| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Synthesize TLB refill handlers at runtime. |
| * |
| * Copyright (C) 2004,2005,2006 by Thiemo Seufer |
| * Copyright (C) 2005 Maciej W. Rozycki |
| * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) |
| * |
| * ... and the days got worse and worse and now you see |
| * I've gone completly out of my mind. |
| * |
| * They're coming to take me a away haha |
| * they're coming to take me a away hoho hihi haha |
| * to the funny farm where code is beautiful all the time ... |
| * |
| * (Condolences to Napoleon XIV) |
| */ |
| |
| #include <stdarg.h> |
| |
| #include <linux/mm.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/cacheflush.h> |
| #include <asm/mmu_context.h> |
| #include <asm/inst.h> |
| #include <asm/elf.h> |
| #include <asm/smp.h> |
| #include <asm/war.h> |
| |
| static __init int __attribute__((unused)) r45k_bvahwbug(void) |
| { |
| /* XXX: We should probe for the presence of this bug, but we don't. */ |
| return 0; |
| } |
| |
| static __init int __attribute__((unused)) r4k_250MHZhwbug(void) |
| { |
| /* XXX: We should probe for the presence of this bug, but we don't. */ |
| return 0; |
| } |
| |
| static __init int __attribute__((unused)) bcm1250_m3_war(void) |
| { |
| return BCM1250_M3_WAR; |
| } |
| |
| static __init int __attribute__((unused)) r10000_llsc_war(void) |
| { |
| return R10000_LLSC_WAR; |
| } |
| |
| /* |
| * A little micro-assembler, intended for TLB refill handler |
| * synthesizing. It is intentionally kept simple, does only support |
| * a subset of instructions, and does not try to hide pipeline effects |
| * like branch delay slots. |
| */ |
| |
| enum fields |
| { |
| RS = 0x001, |
| RT = 0x002, |
| RD = 0x004, |
| RE = 0x008, |
| SIMM = 0x010, |
| UIMM = 0x020, |
| BIMM = 0x040, |
| JIMM = 0x080, |
| FUNC = 0x100, |
| SET = 0x200 |
| }; |
| |
| #define OP_MASK 0x2f |
| #define OP_SH 26 |
| #define RS_MASK 0x1f |
| #define RS_SH 21 |
| #define RT_MASK 0x1f |
| #define RT_SH 16 |
| #define RD_MASK 0x1f |
| #define RD_SH 11 |
| #define RE_MASK 0x1f |
| #define RE_SH 6 |
| #define IMM_MASK 0xffff |
| #define IMM_SH 0 |
| #define JIMM_MASK 0x3ffffff |
| #define JIMM_SH 0 |
| #define FUNC_MASK 0x2f |
| #define FUNC_SH 0 |
| #define SET_MASK 0x7 |
| #define SET_SH 0 |
| |
| enum opcode { |
| insn_invalid, |
| insn_addu, insn_addiu, insn_and, insn_andi, insn_beq, |
| insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl, |
| insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0, |
| insn_dsll, insn_dsll32, insn_dsra, insn_dsrl, insn_dsrl32, |
| insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld, |
| insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0, |
| insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll, |
| insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi, |
| insn_tlbwr, insn_xor, insn_xori |
| }; |
| |
| struct insn { |
| enum opcode opcode; |
| u32 match; |
| enum fields fields; |
| }; |
| |
| /* This macro sets the non-variable bits of an instruction. */ |
| #define M(a, b, c, d, e, f) \ |
| ((a) << OP_SH \ |
| | (b) << RS_SH \ |
| | (c) << RT_SH \ |
| | (d) << RD_SH \ |
| | (e) << RE_SH \ |
| | (f) << FUNC_SH) |
| |
| static __initdata struct insn insn_table[] = { |
| { insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM }, |
| { insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD }, |
| { insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD }, |
| { insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM }, |
| { insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM }, |
| { insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM }, |
| { insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM }, |
| { insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM }, |
| { insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM }, |
| { insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM }, |
| { insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM }, |
| { insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM }, |
| { insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD }, |
| { insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET}, |
| { insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET}, |
| { insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE }, |
| { insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE }, |
| { insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE }, |
| { insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE }, |
| { insn_dsrl32, M(spec_op,0,0,0,0,dsrl32_op), RT | RD | RE }, |
| { insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD }, |
| { insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 }, |
| { insn_j, M(j_op,0,0,0,0,0), JIMM }, |
| { insn_jal, M(jal_op,0,0,0,0,0), JIMM }, |
| { insn_jr, M(spec_op,0,0,0,0,jr_op), RS }, |
| { insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM }, |
| { insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM }, |
| { insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM }, |
| { insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM }, |
| { insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM }, |
| { insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET}, |
| { insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET}, |
| { insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM }, |
| { insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 }, |
| { insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM }, |
| { insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM }, |
| { insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM }, |
| { insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE }, |
| { insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE }, |
| { insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE }, |
| { insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD }, |
| { insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM }, |
| { insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 }, |
| { insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 }, |
| { insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 }, |
| { insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD }, |
| { insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM }, |
| { insn_invalid, 0, 0 } |
| }; |
| |
| #undef M |
| |
| static __init u32 build_rs(u32 arg) |
| { |
| if (arg & ~RS_MASK) |
| printk(KERN_WARNING "TLB synthesizer field overflow\n"); |
