *rx_queue) |
| { |
| efx_oword_t rx_desc_ptr; |
| struct efx_nic *efx = rx_queue->efx; |
| bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0; |
| bool iscsi_digest_en = is_b0; |
| |
| EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n", |
| rx_queue->queue, rx_queue->rxd.index, |
| rx_queue->rxd.index + rx_queue->rxd.entries - 1); |
| |
| rx_queue->flushed = false; |
| |
| /* Pin RX descriptor ring */ |
| falcon_init_special_buffer(efx, &rx_queue->rxd); |
| |
| /* Push RX descriptor ring to card */ |
| EFX_POPULATE_OWORD_10(rx_desc_ptr, |
| RX_ISCSI_DDIG_EN, iscsi_digest_en, |
| RX_ISCSI_HDIG_EN, iscsi_digest_en, |
| RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, |
| RX_DESCQ_EVQ_ID, rx_queue->channel->channel, |
| RX_DESCQ_OWNER_ID, 0, |
| RX_DESCQ_LABEL, rx_queue->queue, |
| RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER, |
| RX_DESCQ_TYPE, 0 /* kernel queue */ , |
| /* For >=B0 this is scatter so disable */ |
| RX_DESCQ_JUMBO, !is_b0, |
| RX_DESCQ_EN, 1); |
| falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, |
| rx_queue->queue); |
| } |
| |
| static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| efx_oword_t rx_flush_descq; |
| |
| /* Post a flush command */ |
| EFX_POPULATE_OWORD_2(rx_flush_descq, |
| RX_FLUSH_DESCQ_CMD, 1, |
| RX_FLUSH_DESCQ, rx_queue->queue); |
| falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER); |
| } |
| |
| void falcon_fini_rx(struct efx_rx_queue *rx_queue) |
| { |
| efx_oword_t rx_desc_ptr; |
| struct efx_nic *efx = rx_queue->efx; |
| |
| /* The queue should already have been flushed */ |
| WARN_ON(!rx_queue->flushed); |
| |
| /* Remove RX descriptor ring from card */ |
| EFX_ZERO_OWORD(rx_desc_ptr); |
| falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, |
| rx_queue->queue); |
| |
| /* Unpin RX descriptor ring */ |
| falcon_fini_special_buffer(efx, &rx_queue->rxd); |
| } |
| |
| /* Free buffers backing RX queue */ |
| void falcon_remove_rx(struct efx_rx_queue *rx_queue) |
| { |
| falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd); |
| } |
| |
| /************************************************************************** |
| * |
| * Falcon event queue processing |
| * Event queues are processed by per-channel tasklets. |
| * |
| **************************************************************************/ |
| |
| /* Update a channel's event queue's read pointer (RPTR) register |
| * |
| * This writes the EVQ_RPTR_REG register for the specified channel's |
| * event queue. |
| * |
| * Note that EVQ_RPTR_REG contains the index of the "last read" event, |
| * whereas channel->eventq_read_ptr contains the index of the "next to |
| * read" event. |
| */ |
| void falcon_eventq_read_ack(struct efx_channel *channel) |
| { |
| efx_dword_t reg; |
| struct efx_nic *efx = channel->efx; |
| |
| EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr); |
| falcon_writel_table(efx, ®, efx->type->evq_rptr_tbl_base, |
| channel->channel); |
| } |
| |
| /* Use HW to insert a SW defined event */ |
| void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event) |
| { |
| efx_oword_t drv_ev_reg; |
| |
| EFX_POPULATE_OWORD_2(drv_ev_reg, |
| DRV_EV_QID, channel->channel, |
| DRV_EV_DATA, |
| EFX_QWORD_FIELD64(*event, WHOLE_EVENT)); |
| falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER); |
| } |
| |
| /* Handle a transmit completion event |
| * |
| * Falcon batches TX completion events; the message we receive is of |
| * the form "complete all TX events up to this index". |
| */ |
| static void falcon_handle_tx_event(struct efx_channel *channel, |
| efx_qword_t *event) |
| { |
| unsigned int tx_ev_desc_ptr; |
| unsigned int tx_ev_q_label; |
| struct efx_tx_queue *tx_queue; |
| struct efx_nic *efx = channel->efx; |
| |
| if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) { |
| /* Transmit completion */ |
| tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR); |
| tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL); |
| tx_queue = &efx->tx_queue[tx_ev_q_label]; |
| channel->irq_mod_score += |
| (tx_ev_desc_ptr - tx_queue->read_count) & |
| efx->type->txd_ring_mask; |
| efx_xmit_done(tx_queue, tx_ev_desc_ptr); |
| } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) { |
| /* Rewrite the FIFO write pointer */ |
| tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL); |
| tx_queue = &efx->tx_queue[tx_ev_q_label]; |
| |
| if (efx_dev_registered(efx)) |
| netif_tx_lock(efx->net_dev); |
| falcon_notify_tx_desc(tx_queue); |
| if (efx_dev_registered(efx)) |
| netif_tx_unlock(efx->net_dev); |
| } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) && |
| EFX_WORKAROUND_10727(efx)) { |
| efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); |
| } else { |
| EFX_ERR(efx, "channel %d unexpected TX event " |
| EFX_QWORD_FMT"\n", channel->channel, |
| EFX_QWORD_VAL(*event)); |
| } |
| } |
| |
| /* Detect errors included in the rx_evt_pkt_ok bit. */ |
| static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue, |
| const efx_qword_t *event, |
| bool *rx_ev_pkt_ok, |
| bool *discard) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; |
| bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; |
| bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; |
| bool rx_ev_other_err, rx_ev_pause_frm; |
| bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt; |
| unsigned rx_ev_pkt_type; |
| |
| rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE); |
| rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT); |
| rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC); |
| rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE); |
| rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, |
| RX_EV_BUF_OWNER_ID_ERR); |
| rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR); |
| rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, |
| RX_EV_IP_HDR_CHKSUM_ERR); |
| rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, |
| RX_EV_TCP_UDP_CHKSUM_ERR); |
| rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR); |
| rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC); |
| rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ? |
| 0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB)); |
| rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR); |
| |
| /* Every error apart from tobe_disc and pause_frm */ |
| rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | |
| rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | |
| rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); |
| |
| /* Count errors that are not in MAC stats. Ignore expected |
| * checksum errors during self-test. */ |
| if (rx_ev_frm_trunc) |
| ++rx_queue->channel->n_rx_frm_trunc; |
| else if (rx_ev_tobe_disc) |
| ++rx_queue->channel->n_rx_tobe_disc; |
| else if (!efx->loopback_selftest) { |
| if (rx_ev_ip_hdr_chksum_err) |
| ++rx_queue->channel->n_rx_ip_hdr_chksum_err; |
| else if (rx_ev_tcp_udp_chksum_err) |
| ++rx_queue->channel->n_rx_tcp_udp_chksum_err; |
| } |
| if (rx_ev_ip_frag_err) |
| ++rx_queue->channel->n_rx_ip_frag_err; |
| |
| /* The frame must be discarded if any of these are true. */ |
| *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | |
| rx_ev_tobe_disc | rx_ev_pause_frm); |
| |
| /* TOBE_DISC is expected on unicast mismatches; don't print out an |
| * error message. FRM_TRUNC indicates RXDP dropped the packet due |
| * to a FIFO overflow. |
| */ |
| #ifdef EFX_ENABLE_DEBUG |
| if (rx_ev_other_err) { |
| EFX_INFO_RL(efx, " RX queue %d unexpected RX event " |
| EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n", |
| rx_queue->queue, EFX_QWORD_VAL(*event), |
| rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", |
| rx_ev_ip_hdr_chksum_err ? |
| " [IP_HDR_CHKSUM_ERR]" : "", |
| rx_ev_tcp_udp_chksum_err ? |
| " [TCP_UDP_CHKSUM_ERR]" : "", |
| rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", |
| rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", |
| rx_ev_drib_nib ? " [DRIB_NIB]" : "", |
| rx_ev_tobe_disc ? " [TOBE_DISC]" : "", |
| rx_ev_pause_frm ? " [PAUSE]" : ""); |
| } |
| #endif |
| } |
| |
| /* Handle receive events that are not in-order. */ |
| static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue, |
| unsigned index) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned expected, dropped; |
| |
| expected = rx_queue->removed_count & FALCON_RXD_RING_MASK; |
| dropped = ((index + FALCON_RXD_RING_SIZE - expected) & |
| FALCON_RXD_RING_MASK); |
| EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n", |
| dropped, index, expected); |
| |
| efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ? |
| RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); |
| } |
| |
| /* Handle a packet received event |
| * |
| * Falcon silicon gives a "discard" flag if it's a unicast packet with the |
| * wrong destination address |
| * Also "is multicast" and "matches multicast filter" flags can be used to |
| * discard non-matching multicast packets. |
| */ |
| static void falcon_handle_rx_event(struct efx_channel *channel, |
| const efx_qword_t *event) |
| { |
| unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; |
| unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; |
| unsigned expected_ptr; |
| bool rx_ev_pkt_ok, discard = false, checksummed; |
| struct efx_rx_queue *rx_queue; |
| struct efx_nic *efx = channel->efx; |
| |
| /* Basic packet information */ |
| rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT); |
| rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK); |
| rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE); |
| WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT)); |
| WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1); |
| WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL) != channel->channel); |
| |
| rx_queue = &efx->rx_queue[channel->channel]; |
| |
| rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR); |
| expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK; |
| if (unlikely(rx_ev_desc_ptr != expected_ptr)) |
| falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr); |
| |
| if (likely(rx_ev_pkt_ok)) { |
| /* If packet is marked as OK and packet type is TCP/IPv4 or |
| * UDP/IPv4, then we can rely on the hardware checksum. |
| */ |
| checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type); |
| } else { |
| falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, |
| &discard); |
| checksummed = false; |
| } |
| |
| /* Detect multicast packets that didn't match the filter */ |
| rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT); |
| if (rx_ev_mcast_pkt) { |
| unsigned int rx_ev_mcast_hash_match = |
| EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH); |
| |
| if (unlikely(!rx_ev_mcast_hash_match)) |
| discard = true; |
| } |
| |
| channel->irq_mod_score += 2; |
| |
| /* Handle received packet */ |
| efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, |
| checksummed, discard); |
| } |
| |
| /* Global events are basically PHY events */ |
| static void falcon_handle_global_event(struct efx_channel *channel, |
| efx_qword_t *event) |
| { |
| struct efx_nic *efx = channel->efx; |
| bool handled = false; |
| |
| if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) || |
| EFX_QWORD_FIELD(*event, G_PHY1_INTR) || |
| EFX_QWORD_FIELD(*event, XG_PHY_INTR) || |
| EFX_QWORD_FIELD(*event, XFP_PHY_INTR)) { |
| efx->phy_op->clear_interrupt(efx); |
| queue_work(efx->workqueue, &efx->phy_work); |
| handled = true; |
| } |
| |
| if ((falcon_rev(efx) >= FALCON_REV_B0) && |
| EFX_QWORD_FIELD(*event, XG_MNT_INTR_B0)) { |
| queue_work(efx->workqueue, &efx->mac_work); |
| handled = true; |
| } |
| |
| if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) { |
| EFX_ERR(efx, "channel %d seen global RX_RESET " |
| "event. Resetting.\n", channel->channel); |
| |
| atomic_inc(&efx->rx_reset); |
| efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ? |
| RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); |
| handled = true; |
| } |
| |
| if (!handled) |
| EFX_ERR(efx, "channel %d unknown global event " |
| EFX_QWORD_FMT "\n", channel->channel, |
| EFX_QWORD_VAL(*event)); |
| } |
| |
| static void falcon_handle_driver_event(struct efx_channel *channel, |
| efx_qword_t *event) |
| { |
| struct efx_nic *efx = channel->efx; |
| unsigned int ev_sub_code; |
| unsigned int ev_sub_data; |
| |
| ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE); |
| ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA); |
| |
| switch (ev_sub_code) { |
| case TX_DESCQ_FLS_DONE_EV_DECODE: |
| EFX_TRACE(efx, "channel %d TXQ %d flushed\n", |
| channel->channel, ev_sub_data); |
| break; |
| case RX_DESCQ_FLS_DONE_EV_DECODE: |
| EFX_TRACE(efx, "channel %d RXQ %d flushed\n", |
| channel->channel, ev_sub_data); |
| break; |
| case EVQ_INIT_DONE_EV_DECODE: |
| EFX_LOG(efx, "channel %d EVQ %d initialised\n", |
| channel->channel, ev_sub_data); |
| break; |
| case SRM_UPD_DONE_EV_DECODE: |
| EFX_TRACE(efx, "channel %d SRAM update done\n", |
| channel->channel); |
| break; |
| case WAKE_UP_EV_DECODE: |
| EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n", |
| channel->channel, ev_sub_data); |
| break; |
| case TIMER_EV_DECODE: |
| EFX_TRACE(efx, "channel %d RX queue %d timer expired\n", |
| channel->channel, ev_sub_data); |
| break; |
| case RX_RECOVERY_EV_DECODE: |
| EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. " |
| "Resetting.\n", channel->channel); |
| atomic_inc(&efx->rx_reset); |
| efx_schedule_reset(efx, |
| EFX_WORKAROUND_6555(efx) ? |
| RESET_TYPE_RX_RECOVERY : |
| RESET_TYPE_DISABLE); |
| break; |
| case RX_DSC_ERROR_EV_DECODE: |
| EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error." |
| " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data); |
| efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH); |
| break; |
| case TX_DSC_ERROR_EV_DECODE: |
| EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error." |
| " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data); |
| efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); |
| break; |
| default: |
| EFX_TRACE(efx, "channel %d unknown driver event code %d " |
| "data %04x\n", channel->channel, ev_sub_code, |
| ev_sub_data); |
| break; |
| } |
| } |
| |
| int falcon_process_eventq(struct efx_channel *channel, int rx_quota) |
| { |
| unsigned int read_ptr; |
| efx_qword_t event, *p_event; |
| int ev_code; |
| int rx_packets = 0; |
| |
| read_ptr = channel->eventq_read_ptr; |
| |
| do { |
| p_event = falcon_event(channel, read_ptr); |
| event = *p_event; |
| |
| if (!falcon_event_present(&event)) |
| /* End of events */ |
| break; |
| |
| EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n", |
| channel->channel, EFX_QWORD_VAL(event)); |
| |
| /* Clear this event by marking it all ones */ |
| EFX_SET_QWORD(*p_event); |
| |
| ev_code = EFX_QWORD_FIELD(event, EV_CODE); |
| |
| switch (ev_code) { |
| case RX_IP_EV_DECODE: |
| falcon_handle_rx_event(channel, &event); |
| ++rx_packets; |
| break; |
| case TX_IP_EV_DECODE: |
| falcon_handle_tx_event(channel, &event); |
| break; |
| case DRV_GEN_EV_DECODE: |
| channel->eventq_magic |
| = EFX_QWORD_FIELD(event, EVQ_MAGIC); |
| EFX_LOG(channel->efx, "channel %d received generated " |
| "event "EFX_QWORD_FMT"\n", channel->channel, |
| EFX_QWORD_VAL(event)); |
| break; |
| case GLOBAL_EV_DECODE: |
| falcon_handle_global_event(channel, &event); |
| break; |
| case DRIVER_EV_DECODE: |
| falcon_handle_driver_event(channel, &event); |
| break; |
| default: |
| EFX_ERR(channel->efx, "channel %d unknown event type %d" |
| " (data " EFX_QWORD_FMT ")\n", channel->channel, |
| ev_code, EFX_QWORD_VAL(event)); |
| } |
| |
| /* Increment read pointer */ |
| read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK; |
| |
| } while (rx_packets < rx_quota); |
| |
| channel->eventq_read_ptr = read_ptr; |
| return rx_packets; |
| } |
| |
| void falcon_set_int_moderation(struct efx_channel *channel) |
| { |
| efx_dword_t timer_cmd; |
| struct efx_nic *efx = channel->efx; |
| |
| /* Set timer register */ |
| if (channel->irq_moderation) { |
| /* Round to resolution supported by hardware. The value we |
| * program is based at 0. So actual interrupt moderation |
| * achieved is ((x + 1) * res). |
| */ |
| channel->irq_moderation -= (channel->irq_moderation % |
| FALCON_IRQ_MOD_RESOLUTION); |
| if (channel->irq_moderation < FALCON_IRQ_MOD_RESOLUTION) |
| channel->irq_moderation = FALCON_IRQ_MOD_RESOLUTION; |
| EFX_POPULATE_DWORD_2(timer_cmd, |
| TIMER_MODE, TIMER_MODE_INT_HLDOFF, |
| TIMER_VAL, |
| channel->irq_moderation / |
| FALCON_IRQ_MOD_RESOLUTION - 1); |
| } else { |
| EFX_POPULATE_DWORD_2(timer_cmd, |
| TIMER_MODE, TIMER_MODE_DIS, |
| TIMER_VAL, 0); |
| } |
| falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER, |
| channel->channel); |
| |
| } |
| |
| /* Allocate buffer table entries for event queue */ |
| int falcon_probe_eventq(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| unsigned int evq_size; |
| |
| evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t); |
| return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size); |
| } |
| |
| void falcon_init_eventq(struct efx_channel *channel) |
| { |
| efx_oword_t evq_ptr; |
| struct efx_nic *efx = channel->efx; |
| |
| EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n", |
| channel->channel, channel->eventq.index, |
| channel->eventq.index + channel->eventq.entries - 1); |
| |
| /* Pin event queue buffer */ |
| falcon_init_special_buffer(efx, &channel->eventq); |
| |
| /* Fill event queue with all ones (i.e. empty events) */ |
| memset(channel->eventq.addr, 0xff, channel->eventq.len); |
| |
| /* Push event queue to card */ |
| EFX_POPULATE_OWORD_3(evq_ptr, |
| EVQ_EN, 1, |
| EVQ_SIZE, FALCON_EVQ_ORDER, |
| EVQ_BUF_BASE_ID, channel->eventq.index); |
| falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base, |
| channel->channel); |
| |
| falcon_set_int_moderation(channel); |
| } |
| |
| void falcon_fini_eventq(struct efx_channel *channel) |
| { |
| efx_oword_t eventq_ptr; |
| struct efx_nic *efx = channel->efx; |
| |
| /* Remove event queue from card */ |
| EFX_ZERO_OWORD(eventq_ptr); |
| falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base, |
| channel->channel); |
| |
| /* Unpin event queue */ |
| falcon_fini_special_buffer(efx, &channel->eventq); |
| } |
| |
| /* Free buffers backing event queue */ |
| void falcon_remove_eventq(struct efx_channel *channel) |
| { |
| falcon_free_special_buffer(channel->efx, &channel->eventq); |
| } |
| |
| |
| /* Generates a test event on the event queue. A subsequent call to |
| * process_eventq() should pick up the event and place the value of |
| * "magic" into channel->eventq_magic; |
| */ |
| void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic) |
| { |
| efx_qword_t test_event; |
| |
| EFX_POPULATE_QWORD_2(test_event, |
| EV_CODE, DRV_GEN_EV_DECODE, |
| EVQ_MAGIC, magic); |
| falcon_generate_event(channel, &test_event); |
| } |
| |
| void falcon_sim_phy_event(struct efx_nic *efx) |
| { |
| efx_qword_t phy_event; |
| |
| EFX_POPULATE_QWORD_1(phy_event, EV_CODE, GLOBAL_EV_DECODE); |
| if (EFX_IS10G(efx)) |
| EFX_SET_OWORD_FIELD(phy_event, XG_PHY_INTR, 1); |
| else |
| EFX_SET_OWORD_FIELD(phy_event, G_PHY0_INTR, 1); |
| |
| falcon_generate_event(&efx->channel[0], &phy_event); |
| } |
| |
| /************************************************************************** |
| * |
| * Flush handling |
| * |
| **************************************************************************/ |
| |
| |
| static void falcon_poll_flush_events(struct efx_nic *efx) |
| { |
| struct efx_channel *channel = &efx->channel[0]; |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| unsigned int read_ptr = channel->eventq_read_ptr; |
| unsigned int end_ptr = (read_ptr - 1) & FALCON_EVQ_MASK; |
| |
| do { |
| efx_qword_t *event = falcon_event(channel, read_ptr); |
| int ev_code, ev_sub_code, ev_queue; |
| bool ev_failed; |
| |
| if (!falcon_event_present(event)) |
| break; |
| |
| ev_code = EFX_QWORD_FIELD(*event, EV_CODE); |
| ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE); |
| if (ev_code == DRIVER_EV_DECODE && |
| ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) { |
| ev_queue = EFX_QWORD_FIELD(*event, |
| DRIVER_EV_TX_DESCQ_ID); |