| |
| return (arg & RS_MASK) << RS_SH; |
| } |
| |
| static __init u32 build_rt(u32 arg) |
| { |
| if (arg & ~RT_MASK) |
| printk(KERN_WARNING "TLB synthesizer field overflow\n"); |
| |
| return (arg & RT_MASK) << RT_SH; |
| } |
| |
| static __init u32 build_rd(u32 arg) |
| { |
| if (arg & ~RD_MASK) |
| printk(KERN_WARNING "TLB synthesizer field overflow\n"); |
| |
| return (arg & RD_MASK) << RD_SH; |
| } |
| |
| static __init u32 build_re(u32 arg) |
| { |
| if (arg & ~RE_MASK) |
| printk(KERN_WARNING "TLB synthesizer field overflow\n"); |
| |
| return (arg & RE_MASK) << RE_SH; |
| } |
| |
| static __init u32 build_simm(s32 arg) |
| { |
| if (arg > 0x7fff || arg < -0x8000) |
| printk(KERN_WARNING "TLB synthesizer field overflow\n"); |
| |
| return arg & 0xffff; |
| } |
| |
| static __init u32 build_uimm(u32 arg) |
| { |
| if (arg & ~IMM_MASK) |
| printk(KERN_WARNING "TLB synthesizer field overflow\n"); |
| |
| return arg & IMM_MASK; |
| } |
| |
| static __init u32 build_bimm(s32 arg) |
| { |
| if (arg > 0x1ffff || arg < -0x20000) |
| printk(KERN_WARNING "TLB synthesizer field overflow\n"); |
| |
| if (arg & 0x3) |
| printk(KERN_WARNING "Invalid TLB synthesizer branch target\n"); |
| |
| return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff); |
| } |
| |
| static __init u32 build_jimm(u32 arg) |
| { |
| if (arg & ~((JIMM_MASK) << 2)) |
| printk(KERN_WARNING "TLB synthesizer field overflow\n"); |
| |
| return (arg >> 2) & JIMM_MASK; |
| } |
| |
| static __init u32 build_func(u32 arg) |
| { |
| if (arg & ~FUNC_MASK) |
| printk(KERN_WARNING "TLB synthesizer field overflow\n"); |
| |
| return arg & FUNC_MASK; |
| } |
| |
| static __init u32 build_set(u32 arg) |
| { |
| if (arg & ~SET_MASK) |
| printk(KERN_WARNING "TLB synthesizer field overflow\n"); |
| |
| return arg & SET_MASK; |
| } |
| |
| /* |
| * The order of opcode arguments is implicitly left to right, |
| * starting with RS and ending with FUNC or IMM. |
| */ |
| static void __init build_insn(u32 **buf, enum opcode opc, ...) |
| { |
| struct insn *ip = NULL; |
| unsigned int i; |
| va_list ap; |
| u32 op; |
| |
| for (i = 0; insn_table[i].opcode != insn_invalid; i++) |
| if (insn_table[i].opcode == opc) { |
| ip = &insn_table[i]; |
| break; |
| } |
| |
| if (!ip) |
| panic("Unsupported TLB synthesizer instruction %d", opc); |
| |
| op = ip->match; |
| va_start(ap, opc); |
| if (ip->fields & RS) op |= build_rs(va_arg(ap, u32)); |
| if (ip->fields & RT) op |= build_rt(va_arg(ap, u32)); |
| if (ip->fields & RD) op |= build_rd(va_arg(ap, u32)); |
| if (ip->fields & RE) op |= build_re(va_arg(ap, u32)); |
| if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32)); |
| if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32)); |
| if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32)); |
| if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32)); |
| if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32)); |
| if (ip->fields & SET) op |= build_set(va_arg(ap, u32)); |
| va_end(ap); |
| |
| **buf = op; |
| (*buf)++; |
| } |
| |
| #define I_u1u2u3(op) \ |
| static inline void __init i##op(u32 **buf, unsigned int a, \ |
| unsigned int b, unsigned int c) \ |
| { \ |
| build_insn(buf, insn##op, a, b, c); \ |
| } |
| |
| #define I_u2u1u3(op) \ |
| static inline void __init i##op(u32 **buf, unsigned int a, \ |
| unsigned int b, unsigned int c) \ |
| { \ |
| build_insn(buf, insn##op, b, a, c); \ |
| } |
| |
| #define I_u3u1u2(op) \ |
| static inline void __init i##op(u32 **buf, unsigned int a, \ |
| unsigned int b, unsigned int c) \ |
| { \ |
| build_insn(buf, insn##op, b, c, a); \ |
| } |
| |
| #define I_u1u2s3(op) \ |
| static inline void __init i##op(u32 **buf, unsigned int a, \ |
| unsigned int b, signed int c) \ |
| { \ |
| build_insn(buf, insn##op, a, b, c); \ |
| } |
| |
| #define I_u2s3u1(op) \ |
| static inline void __init i##op(u32 **buf, unsigned int a, \ |
| signed int b, unsigned int c) \ |
| { \ |
| build_insn(buf, insn##op, c, a, b); \ |
| } |
| |
| #define I_u2u1s3(op) \ |
| static inline void __init i##op(u32 **buf, unsigned int a, \ |
| unsigned int b, signed int c) \ |
| { \ |
| build_insn(buf, insn##op, b, a, c); \ |
| } |
| |
| #define I_u1u2(op) \ |
| static inline void __init i##op(u32 **buf, unsigned int a, \ |
| unsigned int b) \ |
| { \ |
| build_insn(buf, insn##op, a, b); \ |
| } |
| |
| #define I_u1s2(op) \ |
| static inline void __init i##op(u32 **buf, unsigned int a, \ |
| signed int b) \ |
| { \ |
| build_insn(buf, insn##op, a, b); \ |
| } |
| |
| #define I_u1(op) \ |
| static inline void __init i##op(u32 **buf, unsigned int a) \ |
| { \ |
| build_insn(buf, insn##op, a); \ |
| } |
| |
| #define I_0(op) \ |
| static inline void __init i##op(u32 **buf) \ |
| { \ |
| build_insn(buf, insn##op); \ |
| } |
| |
| I_u2u1s3(_addiu); |
| I_u3u1u2(_addu); |
| I_u2u1u3(_andi); |
| I_u3u1u2(_and); |
| I_u1u2s3(_beq); |
| I_u1u2s3(_beql); |
| I_u1s2(_bgez); |
| I_u1s2(_bgezl); |
| I_u1s2(_bltz); |
| I_u1s2(_bltzl); |
| I_u1u2s3(_bne); |
| I_u1u2u3(_dmfc0); |
| I_u1u2u3(_dmtc0); |
| I_u2u1s3(_daddiu); |
| I_u3u1u2(_daddu); |
| I_u2u1u3(_dsll); |
| I_u2u1u3(_dsll32); |
| I_u2u1u3(_dsra); |
| I_u2u1u3(_dsrl); |
| I_u2u1u3(_dsrl32); |
| I_u3u1u2(_dsubu); |
| I_0(_eret); |
| I_u1(_j); |
| I_u1(_jal); |
| I_u1(_jr); |
| I_u2s3u1(_ld); |
| I_u2s3u1(_ll); |
| I_u2s3u1(_lld); |
| I_u1s2(_lui); |
| I_u2s3u1(_lw); |
| I_u1u2u3(_mfc0); |
| I_u1u2u3(_mtc0); |
| I_u2u1u3(_ori); |
| I_0(_rfe); |
| I_u2s3u1(_sc); |
| I_u2s3u1(_scd); |
| I_u2s3u1(_sd); |
| I_u2u1u3(_sll); |
| I_u2u1u3(_sra); |
| I_u2u1u3(_srl); |
| I_u3u1u2(_subu); |
| I_u2s3u1(_sw); |
| I_0(_tlbp); |
| I_0(_tlbwi); |
| I_0(_tlbwr); |
| I_u3u1u2(_xor) |
| I_u2u1u3(_xori); |
| |
| /* |
| * handling labels |
| */ |
| |
| enum label_id { |
| label_invalid, |
| label_second_part, |
| label_leave, |
| label_vmalloc, |
| label_vmalloc_done, |
| label_tlbw_hazard, |
| label_split, |
| label_nopage_tlbl, |
| label_nopage_tlbs, |
| label_nopage_tlbm, |
| label_smp_pgtable_change, |
| label_r3000_write_probe_fail, |
| }; |
| |
| struct label { |
| u32 *addr; |
| enum label_id lab; |
| }; |
| |
| static __init void build_label(struct label **lab, u32 *addr, |
| enum label_id l) |
| { |
| (*lab)->addr = addr; |
| (*lab)->lab = l; |
| (*lab)++; |
| } |
| |
| #define L_LA(lb) \ |
| static inline void l##lb(struct label **lab, u32 *addr) \ |
| { \ |
| build_label(lab, addr, label##lb); \ |
| } |
| |
| L_LA(_second_part) |
| L_LA(_leave) |
| L_LA(_vmalloc) |