| if (ev_queue < EFX_TX_QUEUE_COUNT) { |
| tx_queue = efx->tx_queue + ev_queue; |
| tx_queue->flushed = true; |
| } |
| } else if (ev_code == DRIVER_EV_DECODE && |
| ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) { |
| ev_queue = EFX_QWORD_FIELD(*event, |
| DRIVER_EV_RX_DESCQ_ID); |
| ev_failed = EFX_QWORD_FIELD(*event, |
| DRIVER_EV_RX_FLUSH_FAIL); |
| if (ev_queue < efx->n_rx_queues) { |
| rx_queue = efx->rx_queue + ev_queue; |
| |
| /* retry the rx flush */ |
| if (ev_failed) |
| falcon_flush_rx_queue(rx_queue); |
| else |
| rx_queue->flushed = true; |
| } |
| } |
| |
| read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK; |
| } while (read_ptr != end_ptr); |
| } |
| |
| /* Handle tx and rx flushes at the same time, since they run in |
| * parallel in the hardware and there's no reason for us to |
| * serialise them */ |
| int falcon_flush_queues(struct efx_nic *efx) |
| { |
| struct efx_rx_queue *rx_queue; |
| struct efx_tx_queue *tx_queue; |
| int i; |
| bool outstanding; |
| |
| /* Issue flush requests */ |
| efx_for_each_tx_queue(tx_queue, efx) { |
| tx_queue->flushed = false; |
| falcon_flush_tx_queue(tx_queue); |
| } |
| efx_for_each_rx_queue(rx_queue, efx) { |
| rx_queue->flushed = false; |
| falcon_flush_rx_queue(rx_queue); |
| } |
| |
| /* Poll the evq looking for flush completions. Since we're not pushing |
| * any more rx or tx descriptors at this point, we're in no danger of |
| * overflowing the evq whilst we wait */ |
| for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) { |
| msleep(FALCON_FLUSH_INTERVAL); |
| falcon_poll_flush_events(efx); |
| |
| /* Check if every queue has been succesfully flushed */ |
| outstanding = false; |
| efx_for_each_tx_queue(tx_queue, efx) |
| outstanding |= !tx_queue->flushed; |
| efx_for_each_rx_queue(rx_queue, efx) |
| outstanding |= !rx_queue->flushed; |
| if (!outstanding) |
| return 0; |
| } |
| |
| /* Mark the queues as all flushed. We're going to return failure |
| * leading to a reset, or fake up success anyway. "flushed" now |
| * indicates that we tried to flush. */ |
| efx_for_each_tx_queue(tx_queue, efx) { |
| if (!tx_queue->flushed) |
| EFX_ERR(efx, "tx queue %d flush command timed out\n", |
| tx_queue->queue); |
| tx_queue->flushed = true; |
| } |
| efx_for_each_rx_queue(rx_queue, efx) { |
| if (!rx_queue->flushed) |
| EFX_ERR(efx, "rx queue %d flush command timed out\n", |
| rx_queue->queue); |
| rx_queue->flushed = true; |
| } |
| |
| if (EFX_WORKAROUND_7803(efx)) |
| return 0; |
| |
| return -ETIMEDOUT; |
| } |
| |
| /************************************************************************** |
| * |
| * Falcon hardware interrupts |
| * The hardware interrupt handler does very little work; all the event |
| * queue processing is carried out by per-channel tasklets. |
| * |
| **************************************************************************/ |
| |
| /* Enable/disable/generate Falcon interrupts */ |
| static inline void falcon_interrupts(struct efx_nic *efx, int enabled, |
| int force) |
| { |
| efx_oword_t int_en_reg_ker; |
| |
| EFX_POPULATE_OWORD_2(int_en_reg_ker, |
| KER_INT_KER, force, |
| DRV_INT_EN_KER, enabled); |
| falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER); |
| } |
| |
| void falcon_enable_interrupts(struct efx_nic *efx) |
| { |
| efx_oword_t int_adr_reg_ker; |
| struct efx_channel *channel; |
| |
| EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); |
| wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ |
| |
| /* Program address */ |
| EFX_POPULATE_OWORD_2(int_adr_reg_ker, |
| NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx), |
| INT_ADR_KER, efx->irq_status.dma_addr); |
| falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER); |
| |
| /* Enable interrupts */ |
| falcon_interrupts(efx, 1, 0); |
| |
| /* Force processing of all the channels to get the EVQ RPTRs up to |
| date */ |
| efx_for_each_channel(channel, efx) |
| efx_schedule_channel(channel); |
| } |
| |
| void falcon_disable_interrupts(struct efx_nic *efx) |
| { |
| /* Disable interrupts */ |
| falcon_interrupts(efx, 0, 0); |
| } |
| |
| /* Generate a Falcon test interrupt |
| * Interrupt must already have been enabled, otherwise nasty things |
| * may happen. |
| */ |
| void falcon_generate_interrupt(struct efx_nic *efx) |
| { |
| falcon_interrupts(efx, 1, 1); |
| } |
| |
| /* Acknowledge a legacy interrupt from Falcon |
| * |
| * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG. |
| * |
| * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the |
| * BIU. Interrupt acknowledge is read sensitive so must write instead |
| * (then read to ensure the BIU collector is flushed) |
| * |
| * NB most hardware supports MSI interrupts |
| */ |
| static inline void falcon_irq_ack_a1(struct efx_nic *efx) |
| { |
| efx_dword_t reg; |
| |
| EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e); |
| falcon_writel(efx, ®, INT_ACK_REG_KER_A1); |
| falcon_readl(efx, ®, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1); |
| } |
| |
| /* Process a fatal interrupt |
| * Disable bus mastering ASAP and schedule a reset |
| */ |
| static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t *int_ker = efx->irq_status.addr; |
| efx_oword_t fatal_intr; |
| int error, mem_perr; |
| |
| falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER); |
| error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR); |
| |
| EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status " |
| EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), |
| EFX_OWORD_VAL(fatal_intr), |
| error ? "disabling bus mastering" : "no recognised error"); |
| if (error == 0) |
| goto out; |
| |
| /* If this is a memory parity error dump which blocks are offending */ |
| mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER); |
| if (mem_perr) { |
| efx_oword_t reg; |
| falcon_read(efx, ®, MEM_STAT_REG_KER); |
| EFX_ERR(efx, "SYSTEM ERROR: memory parity error " |
| EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg)); |
| } |
| |
| /* Disable both devices */ |
| pci_clear_master(efx->pci_dev); |
| if (FALCON_IS_DUAL_FUNC(efx)) |
| pci_clear_master(nic_data->pci_dev2); |
| falcon_disable_interrupts(efx); |
| |
| /* Count errors and reset or disable the NIC accordingly */ |
| if (nic_data->int_error_count == 0 || |
| time_after(jiffies, nic_data->int_error_expire)) { |
| nic_data->int_error_count = 0; |
| nic_data->int_error_expire = |
| jiffies + FALCON_INT_ERROR_EXPIRE * HZ; |
| } |
| if (++nic_data->int_error_count < FALCON_MAX_INT_ERRORS) { |
| EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n"); |
| efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); |
| } else { |
| EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen." |
| "NIC will be disabled\n"); |
| efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| } |
| out: |
| return IRQ_HANDLED; |
| } |
| |
| /* Handle a legacy interrupt from Falcon |
| * Acknowledges the interrupt and schedule event queue processing. |
| */ |
| static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id) |
| { |
| struct efx_nic *efx = dev_id; |
| efx_oword_t *int_ker = efx->irq_status.addr; |
| irqreturn_t result = IRQ_NONE; |
| struct efx_channel *channel; |
| efx_dword_t reg; |
| u32 queues; |
| int syserr; |
| |
| /* Read the ISR which also ACKs the interrupts */ |
| falcon_readl(efx, ®, INT_ISR0_B0); |
| queues = EFX_EXTRACT_DWORD(reg, 0, 31); |
| |
| /* Check to see if we have a serious error condition */ |
| syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT); |
| if (unlikely(syserr)) |
| return falcon_fatal_interrupt(efx); |
| |
| /* Schedule processing of any interrupting queues */ |
| efx_for_each_channel(channel, efx) { |
| if ((queues & 1) || |
| falcon_event_present( |
| falcon_event(channel, channel->eventq_read_ptr))) { |
| efx_schedule_channel(channel); |
| result = IRQ_HANDLED; |
| } |
| queues >>= 1; |
| } |
| |
| if (result == IRQ_HANDLED) { |
| efx->last_irq_cpu = raw_smp_processor_id(); |
| EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", |
| irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); |
| } |
| |
| return result; |
| } |
| |
| |
| static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id) |
| { |
| struct efx_nic *efx = dev_id; |
| efx_oword_t *int_ker = efx->irq_status.addr; |
| struct efx_channel *channel; |
| int syserr; |
| int queues; |
| |
| /* Check to see if this is our interrupt. If it isn't, we |
| * exit without having touched the hardware. |
| */ |
| if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) { |
| EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq, |
| raw_smp_processor_id()); |
| return IRQ_NONE; |
| } |
| efx->last_irq_cpu = raw_smp_processor_id(); |
| EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", |
| irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); |
| |
| /* Check to see if we have a serious error condition */ |
| syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT); |
| if (unlikely(syserr)) |
| return falcon_fatal_interrupt(efx); |
| |
| /* Determine interrupting queues, clear interrupt status |
| * register and acknowledge the device interrupt. |
| */ |
| BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS); |
| queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS); |
| EFX_ZERO_OWORD(*int_ker); |
| wmb(); /* Ensure the vector is cleared before interrupt ack */ |
| falcon_irq_ack_a1(efx); |
| |
| /* Schedule processing of any interrupting queues */ |
| channel = &efx->channel[0]; |
| while (queues) { |
| if (queues & 0x01) |
| efx_schedule_channel(channel); |
| channel++; |
| queues >>= 1; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Handle an MSI interrupt from Falcon |
| * |
| * Handle an MSI hardware interrupt. This routine schedules event |
| * queue processing. No interrupt acknowledgement cycle is necessary. |
| * Also, we never need to check that the interrupt is for us, since |
| * MSI interrupts cannot be shared. |
| */ |
| static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id) |
| { |
| struct efx_channel *channel = dev_id; |
| struct efx_nic *efx = channel->efx; |