| L_LA(_vmalloc_done) |
| L_LA(_tlbw_hazard) |
| L_LA(_split) |
| L_LA(_nopage_tlbl) |
| L_LA(_nopage_tlbs) |
| L_LA(_nopage_tlbm) |
| L_LA(_smp_pgtable_change) |
| L_LA(_r3000_write_probe_fail) |
| |
| /* convenience macros for instructions */ |
| #ifdef CONFIG_64BIT |
| # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off) |
| # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off) |
| # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh) |
| # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh) |
| # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh) |
| # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd) |
| # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd) |
| # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val) |
| # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd) |
| # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd) |
| # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off) |
| # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off) |
| #else |
| # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off) |
| # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off) |
| # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh) |
| # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh) |
| # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh) |
| # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd) |
| # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd) |
| # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val) |
| # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd) |
| # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd) |
| # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off) |
| # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off) |
| #endif |
| |
| #define i_b(buf, off) i_beq(buf, 0, 0, off) |
| #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off) |
| #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off) |
| #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off) |
| #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off) |
| #define i_move(buf, a, b) i_ADDU(buf, a, 0, b) |
| #define i_nop(buf) i_sll(buf, 0, 0, 0) |
| #define i_ssnop(buf) i_sll(buf, 0, 0, 1) |
| #define i_ehb(buf) i_sll(buf, 0, 0, 3) |
| |
| #ifdef CONFIG_64BIT |
| static __init int __attribute__((unused)) in_compat_space_p(long addr) |
| { |
| /* Is this address in 32bit compat space? */ |
| return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L); |
| } |
| |
| static __init int __attribute__((unused)) rel_highest(long val) |
| { |
| return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000; |
| } |
| |
| static __init int __attribute__((unused)) rel_higher(long val) |
| { |
| return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000; |
| } |
| #endif |
| |
| static __init int rel_hi(long val) |
| { |
| return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000; |
| } |
| |
| static __init int rel_lo(long val) |
| { |
| return ((val & 0xffff) ^ 0x8000) - 0x8000; |
| } |
| |
| static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr) |
| { |
| #ifdef CONFIG_64BIT |
| if (!in_compat_space_p(addr)) { |
| i_lui(buf, rs, rel_highest(addr)); |
| if (rel_higher(addr)) |
| i_daddiu(buf, rs, rs, rel_higher(addr)); |
| if (rel_hi(addr)) { |
| i_dsll(buf, rs, rs, 16); |
| i_daddiu(buf, rs, rs, rel_hi(addr)); |
| i_dsll(buf, rs, rs, 16); |
| } else |
| i_dsll32(buf, rs, rs, 0); |
| } else |
| #endif |
| i_lui(buf, rs, rel_hi(addr)); |
| } |
| |
| static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs, |
| long addr) |
| { |
| i_LA_mostly(buf, rs, addr); |
| if (rel_lo(addr)) |
| i_ADDIU(buf, rs, rs, rel_lo(addr)); |
| } |
| |
| /* |
| * handle relocations |
| */ |
| |
| struct reloc { |
| u32 *addr; |
| unsigned int type; |
| enum label_id lab; |
| }; |
| |
| static __init void r_mips_pc16(struct reloc **rel, u32 *addr, |
| enum label_id l) |
| { |
| (*rel)->addr = addr; |
| (*rel)->type = R_MIPS_PC16; |
| (*rel)->lab = l; |
| (*rel)++; |
| } |
| |
| static inline void __resolve_relocs(struct reloc *rel, struct label *lab) |
| { |
| long laddr = (long)lab->addr; |
| long raddr = (long)rel->addr; |
| |
| switch (rel->type) { |
| case R_MIPS_PC16: |
| *rel->addr |= build_bimm(laddr - (raddr + 4)); |
| break; |
| |
| default: |
| panic("Unsupported TLB synthesizer relocation %d", |
| rel->type); |
| } |
| } |
| |
| static __init void resolve_relocs(struct reloc *rel, struct label *lab) |
| { |
| struct label *l; |
| |
| for (; rel->lab != label_invalid; rel++) |
| for (l = lab; l->lab != label_invalid; l++) |
| if (rel->lab == l->lab) |
| __resolve_relocs(rel, l); |
| } |
| |
| static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end, |
| long off) |
| { |
| for (; rel->lab != label_invalid; rel++) |
| if (rel->addr >= first && rel->addr < end) |
| rel->addr += off; |
| } |
| |
| static __init void move_labels(struct label *lab, u32 *first, u32 *end, |
| long off) |
| { |
| for (; lab->lab != label_invalid; lab++) |
| if (lab->addr >= first && lab->addr < end) |
| lab->addr += off; |
| } |
| |
| static __init void copy_handler(struct reloc *rel, struct label *lab, |
| u32 *first, u32 *end, u32 *target) |
| { |
| long off = (long)(target - first); |
| |
| memcpy(target, first, (end - first) * sizeof(u32)); |
| |
| move_relocs(rel, first, end, off); |
| move_labels(lab, first, end, off); |
| } |
| |
| static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel, |
| u32 *addr) |
| { |
| for (; rel->lab != label_invalid; rel++) { |
| if (rel->addr == addr |
| && (rel->type == R_MIPS_PC16 |
| || rel->type == R_MIPS_26)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* convenience functions for labeled branches */ |
| static void __init __attribute__((unused)) |
| il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l) |
| { |
| r_mips_pc16(r, *p, l); |
| i_bltz(p, reg, 0); |
| } |
| |
| static void __init __attribute__((unused)) il_b(u32 **p, struct reloc **r, |
| enum label_id l) |
| { |
| r_mips_pc16(r, *p, l); |
| i_b(p, 0); |
| } |
| |
| static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg, |
| enum label_id l) |
| { |
| r_mips_pc16(r, *p, l); |
| i_beqz(p, reg, 0); |
| } |
| |
| static void __init __attribute__((unused)) |
| il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l) |
| { |
| r_mips_pc16(r, *p, l); |
| i_beqzl(p, reg, 0); |
| } |
| |
| static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg, |
| enum label_id l) |
| { |
| r_mips_pc16(r, *p, l); |