| efx_oword_t *int_ker = efx->irq_status.addr; |
| int syserr; |
| |
| efx->last_irq_cpu = raw_smp_processor_id(); |
| EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", |
| irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); |
| |
| /* Check to see if we have a serious error condition */ |
| syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT); |
| if (unlikely(syserr)) |
| return falcon_fatal_interrupt(efx); |
| |
| /* Schedule processing of the channel */ |
| efx_schedule_channel(channel); |
| |
| return IRQ_HANDLED; |
| } |
| |
| |
| /* Setup RSS indirection table. |
| * This maps from the hash value of the packet to RXQ |
| */ |
| static void falcon_setup_rss_indir_table(struct efx_nic *efx) |
| { |
| int i = 0; |
| unsigned long offset; |
| efx_dword_t dword; |
| |
| if (falcon_rev(efx) < FALCON_REV_B0) |
| return; |
| |
| for (offset = RX_RSS_INDIR_TBL_B0; |
| offset < RX_RSS_INDIR_TBL_B0 + 0x800; |
| offset += 0x10) { |
| EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0, |
| i % efx->n_rx_queues); |
| falcon_writel(efx, &dword, offset); |
| i++; |
| } |
| } |
| |
| /* Hook interrupt handler(s) |
| * Try MSI and then legacy interrupts. |
| */ |
| int falcon_init_interrupt(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| int rc; |
| |
| if (!EFX_INT_MODE_USE_MSI(efx)) { |
| irq_handler_t handler; |
| if (falcon_rev(efx) >= FALCON_REV_B0) |
| handler = falcon_legacy_interrupt_b0; |
| else |
| handler = falcon_legacy_interrupt_a1; |
| |
| rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED, |
| efx->name, efx); |
| if (rc) { |
| EFX_ERR(efx, "failed to hook legacy IRQ %d\n", |
| efx->pci_dev->irq); |
| goto fail1; |
| } |
| return 0; |
| } |
| |
| /* Hook MSI or MSI-X interrupt */ |
| efx_for_each_channel(channel, efx) { |
| rc = request_irq(channel->irq, falcon_msi_interrupt, |
| IRQF_PROBE_SHARED, /* Not shared */ |
| channel->name, channel); |
| if (rc) { |
| EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq); |
| goto fail2; |
| } |
| } |
| |
| return 0; |
| |
| fail2: |
| efx_for_each_channel(channel, efx) |
| free_irq(channel->irq, channel); |
| fail1: |
| return rc; |
| } |
| |
| void falcon_fini_interrupt(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| efx_oword_t reg; |
| |
| /* Disable MSI/MSI-X interrupts */ |
| efx_for_each_channel(channel, efx) { |
| if (channel->irq) |
| free_irq(channel->irq, channel); |
| } |
| |
| /* ACK legacy interrupt */ |
| if (falcon_rev(efx) >= FALCON_REV_B0) |
| falcon_read(efx, ®, INT_ISR0_B0); |
| else |
| falcon_irq_ack_a1(efx); |
| |
| /* Disable legacy interrupt */ |
| if (efx->legacy_irq) |
| free_irq(efx->legacy_irq, efx); |
| } |
| |
| /************************************************************************** |
| * |
| * EEPROM/flash |
| * |
| ************************************************************************** |
| */ |
| |
| #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t) |
| |
| static int falcon_spi_poll(struct efx_nic *efx) |
| { |
| efx_oword_t reg; |
| falcon_read(efx, ®, EE_SPI_HCMD_REG_KER); |
| return EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0; |
| } |
| |
| /* Wait for SPI command completion */ |
| static int falcon_spi_wait(struct efx_nic *efx) |
| { |
| /* Most commands will finish quickly, so we start polling at |
| * very short intervals. Sometimes the command may have to |
| * wait for VPD or expansion ROM access outside of our |
| * control, so we allow up to 100 ms. */ |
| unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10); |
| int i; |
| |
| for (i = 0; i < 10; i++) { |
| if (!falcon_spi_poll(efx)) |
| return 0; |
| udelay(10); |
| } |
| |
| for (;;) { |
| if (!falcon_spi_poll(efx)) |
| return 0; |
| if (time_after_eq(jiffies, timeout)) { |
| EFX_ERR(efx, "timed out waiting for SPI\n"); |
| return -ETIMEDOUT; |
| } |
| schedule_timeout_uninterruptible(1); |
| } |
| } |
| |
| int falcon_spi_cmd(const struct efx_spi_device *spi, |
| unsigned int command, int address, |
| const void *in, void *out, size_t len) |
| { |
| struct efx_nic *efx = spi->efx; |
| bool addressed = (address >= 0); |
| bool reading = (out != NULL); |
| efx_oword_t reg; |
| int rc; |
| |
| /* Input validation */ |
| if (len > FALCON_SPI_MAX_LEN) |
| return -EINVAL; |
| BUG_ON(!mutex_is_locked(&efx->spi_lock)); |
| |
| /* Check that previous command is not still running */ |
| rc = falcon_spi_poll(efx); |
| if (rc) |
| return rc; |
| |
| /* Program address register, if we have an address */ |
| if (addressed) { |
| EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address); |
| falcon_write(efx, ®, EE_SPI_HADR_REG_KER); |
| } |
| |
| /* Program data register, if we have data */ |
| if (in != NULL) { |
| memcpy(®, in, len); |
| falcon_write(efx, ®, EE_SPI_HDATA_REG_KER); |
| } |
| |
| /* Issue read/write command */ |
| EFX_POPULATE_OWORD_7(reg, |
| EE_SPI_HCMD_CMD_EN, 1, |
| EE_SPI_HCMD_SF_SEL, spi->device_id, |
| EE_SPI_HCMD_DABCNT, len, |
| EE_SPI_HCMD_READ, reading, |
| EE_SPI_HCMD_DUBCNT, 0, |
| EE_SPI_HCMD_ADBCNT, |
| (addressed ? spi->addr_len : 0), |
| EE_SPI_HCMD_ENC, command); |
| falcon_write(efx, ®, EE_SPI_HCMD_REG_KER); |
| |
| /* Wait for read/write to complete */ |
| rc = falcon_spi_wait(efx); |
| if (rc) |
| return rc; |
| |
| /* Read data */ |
| if (out != NULL) { |
| falcon_read(efx, ®, EE_SPI_HDATA_REG_KER); |
| memcpy(out, ®, len); |
| } |
| |
| return 0; |
| } |
| |
| static size_t |
| falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start) |
| { |
| return min(FALCON_SPI_MAX_LEN, |
| (spi->block_size - (start & (spi->block_size - 1)))); |
| } |
| |
| static inline u8 |
| efx_spi_munge_command(const struct efx_spi_device *spi, |
| const u8 command, const unsigned int address) |
| { |
| return command | (((address >> 8) & spi->munge_address) << 3); |
| } |
| |
| /* Wait up to 10 ms for buffered write completion */ |
| int falcon_spi_wait_write(const struct efx_spi_device *spi) |
| { |
| struct efx_nic *efx = spi->efx; |
| unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100); |
| u8 status; |
| int rc; |
| |
| for (;;) { |
| rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL, |
| &status, sizeof(status)); |
| if (rc) |
| return rc; |
| if (!(status & SPI_STATUS_NRDY)) |
| return 0; |
| if (time_after_eq(jiffies, timeout)) { |
| EFX_ERR(efx, "SPI write timeout on device %d" |
| " last status=0x%02x\n", |
| spi->device_id, status); |
| return -ETIMEDOUT; |
| } |
| schedule_timeout_uninterruptible(1); |
| } |
| } |
| |
| int falcon_spi_read(const struct efx_spi_device *spi, loff_t start, |
| size_t len, size_t *retlen, u8 *buffer) |
| { |
| size_t block_len, pos = 0; |
| unsigned int command; |
| int rc = 0; |
| |
| while (pos < len) { |
| block_len = min(len - pos, FALCON_SPI_MAX_LEN); |
| |
| command = efx_spi_munge_command(spi, SPI_READ, start + pos); |
| rc = falcon_spi_cmd(spi, command, start + pos, NULL, |
| buffer + pos, block_len); |
| if (rc) |
| break; |
| pos += block_len; |
| |
| /* Avoid locking up the system */ |
| cond_resched(); |
| if (signal_pending(current)) { |
| rc = -EINTR; |
| break; |
| } |
| } |
| |
| if (retlen) |
| *retlen = pos; |
| return rc; |
| } |
| |
| int falcon_spi_write(const struct efx_spi_device *spi, loff_t start, |
| size_t len, size_t *retlen, const u8 *buffer) |
| { |
| u8 verify_buffer[FALCON_SPI_MAX_LEN]; |
| size_t block_len, pos = 0; |
| unsigned int command; |
| int rc = 0; |
| |
| while (pos < len) { |
| rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0); |
| if (rc) |
| break; |
| |
| block_len = min(len - pos, |
| falcon_spi_write_limit(spi, start + pos)); |
| command = efx_spi_munge_command(spi, SPI_WRITE, start + pos); |
| rc = falcon_spi_cmd(spi, command, start + pos, |
| buffer + pos, NULL, block_len); |
| if (rc) |
| break; |
| |
| rc = falcon_spi_wait_write(spi); |
| if (rc) |
| break; |
| |
| command = efx_spi_munge_command(spi, SPI_READ, start + pos); |
| rc = falcon_spi_cmd(spi, command, start + pos, |
| NULL, verify_buffer, block_len); |
| if (memcmp(verify_buffer, buffer + pos, block_len)) { |
| rc = -EIO; |
| break; |
| } |
| |
| pos += block_len; |
| |
| /* Avoid locking up the system */ |
| cond_resched(); |
| if (signal_pending(current)) { |
| rc = -EINTR; |
| break; |
| } |
| } |
| |
| if (retlen) |
| *retlen = pos; |
| return rc; |
| } |
| |
| /************************************************************************** |
| * |
| * MAC wrapper |
| * |
| ************************************************************************** |
| */ |
| |
| static int falcon_reset_macs(struct efx_nic *efx) |
| { |
| efx_oword_t reg; |
| int count; |
| |
| if (falcon_rev(efx) < FALCON_REV_B0) { |
| /* It's not safe to use GLB_CTL_REG to reset the |
| * macs, so instead use the internal MAC resets |
| */ |
| if (!EFX_IS10G(efx)) { |
| EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 1); |
| falcon_write(efx, ®, GM_CFG1_REG); |
| udelay(1000); |
| |
| EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 0); |
| falcon_write(efx, ®, GM_CFG1_REG); |
| udelay(1000); |
| return 0; |
| } else { |
| EFX_POPULATE_OWORD_1(reg, XM_CORE_RST, 1); |
| falcon_write(efx, ®, XM_GLB_CFG_REG); |
| |
| for (count = 0; count < 10000; count++) { |
| falcon_read(efx, ®, XM_GLB_CFG_REG); |
| if (EFX_OWORD_FIELD(reg, XM_CORE_RST) == 0) |
| return 0; |
| udelay(10); |
| } |
| |
| EFX_ERR(efx, "timed out waiting for XMAC core reset\n"); |
| return -ETIMEDOUT; |
| } |
| } |
| |
| /* MAC stats will fail whilst the TX fifo is draining. Serialise |
| * the drain sequence with the statistics fetch */ |
| efx_stats_disable(efx); |
| |
| falcon_read(efx, ®, MAC0_CTRL_REG_KER); |
| EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0, 1); |
| falcon_write(efx, ®, MAC0_CTRL_REG_KER); |
| |
| falcon_read(efx, ®, GLB_CTL_REG_KER); |
| EFX_SET_OWORD_FIELD(reg, RST_XGTX, 1); |
| EFX_SET_OWORD_FIELD(reg, RST_XGRX, 1); |
| EFX_SET_OWORD_FIELD(reg, RST_EM, 1); |
| falcon_write(efx, ®, GLB_CTL_REG_KER); |
| |
| count = 0; |
| while (1) { |
| falcon_read(efx, ®, GLB_CTL_REG_KER); |
| if (!EFX_OWORD_FIELD(reg, RST_XGTX) && |
| !EFX_OWORD_FIELD(reg, RST_XGRX) && |