| i_bnez(p, reg, 0); |
| } |
| |
| static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg, |
| enum label_id l) |
| { |
| r_mips_pc16(r, *p, l); |
| i_bgezl(p, reg, 0); |
| } |
| |
| /* The only general purpose registers allowed in TLB handlers. */ |
| #define K0 26 |
| #define K1 27 |
| |
| /* Some CP0 registers */ |
| #define C0_INDEX 0, 0 |
| #define C0_ENTRYLO0 2, 0 |
| #define C0_TCBIND 2, 2 |
| #define C0_ENTRYLO1 3, 0 |
| #define C0_CONTEXT 4, 0 |
| #define C0_BADVADDR 8, 0 |
| #define C0_ENTRYHI 10, 0 |
| #define C0_EPC 14, 0 |
| #define C0_XCONTEXT 20, 0 |
| |
| #ifdef CONFIG_64BIT |
| # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT) |
| #else |
| # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT) |
| #endif |
| |
| /* The worst case length of the handler is around 18 instructions for |
| * R3000-style TLBs and up to 63 instructions for R4000-style TLBs. |
| * Maximum space available is 32 instructions for R3000 and 64 |
| * instructions for R4000. |
| * |
| * We deliberately chose a buffer size of 128, so we won't scribble |
| * over anything important on overflow before we panic. |
| */ |
| static __initdata u32 tlb_handler[128]; |
| |
| /* simply assume worst case size for labels and relocs */ |
| static __initdata struct label labels[128]; |
| static __initdata struct reloc relocs[128]; |
| |
| /* |
| * The R3000 TLB handler is simple. |
| */ |
| static void __init build_r3000_tlb_refill_handler(void) |
| { |
| long pgdc = (long)pgd_current; |
| u32 *p; |
| int i; |
| |
| memset(tlb_handler, 0, sizeof(tlb_handler)); |
| p = tlb_handler; |
| |
| i_mfc0(&p, K0, C0_BADVADDR); |
| i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */ |
| i_lw(&p, K1, rel_lo(pgdc), K1); |
| i_srl(&p, K0, K0, 22); /* load delay */ |
| i_sll(&p, K0, K0, 2); |
| i_addu(&p, K1, K1, K0); |
| i_mfc0(&p, K0, C0_CONTEXT); |
| i_lw(&p, K1, 0, K1); /* cp0 delay */ |
| i_andi(&p, K0, K0, 0xffc); /* load delay */ |
| i_addu(&p, K1, K1, K0); |
| i_lw(&p, K0, 0, K1); |
| i_nop(&p); /* load delay */ |
| i_mtc0(&p, K0, C0_ENTRYLO0); |
| i_mfc0(&p, K1, C0_EPC); /* cp0 delay */ |
| i_tlbwr(&p); /* cp0 delay */ |
| i_jr(&p, K1); |
| i_rfe(&p); /* branch delay */ |
| |
| if (p > tlb_handler + 32) |
| panic("TLB refill handler space exceeded"); |
| |
| pr_info("Synthesized TLB refill handler (%u instructions).\n", |
| (unsigned int)(p - tlb_handler)); |
| |
| pr_debug("\t.set push\n"); |
| pr_debug("\t.set noreorder\n"); |
| for (i = 0; i < (p - tlb_handler); i++) |
| pr_debug("\t.word 0x%08x\n", tlb_handler[i]); |
| pr_debug("\t.set pop\n"); |
| |
| memcpy((void *)ebase, tlb_handler, 0x80); |
| } |
| |
| /* |
| * The R4000 TLB handler is much more complicated. We have two |
| * consecutive handler areas with 32 instructions space each. |
| * Since they aren't used at the same time, we can overflow in the |
| * other one.To keep things simple, we first assume linear space, |
| * then we relocate it to the final handler layout as needed. |
| */ |
| static __initdata u32 final_handler[64]; |
| |
| /* |
| * Hazards |
| * |
| * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0: |
| * 2. A timing hazard exists for the TLBP instruction. |
| * |
| * stalling_instruction |
| * TLBP |
| * |
| * The JTLB is being read for the TLBP throughout the stall generated by the |
| * previous instruction. This is not really correct as the stalling instruction |
| * can modify the address used to access the JTLB. The failure symptom is that |
| * the TLBP instruction will use an address created for the stalling instruction |
| * and not the address held in C0_ENHI and thus report the wrong results. |
| * |
| * The software work-around is to not allow the instruction preceding the TLBP |
| * to stall - make it an NOP or some other instruction guaranteed not to stall. |
| * |
| * Errata 2 will not be fixed. This errata is also on the R5000. |
| * |
| * As if we MIPS hackers wouldn't know how to nop pipelines happy ... |
| */ |
| static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p) |
| { |
| switch (current_cpu_data.cputype) { |
| /* Found by experiment: R4600 v2.0 needs this, too. */ |
| case CPU_R4600: |
| case CPU_R5000: |
| case CPU_R5000A: |
| case CPU_NEVADA: |
| i_nop(p); |
| i_tlbp(p); |
| break; |
| |
| default: |
| i_tlbp(p); |
| break; |
| } |
| } |
| |
| /* |
| * Write random or indexed TLB entry, and care about the hazards from |
| * the preceeding mtc0 and for the following eret. |
| */ |
| enum tlb_write_entry { tlb_random, tlb_indexed }; |
| |
| static __init void build_tlb_write_entry(u32 **p, struct label **l, |
| struct reloc **r, |
| enum tlb_write_entry wmode) |
| { |
| void(*tlbw)(u32 **) = NULL; |
| |
| switch (wmode) { |
| case tlb_random: tlbw = i_tlbwr; break; |
| case tlb_indexed: tlbw = i_tlbwi; break; |
| } |
| |
| switch (current_cpu_data.cputype) { |
| case CPU_R4000PC: |
| case CPU_R4000SC: |
| case CPU_R4000MC: |
| case CPU_R4400PC: |
| case CPU_R4400SC: |
| case CPU_R4400MC: |
| /* |
| * This branch uses up a mtc0 hazard nop slot and saves |
| * two nops after the tlbw instruction. |
| */ |
| il_bgezl(p, r, 0, label_tlbw_hazard); |
| tlbw(p); |
| l_tlbw_hazard(l, *p); |
| i_nop(p); |
| break; |
| |
| case CPU_R4600: |
| case CPU_R4700: |
| case CPU_R5000: |
| case CPU_R5000A: |
| i_nop(p); |
| tlbw(p); |
| i_nop(p); |
| break; |
| |
| case CPU_R4300: |
| case CPU_5KC: |
| case CPU_TX49XX: |
| case CPU_AU1000: |
| case CPU_AU1100: |
| case CPU_AU1500: |
| case CPU_AU1550: |
| case CPU_AU1200: |
| case CPU_PR4450: |
| i_nop(p); |
| tlbw(p); |
| break; |
| |
| case CPU_R10000: |
| case CPU_R12000: |
| case CPU_R14000: |
| case CPU_4KC: |
| case CPU_SB1: |
| case CPU_SB1A: |
| case CPU_4KSC: |
| case CPU_20KC: |
| case CPU_25KF: |
| tlbw(p); |
| break; |
| |
| case CPU_NEVADA: |
| i_nop(p); /* QED specifies 2 nops hazard */ |
| /* |
| * This branch uses up a mtc0 hazard nop slot and saves |
| * a nop after the tlbw instruction. |
| */ |
| il_bgezl(p, r, 0, label_tlbw_hazard); |
| tlbw(p); |
| l_tlbw_hazard(l, *p); |
| break; |
| |
| case CPU_RM7000: |
| i_nop(p); |
| i_nop(p); |
| i_nop(p); |
| i_nop(p); |
| tlbw(p); |
| break; |
| |
| case CPU_4KEC: |
| case CPU_24K: |
| case CPU_34K: |
| case CPU_74K: |
| i_ehb(p); |
| tlbw(p); |
| break; |
| |
| case CPU_RM9000: |
| /* |
| * When the JTLB is updated by tlbwi or tlbwr, a subsequent |
| * use of the JTLB for instructions should not occur for 4 |
| * cpu cycles and use for data translations should not occur |