| !EFX_OWORD_FIELD(reg, RST_EM)) { |
| EFX_LOG(efx, "Completed MAC reset after %d loops\n", |
| count); |
| break; |
| } |
| if (count > 20) { |
| EFX_ERR(efx, "MAC reset failed\n"); |
| break; |
| } |
| count++; |
| udelay(10); |
| } |
| |
| efx_stats_enable(efx); |
| |
| /* If we've reset the EM block and the link is up, then |
| * we'll have to kick the XAUI link so the PHY can recover */ |
| if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx)) |
| falcon_reset_xaui(efx); |
| |
| return 0; |
| } |
| |
| void falcon_drain_tx_fifo(struct efx_nic *efx) |
| { |
| efx_oword_t reg; |
| |
| if ((falcon_rev(efx) < FALCON_REV_B0) || |
| (efx->loopback_mode != LOOPBACK_NONE)) |
| return; |
| |
| falcon_read(efx, ®, MAC0_CTRL_REG_KER); |
| /* There is no point in draining more than once */ |
| if (EFX_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0)) |
| return; |
| |
| falcon_reset_macs(efx); |
| } |
| |
| void falcon_deconfigure_mac_wrapper(struct efx_nic *efx) |
| { |
| efx_oword_t reg; |
| |
| if (falcon_rev(efx) < FALCON_REV_B0) |
| return; |
| |
| /* Isolate the MAC -> RX */ |
| falcon_read(efx, ®, RX_CFG_REG_KER); |
| EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 0); |
| falcon_write(efx, ®, RX_CFG_REG_KER); |
| |
| if (!efx->link_up) |
| falcon_drain_tx_fifo(efx); |
| } |
| |
| void falcon_reconfigure_mac_wrapper(struct efx_nic *efx) |
| { |
| efx_oword_t reg; |
| int link_speed; |
| bool tx_fc; |
| |
| switch (efx->link_speed) { |
| case 10000: link_speed = 3; break; |
| case 1000: link_speed = 2; break; |
| case 100: link_speed = 1; break; |
| default: link_speed = 0; break; |
| } |
| /* MAC_LINK_STATUS controls MAC backpressure but doesn't work |
| * as advertised. Disable to ensure packets are not |
| * indefinitely held and TX queue can be flushed at any point |
| * while the link is down. */ |
| EFX_POPULATE_OWORD_5(reg, |
| MAC_XOFF_VAL, 0xffff /* max pause time */, |
| MAC_BCAD_ACPT, 1, |
| MAC_UC_PROM, efx->promiscuous, |
| MAC_LINK_STATUS, 1, /* always set */ |
| MAC_SPEED, link_speed); |
| /* On B0, MAC backpressure can be disabled and packets get |
| * discarded. */ |
| if (falcon_rev(efx) >= FALCON_REV_B0) { |
| EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0, |
| !efx->link_up); |
| } |
| |
| falcon_write(efx, ®, MAC0_CTRL_REG_KER); |
| |
| /* Restore the multicast hash registers. */ |
| falcon_set_multicast_hash(efx); |
| |
| /* Transmission of pause frames when RX crosses the threshold is |
| * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL. |
| * Action on receipt of pause frames is controller by XM_DIS_FCNTL */ |
| tx_fc = !!(efx->link_fc & EFX_FC_TX); |
| falcon_read(efx, ®, RX_CFG_REG_KER); |
| EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc); |
| |
| /* Unisolate the MAC -> RX */ |
| if (falcon_rev(efx) >= FALCON_REV_B0) |
| EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1); |
| falcon_write(efx, ®, RX_CFG_REG_KER); |
| } |
| |
| int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset) |
| { |
| efx_oword_t reg; |
| u32 *dma_done; |
| int i; |
| |
| if (disable_dma_stats) |
| return 0; |
| |
| /* Statistics fetch will fail if the MAC is in TX drain */ |
| if (falcon_rev(efx) >= FALCON_REV_B0) { |
| efx_oword_t temp; |
| falcon_read(efx, &temp, MAC0_CTRL_REG_KER); |
| if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0)) |
| return 0; |
| } |
| |
| dma_done = (efx->stats_buffer.addr + done_offset); |
| *dma_done = FALCON_STATS_NOT_DONE; |
| wmb(); /* ensure done flag is clear */ |
| |
| /* Initiate DMA transfer of stats */ |
| EFX_POPULATE_OWORD_2(reg, |
| MAC_STAT_DMA_CMD, 1, |
| MAC_STAT_DMA_ADR, |
| efx->stats_buffer.dma_addr); |
| falcon_write(efx, ®, MAC0_STAT_DMA_REG_KER); |
| |
| /* Wait for transfer to complete */ |
| for (i = 0; i < 400; i++) { |
| if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) { |
| rmb(); /* Ensure the stats are valid. */ |
| return 0; |
| } |
| udelay(10); |
| } |
| |
| EFX_ERR(efx, "timed out waiting for statistics\n"); |
| return -ETIMEDOUT; |
| } |
| |
| /************************************************************************** |
| * |
| * PHY access via GMII |
| * |
| ************************************************************************** |
| */ |
| |
| /* Use the top bit of the MII PHY id to indicate the PHY type |
| * (1G/10G), with the remaining bits as the actual PHY id. |
| * |
| * This allows us to avoid leaking information from the mii_if_info |
| * structure into other data structures. |
| */ |
| #define FALCON_PHY_ID_ID_WIDTH EFX_WIDTH(MD_PRT_DEV_ADR) |
| #define FALCON_PHY_ID_ID_MASK ((1 << FALCON_PHY_ID_ID_WIDTH) - 1) |
| #define FALCON_PHY_ID_WIDTH (FALCON_PHY_ID_ID_WIDTH + 1) |
| #define FALCON_PHY_ID_MASK ((1 << FALCON_PHY_ID_WIDTH) - 1) |
| #define FALCON_PHY_ID_10G (1 << (FALCON_PHY_ID_WIDTH - 1)) |
| |
| |
| /* Packing the clause 45 port and device fields into a single value */ |
| #define MD_PRT_ADR_COMP_LBN (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN) |
| #define MD_PRT_ADR_COMP_WIDTH MD_PRT_ADR_WIDTH |
| #define MD_DEV_ADR_COMP_LBN 0 |
| #define MD_DEV_ADR_COMP_WIDTH MD_DEV_ADR_WIDTH |
| |
| |
| /* Wait for GMII access to complete */ |
| static int falcon_gmii_wait(struct efx_nic *efx) |
| { |
| efx_dword_t md_stat; |
| int count; |
| |
| /* wait upto 50ms - taken max from datasheet */ |
| for (count = 0; count < 5000; count++) { |
| falcon_readl(efx, &md_stat, MD_STAT_REG_KER); |
| if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) { |
| if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 || |
| EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) { |
| EFX_ERR(efx, "error from GMII access " |
| EFX_DWORD_FMT"\n", |
| EFX_DWORD_VAL(md_stat)); |
| return -EIO; |
| } |
| return 0; |
| } |
| udelay(10); |
| } |
| EFX_ERR(efx, "timed out waiting for GMII\n"); |
| return -ETIMEDOUT; |
| } |
| |
| /* Writes a GMII register of a PHY connected to Falcon using MDIO. */ |
| static void falcon_mdio_write(struct net_device *net_dev, int phy_id, |
| int addr, int value) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK; |
| efx_oword_t reg; |
| |
| /* The 'generic' prt/dev packing in mdio_10g.h is conveniently |
| * chosen so that the only current user, Falcon, can take the |
| * packed value and use them directly. |
| * Fail to build if this assumption is broken. |
| */ |
| BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G); |
| BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH); |
| BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN); |
| BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN); |
| |
| if (phy_id2 == PHY_ADDR_INVALID) |
| return; |
| |
| /* See falcon_mdio_read for an explanation. */ |
| if (!(phy_id & FALCON_PHY_ID_10G)) { |
| int mmd = ffs(efx->phy_op->mmds) - 1; |
| EFX_TRACE(efx, "Fixing erroneous clause22 write\n"); |
| phy_id2 = mdio_clause45_pack(phy_id2, mmd) |
| & FALCON_PHY_ID_ID_MASK; |
| } |
| |
| EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id, |
| addr, value); |
| |
| spin_lock_bh(&efx->phy_lock); |
| |
| /* Check MII not currently being accessed */ |
| if (falcon_gmii_wait(efx) != 0) |
| goto out; |
| |
| /* Write the address/ID register */ |
| EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr); |
| falcon_write(efx, ®, MD_PHY_ADR_REG_KER); |
| |
| EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2); |
| falcon_write(efx, ®, MD_ID_REG_KER); |
| |
| /* Write data */ |
| EFX_POPULATE_OWORD_1(reg, MD_TXD, value); |
| falcon_write(efx, ®, MD_TXD_REG_KER); |
| |
| EFX_POPULATE_OWORD_2(reg, |
| MD_WRC, 1, |
| MD_GC, 0); |
| falcon_write(efx, ®, MD_CS_REG_KER); |
| |
| /* Wait for data to be written */ |
| if (falcon_gmii_wait(efx) != 0) { |
| /* Abort the write operation */ |
| EFX_POPULATE_OWORD_2(reg, |
| MD_WRC, 0, |
| MD_GC, 1); |
| falcon_write(efx, ®, MD_CS_REG_KER); |
| udelay(10); |
| } |
| |
| out: |
| spin_unlock_bh(&efx->phy_lock); |
| } |
| |
| /* Reads a GMII register from a PHY connected to Falcon. If no value |
| * could be read, -1 will be returned. */ |
| static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK; |
| efx_oword_t reg; |
| int value = -1; |
| |
| if (phy_addr == PHY_ADDR_INVALID) |
| return -1; |
| |
| /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G) |
| * but the generic Linux code does not make any distinction or have |
| * any state for this. |
| * We spot the case where someone tried to talk 22 to a 45 PHY and |
| * redirect the request to the lowest numbered MMD as a clause45 |
| * request. This is enough to allow simple queries like id and link |
| * state to succeed. TODO: We may need to do more in future. |
| */ |
| if (!(phy_id & FALCON_PHY_ID_10G)) { |
| int mmd = ffs(efx->phy_op->mmds) - 1; |
| EFX_TRACE(efx, "Fixing erroneous clause22 read\n"); |
| phy_addr = mdio_clause45_pack(phy_addr, mmd) |
| & FALCON_PHY_ID_ID_MASK; |
| } |
| |
| spin_lock_bh(&efx->phy_lock); |
| |
| /* Check MII not currently being accessed */ |
| if (falcon_gmii_wait(efx) != 0) |
| goto out; |
| |
| EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr); |
| falcon_write(efx, ®, MD_PHY_ADR_REG_KER); |
| |
| EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr); |
| falcon_write(efx, ®, MD_ID_REG_KER); |
| |
| /* Request data to be read */ |
| EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0); |
| falcon_write(efx, ®, MD_CS_REG_KER); |
| |
| /* Wait for data to become available */ |
| value = falcon_gmii_wait(efx); |
| if (value == 0) { |
| falcon_read(efx, ®, MD_RXD_REG_KER); |
| value = EFX_OWORD_FIELD(reg, MD_RXD); |
| EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n", |
| phy_id, addr, value); |
| } else { |
| /* Abort the read operation */ |
| EFX_POPULATE_OWORD_2(reg, |
| MD_RIC, 0, |
| MD_GC, 1); |
| falcon_write(efx, ®, MD_CS_REG_KER); |
| |
| EFX_LOG(efx, "read from GMII 0x%x register %02x, got " |
| "error %d\n", phy_id, addr, value); |
| } |
| |
| out: |
| spin_unlock_bh(&efx->phy_lock); |
| |
| return value; |
| } |
| |
| static void falcon_init_mdio(struct mii_if_info *gmii) |
| { |
| gmii->mdio_read = falcon_mdio_read; |