| * for 3 cpu cycles. |
| */ |
| i_ssnop(p); |
| i_ssnop(p); |
| i_ssnop(p); |
| i_ssnop(p); |
| tlbw(p); |
| i_ssnop(p); |
| i_ssnop(p); |
| i_ssnop(p); |
| i_ssnop(p); |
| break; |
| |
| case CPU_VR4111: |
| case CPU_VR4121: |
| case CPU_VR4122: |
| case CPU_VR4181: |
| case CPU_VR4181A: |
| i_nop(p); |
| i_nop(p); |
| tlbw(p); |
| i_nop(p); |
| i_nop(p); |
| break; |
| |
| case CPU_VR4131: |
| case CPU_VR4133: |
| case CPU_R5432: |
| i_nop(p); |
| i_nop(p); |
| tlbw(p); |
| break; |
| |
| default: |
| panic("No TLB refill handler yet (CPU type: %d)", |
| current_cpu_data.cputype); |
| break; |
| } |
| } |
| |
| #ifdef CONFIG_64BIT |
| /* |
| * TMP and PTR are scratch. |
| * TMP will be clobbered, PTR will hold the pmd entry. |
| */ |
| static __init void |
| build_get_pmde64(u32 **p, struct label **l, struct reloc **r, |
| unsigned int tmp, unsigned int ptr) |
| { |
| long pgdc = (long)pgd_current; |
| |
| /* |
| * The vmalloc handling is not in the hotpath. |
| */ |
| i_dmfc0(p, tmp, C0_BADVADDR); |
| il_bltz(p, r, tmp, label_vmalloc); |
| /* No i_nop needed here, since the next insn doesn't touch TMP. */ |
| |
| #ifdef CONFIG_SMP |
| # ifdef CONFIG_MIPS_MT_SMTC |
| /* |
| * SMTC uses TCBind value as "CPU" index |
| */ |
| i_mfc0(p, ptr, C0_TCBIND); |
| i_dsrl(p, ptr, ptr, 19); |
| # else |
| /* |
| * 64 bit SMP running in XKPHYS has smp_processor_id() << 3 |
| * stored in CONTEXT. |
| */ |
| i_dmfc0(p, ptr, C0_CONTEXT); |
| i_dsrl(p, ptr, ptr, 23); |
| #endif |
| i_LA_mostly(p, tmp, pgdc); |
| i_daddu(p, ptr, ptr, tmp); |
| i_dmfc0(p, tmp, C0_BADVADDR); |
| i_ld(p, ptr, rel_lo(pgdc), ptr); |
| #else |
| i_LA_mostly(p, ptr, pgdc); |
| i_ld(p, ptr, rel_lo(pgdc), ptr); |
| #endif |
| |
| l_vmalloc_done(l, *p); |
| |
| if (PGDIR_SHIFT - 3 < 32) /* get pgd offset in bytes */ |
| i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); |
| else |
| i_dsrl32(p, tmp, tmp, PGDIR_SHIFT - 3 - 32); |
| |
| i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3); |
| i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */ |
| i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */ |
| i_ld(p, ptr, 0, ptr); /* get pmd pointer */ |
| i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */ |
| i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3); |
| i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */ |
| } |
| |
| /* |
| * BVADDR is the faulting address, PTR is scratch. |
| * PTR will hold the pgd for vmalloc. |
| */ |
| static __init void |
| build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r, |
| unsigned int bvaddr, unsigned int ptr) |
| { |
| long swpd = (long)swapper_pg_dir; |
| |
| l_vmalloc(l, *p); |
| i_LA(p, ptr, VMALLOC_START); |
| i_dsubu(p, bvaddr, bvaddr, ptr); |
| |
| if (in_compat_space_p(swpd) && !rel_lo(swpd)) { |
| il_b(p, r, label_vmalloc_done); |
| i_lui(p, ptr, rel_hi(swpd)); |
| } else { |
| i_LA_mostly(p, ptr, swpd); |
| il_b(p, r, label_vmalloc_done); |
| i_daddiu(p, ptr, ptr, rel_lo(swpd)); |
| } |
| } |
| |
| #else /* !CONFIG_64BIT */ |
| |
| /* |
| * TMP and PTR are scratch. |
| * TMP will be clobbered, PTR will hold the pgd entry. |
| */ |
| static __init void __attribute__((unused)) |
| build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr) |
| { |
| long pgdc = (long)pgd_current; |
| |
| /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */ |
| #ifdef CONFIG_SMP |
| #ifdef CONFIG_MIPS_MT_SMTC |
| /* |
| * SMTC uses TCBind value as "CPU" index |
| */ |
| i_mfc0(p, ptr, C0_TCBIND); |
| i_LA_mostly(p, tmp, pgdc); |
| i_srl(p, ptr, ptr, 19); |
| #else |
| /* |
| * smp_processor_id() << 3 is stored in CONTEXT. |
| */ |
| i_mfc0(p, ptr, C0_CONTEXT); |
| i_LA_mostly(p, tmp, pgdc); |
| i_srl(p, ptr, ptr, 23); |
| #endif |
| i_addu(p, ptr, tmp, ptr); |
| #else |
| i_LA_mostly(p, ptr, pgdc); |
| #endif |
| i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ |
| i_lw(p, ptr, rel_lo(pgdc), ptr); |
| i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */ |
| i_sll(p, tmp, tmp, PGD_T_LOG2); |
| i_addu(p, ptr, ptr, tmp); /* add in pgd offset */ |
| } |
| |
| #endif /* !CONFIG_64BIT */ |
| |
| static __init void build_adjust_context(u32 **p, unsigned int ctx) |
| { |
| unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12; |
| unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1); |
| |
| switch (current_cpu_data.cputype) { |
| case CPU_VR41XX: |
| case CPU_VR4111: |
| case CPU_VR4121: |
| case CPU_VR4122: |
| case CPU_VR4131: |
| case CPU_VR4181: |
| case CPU_VR4181A: |
| case CPU_VR4133: |
| shift += 2; |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (shift) |
| i_SRL(p, ctx, ctx, shift); |
| i_andi(p, ctx, ctx, mask); |
| } |
| |
| static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr) |
| { |
| /* |
| * Bug workaround for the Nevada. It seems as if under certain |
| * circumstances the move from cp0_context might produce a |
| * bogus result when the mfc0 instruction and its consumer are |
| * in a different cacheline or a load instruction, probably any |
| * memory reference, is between them. |
| */ |
| switch (current_cpu_data.cputype) { |
| case CPU_NEVADA: |
| i_LW(p, ptr, 0, ptr); |
| GET_CONTEXT(p, tmp); /* get context reg */ |
| break; |
| |
| default: |
| GET_CONTEXT(p, tmp); /* get context reg */ |
| i_LW(p, ptr, 0, ptr); |
| break; |
| } |
| |
| build_adjust_context(p, tmp); |
| i_ADDU(p, ptr, ptr, tmp); /* add in offset */ |
| } |
| |
| static __init void build_update_entries(u32 **p, unsigned int tmp, |
| unsigned int ptep) |
| { |
| /* |
| * 64bit address support (36bit on a 32bit CPU) in a 32bit |
| * Kernel is a special case. Only a few CPUs use it. |
| */ |
| #ifdef CONFIG_64BIT_PHYS_ADDR |
| if (cpu_has_64bits) { |
| i_ld(p, tmp, 0, ptep); /* get even pte */ |
| i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ |
| i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */ |
| i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */ |
| i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */ |
| i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */ |
| } else { |
| int pte_off_even = sizeof(pte_t) / 2; |
| int pte_off_odd = pte_off_even + sizeof(pte_t); |
| |
| /* The pte entries are pre-shifted */ |
| i_lw(p, tmp, pte_off_even, ptep); /* get even pte */ |
| i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */ |
| i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */ |
| i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */ |
| } |
| #else |
| i_LW(p, tmp, 0, ptep); /* get even pte */ |