| gmii->mdio_write = falcon_mdio_write; |
| gmii->phy_id_mask = FALCON_PHY_ID_MASK; |
| gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1); |
| } |
| |
| static int falcon_probe_phy(struct efx_nic *efx) |
| { |
| switch (efx->phy_type) { |
| case PHY_TYPE_SFX7101: |
| efx->phy_op = &falcon_sfx7101_phy_ops; |
| break; |
| case PHY_TYPE_SFT9001A: |
| case PHY_TYPE_SFT9001B: |
| efx->phy_op = &falcon_sft9001_phy_ops; |
| break; |
| case PHY_TYPE_QT2022C2: |
| case PHY_TYPE_QT2025C: |
| efx->phy_op = &falcon_xfp_phy_ops; |
| break; |
| default: |
| EFX_ERR(efx, "Unknown PHY type %d\n", |
| efx->phy_type); |
| return -1; |
| } |
| |
| if (efx->phy_op->macs & EFX_XMAC) |
| efx->loopback_modes |= ((1 << LOOPBACK_XGMII) | |
| (1 << LOOPBACK_XGXS) | |
| (1 << LOOPBACK_XAUI)); |
| if (efx->phy_op->macs & EFX_GMAC) |
| efx->loopback_modes |= (1 << LOOPBACK_GMAC); |
| efx->loopback_modes |= efx->phy_op->loopbacks; |
| |
| return 0; |
| } |
| |
| int falcon_switch_mac(struct efx_nic *efx) |
| { |
| struct efx_mac_operations *old_mac_op = efx->mac_op; |
| efx_oword_t nic_stat; |
| unsigned strap_val; |
| int rc = 0; |
| |
| /* Don't try to fetch MAC stats while we're switching MACs */ |
| efx_stats_disable(efx); |
| |
| /* Internal loopbacks override the phy speed setting */ |
| if (efx->loopback_mode == LOOPBACK_GMAC) { |
| efx->link_speed = 1000; |
| efx->link_fd = true; |
| } else if (LOOPBACK_INTERNAL(efx)) { |
| efx->link_speed = 10000; |
| efx->link_fd = true; |
| } |
| |
| WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| efx->mac_op = (EFX_IS10G(efx) ? |
| &falcon_xmac_operations : &falcon_gmac_operations); |
| |
| /* Always push the NIC_STAT_REG setting even if the mac hasn't |
| * changed, because this function is run post online reset */ |
| falcon_read(efx, &nic_stat, NIC_STAT_REG); |
| strap_val = EFX_IS10G(efx) ? 5 : 3; |
| if (falcon_rev(efx) >= FALCON_REV_B0) { |
| EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_EN, 1); |
| EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_OVR, strap_val); |
| falcon_write(efx, &nic_stat, NIC_STAT_REG); |
| } else { |
| /* Falcon A1 does not support 1G/10G speed switching |
| * and must not be used with a PHY that does. */ |
| BUG_ON(EFX_OWORD_FIELD(nic_stat, STRAP_PINS) != strap_val); |
| } |
| |
| if (old_mac_op == efx->mac_op) |
| goto out; |
| |
| EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G'); |
| /* Not all macs support a mac-level link state */ |
| efx->mac_up = true; |
| |
| rc = falcon_reset_macs(efx); |
| out: |
| efx_stats_enable(efx); |
| return rc; |
| } |
| |
| /* This call is responsible for hooking in the MAC and PHY operations */ |
| int falcon_probe_port(struct efx_nic *efx) |
| { |
| int rc; |
| |
| /* Hook in PHY operations table */ |
| rc = falcon_probe_phy(efx); |
| if (rc) |
| return rc; |
| |
| /* Set up GMII structure for PHY */ |
| efx->mii.supports_gmii = true; |
| falcon_init_mdio(&efx->mii); |
| |
| /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */ |
| if (falcon_rev(efx) >= FALCON_REV_B0) |
| efx->wanted_fc = EFX_FC_RX | EFX_FC_TX; |
| else |
| efx->wanted_fc = EFX_FC_RX; |
| |
| /* Allocate buffer for stats */ |
| rc = falcon_alloc_buffer(efx, &efx->stats_buffer, |
| FALCON_MAC_STATS_SIZE); |
| if (rc) |
| return rc; |
| EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n", |
| (unsigned long long)efx->stats_buffer.dma_addr, |
| efx->stats_buffer.addr, |
| virt_to_phys(efx->stats_buffer.addr)); |
| |
| return 0; |
| } |
| |
| void falcon_remove_port(struct efx_nic *efx) |
| { |
| falcon_free_buffer(efx, &efx->stats_buffer); |
| } |
| |
| /************************************************************************** |
| * |
| * Multicast filtering |
| * |
| ************************************************************************** |
| */ |
| |
| void falcon_set_multicast_hash(struct efx_nic *efx) |
| { |
| union efx_multicast_hash *mc_hash = &efx->multicast_hash; |
| |
| /* Broadcast packets go through the multicast hash filter. |
| * ether_crc_le() of the broadcast address is 0xbe2612ff |
| * so we always add bit 0xff to the mask. |
| */ |
| set_bit_le(0xff, mc_hash->byte); |
| |
| falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER); |
| falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER); |
| } |
| |
| |
| /************************************************************************** |
| * |
| * Falcon test code |
| * |
| **************************************************************************/ |
| |
| int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out) |
| { |
| struct falcon_nvconfig *nvconfig; |
| struct efx_spi_device *spi; |
| void *region; |
| int rc, magic_num, struct_ver; |
| __le16 *word, *limit; |
| u32 csum; |
| |
| spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom; |
| if (!spi) |
| return -EINVAL; |
| |
| region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL); |
| if (!region) |
| return -ENOMEM; |
| nvconfig = region + NVCONFIG_OFFSET; |
| |
| mutex_lock(&efx->spi_lock); |
| rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region); |
| mutex_unlock(&efx->spi_lock); |
| if (rc) { |
| EFX_ERR(efx, "Failed to read %s\n", |
| efx->spi_flash ? "flash" : "EEPROM"); |
| rc = -EIO; |
| goto out; |
| } |
| |
| magic_num = le16_to_cpu(nvconfig->board_magic_num); |
| struct_ver = le16_to_cpu(nvconfig->board_struct_ver); |
| |
| rc = -EINVAL; |
| if (magic_num != NVCONFIG_BOARD_MAGIC_NUM) { |
| EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num); |
| goto out; |
| } |
| if (struct_ver < 2) { |
| EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver); |
| goto out; |
| } else if (struct_ver < 4) { |
| word = &nvconfig->board_magic_num; |
| limit = (__le16 *) (nvconfig + 1); |
| } else { |
| word = region; |
| limit = region + FALCON_NVCONFIG_END; |
| } |
| for (csum = 0; word < limit; ++word) |
| csum += le16_to_cpu(*word); |
| |
| if (~csum & 0xffff) { |
| EFX_ERR(efx, "NVRAM has incorrect checksum\n"); |
| goto out; |
| } |
| |
| rc = 0; |
| if (nvconfig_out) |
| memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig)); |
| |
| out: |
| kfree(region); |
| return rc; |
| } |
| |
| /* Registers tested in the falcon register test */ |
| static struct { |
| unsigned address; |
| efx_oword_t mask; |
| } efx_test_registers[] = { |
| { ADR_REGION_REG_KER, |
| EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) }, |
| { RX_CFG_REG_KER, |
| EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) }, |
| { TX_CFG_REG_KER, |
| EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) }, |
| { TX_CFG2_REG_KER, |
| EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) }, |
| { MAC0_CTRL_REG_KER, |
| EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) }, |
| { SRM_TX_DC_CFG_REG_KER, |
| EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) }, |
| { RX_DC_CFG_REG_KER, |
| EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) }, |
| { RX_DC_PF_WM_REG_KER, |
| EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) }, |
| { DP_CTRL_REG, |
| EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) }, |
| { GM_CFG2_REG, |
| EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) }, |
| { GMF_CFG0_REG, |
| EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) }, |
| { XM_GLB_CFG_REG, |
| EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) }, |
| { XM_TX_CFG_REG, |
| EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) }, |
| { XM_RX_CFG_REG, |
| EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) }, |
| { XM_RX_PARAM_REG, |
| EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) }, |
| { XM_FC_REG, |
| EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) }, |
| { XM_ADR_LO_REG, |
| EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) }, |
| { XX_SD_CTL_REG, |
| EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) }, |
| }; |
| |
| static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, |
| const efx_oword_t *mask) |
| { |
| return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || |
| ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); |
| } |
| |
| int falcon_test_registers(struct efx_nic *efx) |
| { |
| unsigned address = 0, i, j; |
| efx_oword_t mask, imask, original, reg, buf; |
| |
| /* Falcon should be in loopback to isolate the XMAC from the PHY */ |
| WARN_ON(!LOOPBACK_INTERNAL(efx)); |
| |
| for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) { |
| address = efx_test_registers[i].address; |
| mask = imask = efx_test_registers[i].mask; |
| EFX_INVERT_OWORD(imask); |
| |
| falcon_read(efx, &original, address); |
| |
| /* bit sweep on and off */ |
| for (j = 0; j < 128; j++) { |
| if (!EFX_EXTRACT_OWORD32(mask, j, j)) |
| continue; |
| |
| /* Test this testable bit can be set in isolation */ |
| EFX_AND_OWORD(reg, original, mask); |
| EFX_SET_OWORD32(reg, j, j, 1); |
| |
| falcon_write(efx, ®, address); |
| falcon_read(efx, &buf, address); |
| |
| if (efx_masked_compare_oword(®, &buf, &mask)) |
| goto fail; |
| |
| /* Test this testable bit can be cleared in isolation */ |
| EFX_OR_OWORD(reg, original, mask); |
| EFX_SET_OWORD32(reg, j, j, 0); |
| |
| falcon_write(efx, ®, address); |
| falcon_read(efx, &buf, address); |
| |
| if (efx_masked_compare_oword(®, &buf, &mask)) |
| goto fail; |
| } |
| |
| falcon_write(efx, &original, address); |
| } |
| |
| return 0; |
| |
| fail: |
| EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT |
| " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), |
| EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); |
| return -EIO; |
| } |
| |
| /************************************************************************** |
| * |
| * Device reset |
| * |
| ************************************************************************** |
| */ |
| |
| /* Resets NIC to known state. This routine must be called in process |
| * context and is allowed to sleep. */ |
| int falcon_reset_hw(struct efx_nic *efx, enum reset_type method) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t glb_ctl_reg_ker; |
| int rc; |
| |
| EFX_LOG(efx, "performing hardware reset (%d)\n", method); |
| |
| /* Initiate device reset */ |