| i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ |
| if (r45k_bvahwbug()) |
| build_tlb_probe_entry(p); |
| i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */ |
| if (r4k_250MHZhwbug()) |
| i_mtc0(p, 0, C0_ENTRYLO0); |
| i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */ |
| i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */ |
| if (r45k_bvahwbug()) |
| i_mfc0(p, tmp, C0_INDEX); |
| if (r4k_250MHZhwbug()) |
| i_mtc0(p, 0, C0_ENTRYLO1); |
| i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */ |
| #endif |
| } |
| |
| static void __init build_r4000_tlb_refill_handler(void) |
| { |
| u32 *p = tlb_handler; |
| struct label *l = labels; |
| struct reloc *r = relocs; |
| u32 *f; |
| unsigned int final_len; |
| int i; |
| |
| memset(tlb_handler, 0, sizeof(tlb_handler)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| memset(final_handler, 0, sizeof(final_handler)); |
| |
| /* |
| * create the plain linear handler |
| */ |
| if (bcm1250_m3_war()) { |
| i_MFC0(&p, K0, C0_BADVADDR); |
| i_MFC0(&p, K1, C0_ENTRYHI); |
| i_xor(&p, K0, K0, K1); |
| i_SRL(&p, K0, K0, PAGE_SHIFT + 1); |
| il_bnez(&p, &r, K0, label_leave); |
| /* No need for i_nop */ |
| } |
| |
| #ifdef CONFIG_64BIT |
| build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ |
| #else |
| build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ |
| #endif |
| |
| build_get_ptep(&p, K0, K1); |
| build_update_entries(&p, K0, K1); |
| build_tlb_write_entry(&p, &l, &r, tlb_random); |
| l_leave(&l, p); |
| i_eret(&p); /* return from trap */ |
| |
| #ifdef CONFIG_64BIT |
| build_get_pgd_vmalloc64(&p, &l, &r, K0, K1); |
| #endif |
| |
| /* |
| * Overflow check: For the 64bit handler, we need at least one |
| * free instruction slot for the wrap-around branch. In worst |
| * case, if the intended insertion point is a delay slot, we |
| * need three, with the second nop'ed and the third being |
| * unused. |
| */ |
| #ifdef CONFIG_32BIT |
| if ((p - tlb_handler) > 64) |
| panic("TLB refill handler space exceeded"); |
| #else |
| if (((p - tlb_handler) > 63) |
| || (((p - tlb_handler) > 61) |
| && insn_has_bdelay(relocs, tlb_handler + 29))) |
| panic("TLB refill handler space exceeded"); |
| #endif |
| |
| /* |
| * Now fold the handler in the TLB refill handler space. |
| */ |
| #ifdef CONFIG_32BIT |
| f = final_handler; |
| /* Simplest case, just copy the handler. */ |
| copy_handler(relocs, labels, tlb_handler, p, f); |
| final_len = p - tlb_handler; |
| #else /* CONFIG_64BIT */ |
| f = final_handler + 32; |
| if ((p - tlb_handler) <= 32) { |
| /* Just copy the handler. */ |
| copy_handler(relocs, labels, tlb_handler, p, f); |
| final_len = p - tlb_handler; |
| } else { |
| u32 *split = tlb_handler + 30; |
| |
| /* |
| * Find the split point. |
| */ |
| if (insn_has_bdelay(relocs, split - 1)) |
| split--; |
| |
| /* Copy first part of the handler. */ |
| copy_handler(relocs, labels, tlb_handler, split, f); |
| f += split - tlb_handler; |
| |
| /* Insert branch. */ |
| l_split(&l, final_handler); |
| il_b(&f, &r, label_split); |
| if (insn_has_bdelay(relocs, split)) |
| i_nop(&f); |
| else { |
| copy_handler(relocs, labels, split, split + 1, f); |
| move_labels(labels, f, f + 1, -1); |
| f++; |
| split++; |
| } |
| |
| /* Copy the rest of the handler. */ |
| copy_handler(relocs, labels, split, p, final_handler); |
| final_len = (f - (final_handler + 32)) + (p - split); |
| } |
| #endif /* CONFIG_64BIT */ |
| |
| resolve_relocs(relocs, labels); |
| pr_info("Synthesized TLB refill handler (%u instructions).\n", |
| final_len); |
| |
| f = final_handler; |
| #ifdef CONFIG_64BIT |
| if (final_len > 32) |
| final_len = 64; |
| else |
| f = final_handler + 32; |
| #endif /* CONFIG_64BIT */ |
| pr_debug("\t.set push\n"); |
| pr_debug("\t.set noreorder\n"); |
| for (i = 0; i < final_len; i++) |
| pr_debug("\t.word 0x%08x\n", f[i]); |
| pr_debug("\t.set pop\n"); |
| |
| memcpy((void *)ebase, final_handler, 0x100); |
| } |
| |
| /* |
| * TLB load/store/modify handlers. |
| * |
| * Only the fastpath gets synthesized at runtime, the slowpath for |
| * do_page_fault remains normal asm. |
| */ |
| extern void tlb_do_page_fault_0(void); |
| extern void tlb_do_page_fault_1(void); |
| |
| #define __tlb_handler_align \ |
| __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT))) |
| |
| /* |
| * 128 instructions for the fastpath handler is generous and should |
| * never be exceeded. |
| */ |
| #define FASTPATH_SIZE 128 |
| |
| u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE]; |
| u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE]; |
| u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE]; |
| |
| static void __init |
| iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr) |
| { |
| #ifdef CONFIG_SMP |
| # ifdef CONFIG_64BIT_PHYS_ADDR |
| if (cpu_has_64bits) |
| i_lld(p, pte, 0, ptr); |
| else |
| # endif |
| i_LL(p, pte, 0, ptr); |
| #else |
| # ifdef CONFIG_64BIT_PHYS_ADDR |
| if (cpu_has_64bits) |
| i_ld(p, pte, 0, ptr); |
| else |
| # endif |
| i_LW(p, pte, 0, ptr); |
| #endif |
| } |
| |
| static void __init |
| iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr, |
| unsigned int mode) |
| { |
| #ifdef CONFIG_64BIT_PHYS_ADDR |
| unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY); |
| #endif |
| |
| i_ori(p, pte, pte, mode); |
| #ifdef CONFIG_SMP |
| # ifdef CONFIG_64BIT_PHYS_ADDR |
| if (cpu_has_64bits) |
| i_scd(p, pte, 0, ptr); |
| else |
| # endif |
| i_SC(p, pte, 0, ptr); |
| |
| if (r10000_llsc_war()) |
| il_beqzl(p, r, pte, label_smp_pgtable_change); |
| else |
| il_beqz(p, r, pte, label_smp_pgtable_change); |
| |
| # ifdef CONFIG_64BIT_PHYS_ADDR |
| if (!cpu_has_64bits) { |
| /* no i_nop needed */ |
| i_ll(p, pte, sizeof(pte_t) / 2, ptr); |
| i_ori(p, pte, pte, hwmode); |
| i_sc(p, pte, sizeof(pte_t) / 2, ptr); |
| il_beqz(p, r, pte, label_smp_pgtable_change); |
| /* no i_nop needed */ |
| i_lw(p, pte, 0, ptr); |
| } else |
| i_nop(p); |
| # else |
| i_nop(p); |
| # endif |
| #else |
| # ifdef CONFIG_64BIT_PHYS_ADDR |
| if (cpu_has_64bits) |
| i_sd(p, pte, 0, ptr); |
| else |
| # endif |
| i_SW(p, pte, 0, ptr); |
| |
| # ifdef CONFIG_64BIT_PHYS_ADDR |
| if (!cpu_has_64bits) { |
| i_lw(p, pte, sizeof(pte_t) / 2, ptr); |
| i_ori(p, pte, pte, hwmode); |
| i_sw(p, pte, sizeof(pte_t) / 2, ptr); |
| i_lw(p, pte, 0, ptr); |
| } |
| # endif |
| #endif |
| } |
| |
| /* |
| * Check if PTE is present, if not then jump to LABEL. PTR points to |
| * the page table where this PTE is located, PTE will be re-loaded |