| if (method == RESET_TYPE_WORLD) { |
| rc = pci_save_state(efx->pci_dev); |
| if (rc) { |
| EFX_ERR(efx, "failed to backup PCI state of primary " |
| "function prior to hardware reset\n"); |
| goto fail1; |
| } |
| if (FALCON_IS_DUAL_FUNC(efx)) { |
| rc = pci_save_state(nic_data->pci_dev2); |
| if (rc) { |
| EFX_ERR(efx, "failed to backup PCI state of " |
| "secondary function prior to " |
| "hardware reset\n"); |
| goto fail2; |
| } |
| } |
| |
| EFX_POPULATE_OWORD_2(glb_ctl_reg_ker, |
| EXT_PHY_RST_DUR, 0x7, |
| SWRST, 1); |
| } else { |
| int reset_phy = (method == RESET_TYPE_INVISIBLE ? |
| EXCLUDE_FROM_RESET : 0); |
| |
| EFX_POPULATE_OWORD_7(glb_ctl_reg_ker, |
| EXT_PHY_RST_CTL, reset_phy, |
| PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET, |
| PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET, |
| PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET, |
| EE_RST_CTL, EXCLUDE_FROM_RESET, |
| EXT_PHY_RST_DUR, 0x7 /* 10ms */, |
| SWRST, 1); |
| } |
| falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER); |
| |
| EFX_LOG(efx, "waiting for hardware reset\n"); |
| schedule_timeout_uninterruptible(HZ / 20); |
| |
| /* Restore PCI configuration if needed */ |
| if (method == RESET_TYPE_WORLD) { |
| if (FALCON_IS_DUAL_FUNC(efx)) { |
| rc = pci_restore_state(nic_data->pci_dev2); |
| if (rc) { |
| EFX_ERR(efx, "failed to restore PCI config for " |
| "the secondary function\n"); |
| goto fail3; |
| } |
| } |
| rc = pci_restore_state(efx->pci_dev); |
| if (rc) { |
| EFX_ERR(efx, "failed to restore PCI config for the " |
| "primary function\n"); |
| goto fail4; |
| } |
| EFX_LOG(efx, "successfully restored PCI config\n"); |
| } |
| |
| /* Assert that reset complete */ |
| falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER); |
| if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) { |
| rc = -ETIMEDOUT; |
| EFX_ERR(efx, "timed out waiting for hardware reset\n"); |
| goto fail5; |
| } |
| EFX_LOG(efx, "hardware reset complete\n"); |
| |
| return 0; |
| |
| /* pci_save_state() and pci_restore_state() MUST be called in pairs */ |
| fail2: |
| fail3: |
| pci_restore_state(efx->pci_dev); |
| fail1: |
| fail4: |
| fail5: |
| return rc; |
| } |
| |
| /* Zeroes out the SRAM contents. This routine must be called in |
| * process context and is allowed to sleep. |
| */ |
| static int falcon_reset_sram(struct efx_nic *efx) |
| { |
| efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker; |
| int count; |
| |
| /* Set the SRAM wake/sleep GPIO appropriately. */ |
| falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER); |
| EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1); |
| EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1); |
| falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER); |
| |
| /* Initiate SRAM reset */ |
| EFX_POPULATE_OWORD_2(srm_cfg_reg_ker, |
| SRAM_OOB_BT_INIT_EN, 1, |
| SRM_NUM_BANKS_AND_BANK_SIZE, 0); |
| falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER); |
| |
| /* Wait for SRAM reset to complete */ |
| count = 0; |
| do { |
| EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count); |
| |
| /* SRAM reset is slow; expect around 16ms */ |
| schedule_timeout_uninterruptible(HZ / 50); |
| |
| /* Check for reset complete */ |
| falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER); |
| if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) { |
| EFX_LOG(efx, "SRAM reset complete\n"); |
| |
| return 0; |
| } |
| } while (++count < 20); /* wait upto 0.4 sec */ |
| |
| EFX_ERR(efx, "timed out waiting for SRAM reset\n"); |
| return -ETIMEDOUT; |
| } |
| |
| static int falcon_spi_device_init(struct efx_nic *efx, |
| struct efx_spi_device **spi_device_ret, |
| unsigned int device_id, u32 device_type) |
| { |
| struct efx_spi_device *spi_device; |
| |
| if (device_type != 0) { |
| spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL); |
| if (!spi_device) |
| return -ENOMEM; |
| spi_device->device_id = device_id; |
| spi_device->size = |
| 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE); |
| spi_device->addr_len = |
| SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN); |
| spi_device->munge_address = (spi_device->size == 1 << 9 && |
| spi_device->addr_len == 1); |
| spi_device->erase_command = |
| SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD); |
| spi_device->erase_size = |
| 1 << SPI_DEV_TYPE_FIELD(device_type, |
| SPI_DEV_TYPE_ERASE_SIZE); |
| spi_device->block_size = |
| 1 << SPI_DEV_TYPE_FIELD(device_type, |
| SPI_DEV_TYPE_BLOCK_SIZE); |
| |
| spi_device->efx = efx; |
| } else { |
| spi_device = NULL; |
| } |
| |
| kfree(*spi_device_ret); |
| *spi_device_ret = spi_device; |
| return 0; |
| } |
| |
| |
| static void falcon_remove_spi_devices(struct efx_nic *efx) |
| { |
| kfree(efx->spi_eeprom); |
| efx->spi_eeprom = NULL; |
| kfree(efx->spi_flash); |
| efx->spi_flash = NULL; |
| } |
| |
| /* Extract non-volatile configuration */ |
| static int falcon_probe_nvconfig(struct efx_nic *efx) |
| { |
| struct falcon_nvconfig *nvconfig; |
| int board_rev; |
| int rc; |
| |
| nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL); |
| if (!nvconfig) |
| return -ENOMEM; |
| |
| rc = falcon_read_nvram(efx, nvconfig); |
| if (rc == -EINVAL) { |
| EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n"); |
| efx->phy_type = PHY_TYPE_NONE; |
| efx->mii.phy_id = PHY_ADDR_INVALID; |
| board_rev = 0; |
| rc = 0; |
| } else if (rc) { |
| goto fail1; |
| } else { |
| struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2; |
| struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3; |
| |
| efx->phy_type = v2->port0_phy_type; |
| efx->mii.phy_id = v2->port0_phy_addr; |
| board_rev = le16_to_cpu(v2->board_revision); |
| |
| if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) { |
| __le32 fl = v3->spi_device_type[EE_SPI_FLASH]; |
| __le32 ee = v3->spi_device_type[EE_SPI_EEPROM]; |
| rc = falcon_spi_device_init(efx, &efx->spi_flash, |
| EE_SPI_FLASH, |
| le32_to_cpu(fl)); |
| if (rc) |
| goto fail2; |
| rc = falcon_spi_device_init(efx, &efx->spi_eeprom, |
| EE_SPI_EEPROM, |
| le32_to_cpu(ee)); |
| if (rc) |
| goto fail2; |
| } |
| } |
| |
| /* Read the MAC addresses */ |
| memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN); |
| |
| EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id); |
| |
| efx_set_board_info(efx, board_rev); |
| |
| kfree(nvconfig); |
| return 0; |
| |
| fail2: |
| falcon_remove_spi_devices(efx); |
| fail1: |
| kfree(nvconfig); |
| return rc; |
| } |
| |
| /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port |
| * count, port speed). Set workaround and feature flags accordingly. |
| */ |
| static int falcon_probe_nic_variant(struct efx_nic *efx) |
| { |
| efx_oword_t altera_build; |
| efx_oword_t nic_stat; |
| |
| falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER); |
| if (EFX_OWORD_FIELD(altera_build, VER_ALL)) { |
| EFX_ERR(efx, "Falcon FPGA not supported\n"); |
| return -ENODEV; |
| } |
| |
| falcon_read(efx, &nic_stat, NIC_STAT_REG); |
| |
| switch (falcon_rev(efx)) { |
| case FALCON_REV_A0: |
| case 0xff: |
| EFX_ERR(efx, "Falcon rev A0 not supported\n"); |
| return -ENODEV; |
| |
| case FALCON_REV_A1: |
| if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) { |
| EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n"); |
| return -ENODEV; |
| } |
| break; |
| |
| case FALCON_REV_B0: |
| break; |
| |
| default: |
| EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx)); |
| return -ENODEV; |
| } |
| |
| /* Initial assumed speed */ |
| efx->link_speed = EFX_OWORD_FIELD(nic_stat, STRAP_10G) ? 10000 : 1000; |
| |
| return 0; |
| } |
| |
| /* Probe all SPI devices on the NIC */ |
| static void falcon_probe_spi_devices(struct efx_nic *efx) |
| { |
| efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg; |
| int boot_dev; |
| |
| falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER); |
| falcon_read(efx, &nic_stat, NIC_STAT_REG); |
| falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER); |
| |
| if (EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE)) { |
| boot_dev = (EFX_OWORD_FIELD(nic_stat, SF_PRST) ? |
| EE_SPI_FLASH : EE_SPI_EEPROM); |
| EFX_LOG(efx, "Booted from %s\n", |
| boot_dev == EE_SPI_FLASH ? "flash" : "EEPROM"); |
| } else { |
| /* Disable VPD and set clock dividers to safe |
| * values for initial programming. */ |
| boot_dev = -1; |
| EFX_LOG(efx, "Booted from internal ASIC settings;" |
| " setting SPI config\n"); |
| EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0, |
| /* 125 MHz / 7 ~= 20 MHz */ |
| EE_SF_CLOCK_DIV, 7, |
| /* 125 MHz / 63 ~= 2 MHz */ |
| EE_EE_CLOCK_DIV, 63); |
| falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER); |
| } |
| |
| if (boot_dev == EE_SPI_FLASH) |
| falcon_spi_device_init(efx, &efx->spi_flash, EE_SPI_FLASH, |
| default_flash_type); |
| if (boot_dev == EE_SPI_EEPROM) |
| falcon_spi_device_init(efx, &efx->spi_eeprom, EE_SPI_EEPROM, |
| large_eeprom_type); |
| } |
| |
| int falcon_probe_nic(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data; |
| int rc; |
| |
| /* Allocate storage for hardware specific data */ |
| nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); |
| if (!nic_data) |
| return -ENOMEM; |
| efx->nic_data = nic_data; |
| |
| /* Determine number of ports etc. */ |
| rc = falcon_probe_nic_variant(efx); |
| if (rc) |
| goto fail1; |
| |
| /* Probe secondary function if expected */ |
| if (FALCON_IS_DUAL_FUNC(efx)) { |
| struct pci_dev *dev = pci_dev_get(efx->pci_dev); |
| |
| while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID, |
| dev))) { |
| if (dev->bus == efx->pci_dev->bus && |
| dev->devfn == efx->pci_dev->devfn + 1) { |
| nic_data->pci_dev2 = dev; |
| break; |
| } |
| } |
| if (!nic_data->pci_dev2) { |
| EFX_ERR(efx, "failed to find secondary function\n"); |
| rc = -ENODEV; |
| goto fail2; |
| } |
| } |
| |
| /* Now we can reset the NIC */ |
| rc = falcon_reset_hw(efx, RESET_TYPE_ALL); |
| if (rc) { |
| EFX_ERR(efx, "failed to reset NIC\n"); |
| goto fail3; |
| } |
| |
| /* Allocate memory for INT_KER */ |
| rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t)); |
| if (rc) |
| goto fail4; |
| BUG_ON(efx->irq_status.dma_addr & 0x0f); |
| |
| EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n", |
| (unsigned long long)efx->irq_status.dma_addr, |
| efx->irq_status.addr, virt_to_phys(efx->irq_status.addr)); |
| |
| falcon_probe_spi_devices(efx); |
| |
| /* Read in the non-volatile configuration */ |
| rc = falcon_probe_nvconfig(efx); |
| if (rc) |
| goto fail5; |
| |
| /* Initialise I2C adapter */ |
| efx->i2c_adap.owner = THIS_MODULE; |
| nic_data->i2c_data = falcon_i2c_bit_operations; |
| nic_data->i2c_data.data = efx; |
| efx->i2c_adap.algo_data = &nic_data->i2c_data; |
| efx->i2c_adap.dev.parent = &efx->pci_dev->dev; |
| strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name)); |
| rc = i2c_bit_add_bus(&efx->i2c_adap); |
| if (rc) |
| goto fail5; |
| |
| return 0; |
| |
| fail5: |
| falcon_remove_spi_devices(efx); |
| falcon_free_buffer(efx, &efx->irq_status); |
| fail4: |
| fail3: |
| if (nic_data->pci_dev2) { |
| pci_dev_put(nic_data->pci_dev2); |
| nic_data->pci_dev2 = NULL; |
| } |
| fail2: |
| fail1: |
| kfree(efx->nic_data); |
| return rc; |
| } |
| |
| /* This call performs hardware-specific global initialisation, such as |
| * defining the descriptor cache sizes and number of RSS channels. |
| * It does not set up any buffers, descriptor rings or event queues. |
| */ |
| int falcon_init_nic(struct efx_nic *efx) |
| { |
| efx_oword_t temp; |
| unsigned thresh; |
| int rc; |
| |
| /* Use on-chip SRAM */ |
| falcon_read(efx, &temp, NIC_STAT_REG); |
| EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1); |
| falcon_write(efx, &temp, NIC_STAT_REG); |
| |
| /* Set the source of the GMAC clock */ |
| if (falcon_rev(efx) == FALCON_REV_B0) { |
| falcon_read(efx, &temp, GPIO_CTL_REG_KER); |
| EFX_SET_OWORD_FIELD(temp, GPIO_USE_NIC_CLK, true); |
| falcon_write(efx, &temp, GPIO_CTL_REG_KER); |
| } |
| |
| /* Set buffer table mode */ |
| EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL); |
| falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER); |
| |
| rc = falcon_reset_sram(efx); |
| if (rc) |
| return rc; |
| |
| /* Set positions of descriptor caches in SRAM. */ |
| EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8); |
| falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER); |
| EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8); |
| falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER); |
| |
| /* Set TX descriptor cache size. */ |
| BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER)); |
| EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER); |
| falcon_write(efx, &temp, TX_DC_CFG_REG_KER); |
| |
| /* Set RX descriptor cache size. Set low watermark to size-8, as |
| * this allows most efficient prefetching. |
| */ |
| BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER)); |
| EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER); |
| falcon_write(efx, &temp, RX_DC_CFG_REG_KER); |
| EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8); |
| falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER); |
| |
| /* Clear the parity enables on the TX data fifos as |
| * they produce false parity errors because of timing issues |
| */ |
| if (EFX_WORKAROUND_5129(efx)) { |
| falcon_read(efx, &temp, SPARE_REG_KER); |
| EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0); |
| falcon_write(efx, &temp, SPARE_REG_KER); |
| } |
| |
| /* Enable all the genuinely fatal interrupts. (They are still |
| * masked by the overall interrupt mask, controlled by |
| * falcon_interrupts()). |
| * |
| * Note: All other fatal interrupts are enabled |
| */ |
| EFX_POPULATE_OWORD_3(temp, |
| ILL_ADR_INT_KER_EN, 1, |
| RBUF_OWN_INT_KER_EN, 1, |
| TBUF_OWN_INT_KER_EN, 1); |
| EFX_INVERT_OWORD(temp); |
| falcon_write(efx, &temp, FATAL_INTR_REG_KER); |
| |
| if (EFX_WORKAROUND_7244(efx)) { |
| falcon_read(efx, &temp, RX_FILTER_CTL_REG); |
| EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8); |
| EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8); |
| EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8); |
| EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8); |
| falcon_write(efx, &temp, RX_FILTER_CTL_REG); |
| } |
| |
| falcon_setup_rss_indir_table(efx); |
| |
| /* Setup RX. Wait for descriptor is broken and must |
| * be disabled. RXDP recovery shouldn't be needed, but is. |
| */ |
| falcon_read(efx, &temp, RX_SELF_RST_REG_KER); |
| EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1); |
| EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1); |
| if (EFX_WORKAROUND_5583(efx)) |
| EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1); |
| falcon_write(efx, &temp, RX_SELF_RST_REG_KER); |
| |
| /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be |
| * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. |
| */ |
| falcon_read(efx, &temp, TX_CFG2_REG_KER); |
| EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe); |
| EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1); |
| EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1); |
| EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0); |
| EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1); |
| /* Enable SW_EV to inherit in char driver - assume harmless here */ |
| EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1); |
| /* Prefetch threshold 2 => fetch when descriptor cache half empty */ |
| EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2); |
| /* Squash TX of packets of 16 bytes or less */ |
| if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx)) |
| EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1); |
| falcon_write(efx, &temp, TX_CFG2_REG_KER); |
| |
| /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16 |
| * descriptors (which is bad). |
| */ |
| falcon_read(efx, &temp, TX_CFG_REG_KER); |
| EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0); |
| falcon_write(efx, &temp, TX_CFG_REG_KER); |
| |
| /* RX config */ |
| falcon_read(efx, &temp, RX_CFG_REG_KER); |
| EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0); |
| if (EFX_WORKAROUND_7575(efx)) |
| EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE, |
| (3 * 4096) / 32); |
| if (falcon_rev(efx) >= FALCON_REV_B0) |
| EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1); |
| |
| /* RX FIFO flow control thresholds */ |
| thresh = ((rx_xon_thresh_bytes >= 0) ? |
| rx_xon_thresh_bytes : efx->type->rx_xon_thresh); |
| EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256); |
| thresh = ((rx_xoff_thresh_bytes >= 0) ? |
| rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh); |
| EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256); |
| /* RX control FIFO thresholds [32 entries] */ |
| EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20); |
| EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25); |
| falcon_write(efx, &temp, RX_CFG_REG_KER); |
| |
| /* Set destination of both TX and RX Flush events */ |
| if (falcon_rev(efx) >= FALCON_REV_B0) { |
| EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0); |
| falcon_write(efx, &temp, DP_CTRL_REG); |
| } |
| |
| return 0; |
| } |
| |
| void falcon_remove_nic(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| int rc; |
| |
| /* Remove I2C adapter and clear it in preparation for a retry */ |
| rc = i2c_del_adapter(&efx->i2c_adap); |
| BUG_ON(rc); |
| memset(&efx->i2c_adap, 0, sizeof(efx->i2c_adap)); |
| |
| falcon_remove_spi_devices(efx); |
| falcon_free_buffer(efx, &efx->irq_status); |
| |
| falcon_reset_hw(efx, RESET_TYPE_ALL); |
| |
| /* Release the second function after the reset */ |
| if (nic_data->pci_dev2) { |
| pci_dev_put(nic_data->pci_dev2); |
| nic_data->pci_dev2 = NULL; |
| } |
| |
| /* Tear down the private nic state */ |
| kfree(efx->nic_data); |
| efx->nic_data = NULL; |
| } |
| |
| void falcon_update_nic_stats(struct efx_nic *efx) |
| { |
| efx_oword_t cnt; |
| |
| falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER); |
| efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT); |
| } |
| |
| /************************************************************************** |
| * |
| * Revision-dependent attributes used by efx.c |
| * |
| ************************************************************************** |
| */ |
| |
| struct efx_nic_type falcon_a_nic_type = { |
| .mem_bar = 2, |
| .mem_map_size = 0x20000, |
| .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1, |
| .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1, |
| .buf_tbl_base = BUF_TBL_KER_A1, |
| .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1, |
| .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1, |
| .txd_ring_mask = FALCON_TXD_RING_MASK, |
| .rxd_ring_mask = FALCON_RXD_RING_MASK, |
| .evq_size = FALCON_EVQ_SIZE, |
| .max_dma_mask = FALCON_DMA_MASK, |
| .tx_dma_mask = FALCON_TX_DMA_MASK, |
| .bug5391_mask = 0xf, |
| .rx_xoff_thresh = 2048, |
| .rx_xon_thresh = 512, |
| .rx_buffer_padding = 0x24, |
| .max_interrupt_mode = EFX_INT_MODE_MSI, |
| .phys_addr_channels = 4, |
| }; |
| |
| struct efx_nic_type falcon_b_nic_type = { |
| .mem_bar = 2, |
| /* Map everything up to and including the RSS indirection |
| * table. Don't map MSI-X table, MSI-X PBA since Linux |
| * requires that they not be mapped. */ |
| .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800, |
| .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0, |
| .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0, |
| .buf_tbl_base = BUF_TBL_KER_B0, |
| .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0, |
| .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0, |
| .txd_ring_mask = FALCON_TXD_RING_MASK, |
| .rxd_ring_mask = FALCON_RXD_RING_MASK, |
| .evq_size = FALCON_EVQ_SIZE, |
| .max_dma_mask = FALCON_DMA_MASK, |
| .tx_dma_mask = FALCON_TX_DMA_MASK, |
| .bug5391_mask = 0, |
| .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */ |
| .rx_xon_thresh = 27648, /* ~3*max MTU */ |
| .rx_buffer_padding = 0, |
| .max_interrupt_mode = EFX_INT_MODE_MSIX, |
| .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy |
| * interrupt handler only supports 32 |
| * channels */ |
| }; |
| |