| * with it's original value. |
| */ |
| static void __init |
| build_pte_present(u32 **p, struct label **l, struct reloc **r, |
| unsigned int pte, unsigned int ptr, enum label_id lid) |
| { |
| i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ); |
| i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ); |
| il_bnez(p, r, pte, lid); |
| iPTE_LW(p, l, pte, ptr); |
| } |
| |
| /* Make PTE valid, store result in PTR. */ |
| static void __init |
| build_make_valid(u32 **p, struct reloc **r, unsigned int pte, |
| unsigned int ptr) |
| { |
| unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED; |
| |
| iPTE_SW(p, r, pte, ptr, mode); |
| } |
| |
| /* |
| * Check if PTE can be written to, if not branch to LABEL. Regardless |
| * restore PTE with value from PTR when done. |
| */ |
| static void __init |
| build_pte_writable(u32 **p, struct label **l, struct reloc **r, |
| unsigned int pte, unsigned int ptr, enum label_id lid) |
| { |
| i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE); |
| i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE); |
| il_bnez(p, r, pte, lid); |
| iPTE_LW(p, l, pte, ptr); |
| } |
| |
| /* Make PTE writable, update software status bits as well, then store |
| * at PTR. |
| */ |
| static void __init |
| build_make_write(u32 **p, struct reloc **r, unsigned int pte, |
| unsigned int ptr) |
| { |
| unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID |
| | _PAGE_DIRTY); |
| |
| iPTE_SW(p, r, pte, ptr, mode); |
| } |
| |
| /* |
| * Check if PTE can be modified, if not branch to LABEL. Regardless |
| * restore PTE with value from PTR when done. |
| */ |
| static void __init |
| build_pte_modifiable(u32 **p, struct label **l, struct reloc **r, |
| unsigned int pte, unsigned int ptr, enum label_id lid) |
| { |
| i_andi(p, pte, pte, _PAGE_WRITE); |
| il_beqz(p, r, pte, lid); |
| iPTE_LW(p, l, pte, ptr); |
| } |
| |
| /* |
| * R3000 style TLB load/store/modify handlers. |
| */ |
| |
| /* |
| * This places the pte into ENTRYLO0 and writes it with tlbwi. |
| * Then it returns. |
| */ |
| static void __init |
| build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp) |
| { |
| i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ |
| i_mfc0(p, tmp, C0_EPC); /* cp0 delay */ |
| i_tlbwi(p); |
| i_jr(p, tmp); |
| i_rfe(p); /* branch delay */ |
| } |
| |
| /* |
| * This places the pte into ENTRYLO0 and writes it with tlbwi |
| * or tlbwr as appropriate. This is because the index register |
| * may have the probe fail bit set as a result of a trap on a |
| * kseg2 access, i.e. without refill. Then it returns. |
| */ |
| static void __init |
| build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r, |
| unsigned int pte, unsigned int tmp) |
| { |
| i_mfc0(p, tmp, C0_INDEX); |
| i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ |
| il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */ |
| i_mfc0(p, tmp, C0_EPC); /* branch delay */ |
| i_tlbwi(p); /* cp0 delay */ |
| i_jr(p, tmp); |
| i_rfe(p); /* branch delay */ |
| l_r3000_write_probe_fail(l, *p); |
| i_tlbwr(p); /* cp0 delay */ |
| i_jr(p, tmp); |
| i_rfe(p); /* branch delay */ |
| } |
| |
| static void __init |
| build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte, |
| unsigned int ptr) |
| { |
| long pgdc = (long)pgd_current; |
| |
| i_mfc0(p, pte, C0_BADVADDR); |
| i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */ |
| i_lw(p, ptr, rel_lo(pgdc), ptr); |
| i_srl(p, pte, pte, 22); /* load delay */ |
| i_sll(p, pte, pte, 2); |
| i_addu(p, ptr, ptr, pte); |
| i_mfc0(p, pte, C0_CONTEXT); |
| i_lw(p, ptr, 0, ptr); /* cp0 delay */ |
| i_andi(p, pte, pte, 0xffc); /* load delay */ |
| i_addu(p, ptr, ptr, pte); |
| i_lw(p, pte, 0, ptr); |
| i_tlbp(p); /* load delay */ |
| } |
| |
| static void __init build_r3000_tlb_load_handler(void) |
| { |
| u32 *p = handle_tlbl; |
| struct label *l = labels; |
| struct reloc *r = relocs; |
| int i; |
| |
| memset(handle_tlbl, 0, sizeof(handle_tlbl)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| build_r3000_tlbchange_handler_head(&p, K0, K1); |
| build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl); |
| i_nop(&p); /* load delay */ |
| build_make_valid(&p, &r, K0, K1); |
| build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); |
| |
| l_nopage_tlbl(&l, p); |
| i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); |
| i_nop(&p); |
| |
| if ((p - handle_tlbl) > FASTPATH_SIZE) |
| panic("TLB load handler fastpath space exceeded"); |
| |
| resolve_relocs(relocs, labels); |
| pr_info("Synthesized TLB load handler fastpath (%u instructions).\n", |
| (unsigned int)(p - handle_tlbl)); |
| |
| pr_debug("\t.set push\n"); |
| pr_debug("\t.set noreorder\n"); |
| for (i = 0; i < (p - handle_tlbl); i++) |
| pr_debug("\t.word 0x%08x\n", handle_tlbl[i]); |
| pr_debug("\t.set pop\n"); |
| } |
| |
| static void __init build_r3000_tlb_store_handler(void) |
| { |
| u32 *p = handle_tlbs; |
| struct label *l = labels; |
| struct reloc *r = relocs; |
| int i; |
| |
| memset(handle_tlbs, 0, sizeof(handle_tlbs)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| build_r3000_tlbchange_handler_head(&p, K0, K1); |
| build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs); |
| i_nop(&p); /* load delay */ |
| build_make_write(&p, &r, K0, K1); |
| build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); |
| |
| l_nopage_tlbs(&l, p); |
| i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); |
| i_nop(&p); |
| |
| if ((p - handle_tlbs) > FASTPATH_SIZE) |
| panic("TLB store handler fastpath space exceeded"); |
| |
| resolve_relocs(relocs, labels); |
| pr_info("Synthesized TLB store handler fastpath (%u instructions).\n", |
| (unsigned int)(p - handle_tlbs)); |
| |
| pr_debug("\t.set push\n"); |
| pr_debug("\t.set noreorder\n"); |
| for (i = 0; i < (p - handle_tlbs); i++) |
| pr_debug("\t.word 0x%08x\n", handle_tlbs[i]); |
| pr_debug("\t.set pop\n"); |
| } |
| |
| static void __init build_r3000_tlb_modify_handler(void) |
| { |
| u32 *p = handle_tlbm; |
| struct label *l = labels; |
| struct reloc *r = relocs; |
| int i; |
| |
| memset(handle_tlbm, 0, sizeof(handle_tlbm)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| build_r3000_tlbchange_handler_head(&p, K0, K1); |
| build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm); |
| i_nop(&p); /* load delay */ |
| build_make_write(&p, &r, K0, K1); |
| build_r3000_pte_reload_tlbwi(&p, K0, K1); |
| |
| l_nopage_tlbm(&l, p); |
| i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); |
| i_nop(&p); |
| |
| if ((p - handle_tlbm) > FASTPATH_SIZE) |
| panic("TLB modify handler fastpath space exceeded"); |
| |
| resolve_relocs(relocs, labels); |
| pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n", |
| (unsigned int)(p - handle_tlbm)); |
| |
| pr_debug("\t.set push\n"); |
| pr_debug("\t.set noreorder\n"); |
| for (i = 0; i < (p - handle_tlbm); i++) |
| pr_debug("\t.word 0x%08x\n", handle_tlbm[i]); |
| pr_debug("\t.set pop\n"); |
| } |
| |
| /* |
| * R4000 style TLB load/store/modify handlers. |
| */ |
| static void __init |
| build_r4000_tlbchange_handler_head(u32 **p, struct label **l, |
| struct reloc **r, unsigned int pte, |
| unsigned int ptr) |
| { |
| #ifdef CONFIG_64BIT |
| build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */ |
| #else |
| build_get_pgde32(p, pte, ptr); /* get pgd in ptr */ |
| #endif |
| |
| i_MFC0(p, pte, C0_BADVADDR); |
| i_LW(p, ptr, 0, ptr); |
| i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2); |
| i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2); |
| i_ADDU(p, ptr, ptr, pte); |
| |
| #ifdef CONFIG_SMP |
| l_smp_pgtable_change(l, *p); |
| # endif |
| iPTE_LW(p, l, pte, ptr); /* get even pte */ |
| build_tlb_probe_entry(p); |
| } |
| |
| static void __init |
| build_r4000_tlbchange_handler_tail(u32 **p, struct label **l, |
| struct reloc **r, unsigned int tmp, |
| unsigned int ptr) |
| { |
| i_ori(p, ptr, ptr, sizeof(pte_t)); |
| i_xori(p, ptr, ptr, sizeof(pte_t)); |
| build_update_entries(p, tmp, ptr); |
| build_tlb_write_entry(p, l, r, tlb_indexed); |
| l_leave(l, *p); |
| i_eret(p); /* return from trap */ |
| |
| #ifdef CONFIG_64BIT |
| build_get_pgd_vmalloc64(p, l, r, tmp, ptr); |
| #endif |
| } |
| |
| static void __init build_r4000_tlb_load_handler(void) |
| { |
| u32 *p = handle_tlbl; |
| struct label *l = labels; |
| struct reloc *r = relocs; |
| int i; |
| |
| memset(handle_tlbl, 0, sizeof(handle_tlbl)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| if (bcm1250_m3_war()) { |
| i_MFC0(&p, K0, C0_BADVADDR); |
| i_MFC0(&p, K1, C0_ENTRYHI); |
| i_xor(&p, K0, K0, K1); |
| i_SRL(&p, K0, K0, PAGE_SHIFT + 1); |
| il_bnez(&p, &r, K0, label_leave); |
| /* No need for i_nop */ |
| } |
| |
| build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1); |
| build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl); |
| build_make_valid(&p, &r, K0, K1); |
| build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1); |
| |
| l_nopage_tlbl(&l, p); |
| i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); |
| i_nop(&p); |
| |
| if ((p - handle_tlbl) > FASTPATH_SIZE) |
| panic("TLB load handler fastpath space exceeded"); |
| |
| resolve_relocs(relocs, labels); |
| pr_info("Synthesized TLB load handler fastpath (%u instructions).\n", |
| (unsigned int)(p - handle_tlbl)); |
| |
| pr_debug("\t.set push\n"); |
| pr_debug("\t.set noreorder\n"); |
| for (i = 0; i < (p - handle_tlbl); i++) |
| pr_debug("\t.word 0x%08x\n", handle_tlbl[i]); |
| pr_debug("\t.set pop\n"); |
| } |
| |
| static void __init build_r4000_tlb_store_handler(void) |
| { |
| u32 *p = handle_tlbs; |
| struct label *l = labels; |
| struct reloc *r = relocs; |
| int i; |
| |
| memset(handle_tlbs, 0, sizeof(handle_tlbs)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1); |
| build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs); |
| build_make_write(&p, &r, K0, K1); |
| build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1); |
| |
| l_nopage_tlbs(&l, p); |
| i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); |
| i_nop(&p); |
| |
| if ((p - handle_tlbs) > FASTPATH_SIZE) |
| panic("TLB store handler fastpath space exceeded"); |
| |
| resolve_relocs(relocs, labels); |
| pr_info("Synthesized TLB store handler fastpath (%u instructions).\n", |
| (unsigned int)(p - handle_tlbs)); |
| |
| pr_debug("\t.set push\n"); |
| pr_debug("\t.set noreorder\n"); |
| for (i = 0; i < (p - handle_tlbs); i++) |
| pr_debug("\t.word 0x%08x\n", handle_tlbs[i]); |
| pr_debug("\t.set pop\n"); |
| } |
| |
| static void __init build_r4000_tlb_modify_handler(void) |
| { |
| u32 *p = handle_tlbm; |
| struct label *l = labels; |
| struct reloc *r = relocs; |
| int i; |
| |
| memset(handle_tlbm, 0, sizeof(handle_tlbm)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1); |
| build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm); |
| /* Present and writable bits set, set accessed and dirty bits. */ |
| build_make_write(&p, &r, K0, K1); |
| build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1); |
| |
| l_nopage_tlbm(&l, p); |
| i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); |
| i_nop(&p); |
| |
| if ((p - handle_tlbm) > FASTPATH_SIZE) |
| panic("TLB modify handler fastpath space exceeded"); |
| |
| resolve_relocs(relocs, labels); |
| pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n", |
| (unsigned int)(p - handle_tlbm)); |
| |
| pr_debug("\t.set push\n"); |
| pr_debug("\t.set noreorder\n"); |
| for (i = 0; i < (p - handle_tlbm); i++) |
| pr_debug("\t.word 0x%08x\n", handle_tlbm[i]); |
| pr_debug("\t.set pop\n"); |
| } |
| |
| void __init build_tlb_refill_handler(void) |
| { |
| /* |
| * The refill handler is generated per-CPU, multi-node systems |
| * may have local storage for it. The other handlers are only |
| * needed once. |
| */ |
| static int run_once = 0; |
| |
| switch (current_cpu_data.cputype) { |
| case CPU_R2000: |
| case CPU_R3000: |
| case CPU_R3000A: |
| case CPU_R3081E: |
| case CPU_TX3912: |
| case CPU_TX3922: |
| case CPU_TX3927: |
| build_r3000_tlb_refill_handler(); |
| if (!run_once) { |
| build_r3000_tlb_load_handler(); |
| build_r3000_tlb_store_handler(); |
| build_r3000_tlb_modify_handler(); |
| run_once++; |
| } |
| break; |
| |
| case CPU_R6000: |
| case CPU_R6000A: |
| panic("No R6000 TLB refill handler yet"); |
| break; |
| |
| case CPU_R8000: |
| panic("No R8000 TLB refill handler yet"); |
| break; |
| |
| default: |
| build_r4000_tlb_refill_handler(); |
| if (!run_once) { |
| build_r4000_tlb_load_handler(); |
| build_r4000_tlb_store_handler(); |
| build_r4000_tlb_modify_handler(); |
| run_once++; |
| } |
| } |
| } |
| |
| void __init flush_tlb_handlers(void) |
| { |
| flush_icache_range((unsigned long)handle_tlbl, |
| (unsigned long)handle_tlbl + sizeof(handle_tlbl)); |
| flush_icache_range((unsigned long)handle_tlbs, |
| (unsigned long)handle_tlbs + sizeof(handle_tlbs)); |
| flush_icache_range((unsigned long)handle_tlbm, |
| (unsigned long)handle_tlbm + sizeof(handle_tlbm)); |
| } |