blob: d0890c6d4c114087bf730b9b81d829c0cb0e2964 [file] [log] [blame]
/*
* BFQ: Hierarchical B-WF2Q+ scheduler.
*
* Based on ideas and code from CFQ:
* Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
*
* Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
* Paolo Valente <paolo.valente@unimore.it>
*
* Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
*/
#ifdef CONFIG_CGROUP_BFQIO
#define for_each_entity(entity) \
for (; entity != NULL; entity = entity->parent)
#define for_each_entity_safe(entity, parent) \
for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
int extract,
struct bfq_data *bfqd);
static inline void bfq_update_budget(struct bfq_entity *next_in_service)
{
struct bfq_entity *bfqg_entity;
struct bfq_group *bfqg;
struct bfq_sched_data *group_sd;
BUG_ON(next_in_service == NULL);
group_sd = next_in_service->sched_data;
bfqg = container_of(group_sd, struct bfq_group, sched_data);
/*
* bfq_group's my_entity field is not NULL only if the group
* is not the root group. We must not touch the root entity
* as it must never become an in-service entity.
*/
bfqg_entity = bfqg->my_entity;
if (bfqg_entity != NULL)
bfqg_entity->budget = next_in_service->budget;
}
static int bfq_update_next_in_service(struct bfq_sched_data *sd)
{
struct bfq_entity *next_in_service;
if (sd->in_service_entity != NULL)
/* will update/requeue at the end of service */
return 0;
/*
* NOTE: this can be improved in many ways, such as returning
* 1 (and thus propagating upwards the update) only when the
* budget changes, or caching the bfqq that will be scheduled
* next from this subtree. By now we worry more about
* correctness than about performance...
*/
next_in_service = bfq_lookup_next_entity(sd, 0, NULL);
sd->next_in_service = next_in_service;
if (next_in_service != NULL)
bfq_update_budget(next_in_service);
return 1;
}
static inline void bfq_check_next_in_service(struct bfq_sched_data *sd,
struct bfq_entity *entity)
{
BUG_ON(sd->next_in_service != entity);
}
#else
#define for_each_entity(entity) \
for (; entity != NULL; entity = NULL)
#define for_each_entity_safe(entity, parent) \
for (parent = NULL; entity != NULL; entity = parent)
static inline int bfq_update_next_in_service(struct bfq_sched_data *sd)
{
return 0;
}
static inline void bfq_check_next_in_service(struct bfq_sched_data *sd,
struct bfq_entity *entity)
{
}
static inline void bfq_update_budget(struct bfq_entity *next_in_service)
{
}
#endif
/*
* Shift for timestamp calculations. This actually limits the maximum
* service allowed in one timestamp delta (small shift values increase it),
* the maximum total weight that can be used for the queues in the system
* (big shift values increase it), and the period of virtual time
* wraparounds.
*/
#define WFQ_SERVICE_SHIFT 22
/**
* bfq_gt - compare two timestamps.
* @a: first ts.
* @b: second ts.
*
* Return @a > @b, dealing with wrapping correctly.
*/
static inline int bfq_gt(u64 a, u64 b)
{
return (s64)(a - b) > 0;
}
static inline struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
{
struct bfq_queue *bfqq = NULL;
BUG_ON(entity == NULL);
if (entity->my_sched_data == NULL)
bfqq = container_of(entity, struct bfq_queue, entity);
return bfqq;
}
/**
* bfq_delta - map service into the virtual time domain.
* @service: amount of service.
* @weight: scale factor (weight of an entity or weight sum).
*/
static inline u64 bfq_delta(unsigned long service,
unsigned long weight)
{
u64 d = (u64)service << WFQ_SERVICE_SHIFT;
do_div(d, weight);
return d;
}
/**
* bfq_calc_finish - assign the finish time to an entity.
* @entity: the entity to act upon.
* @service: the service to be charged to the entity.
*/
static inline void bfq_calc_finish(struct bfq_entity *entity,
unsigned long service)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
BUG_ON(entity->weight == 0);
entity->finish = entity->start +
bfq_delta(service, entity->weight);
if (bfqq != NULL) {
bfq_log_bfqq(bfqq->bfqd, bfqq,
"calc_finish: serv %lu, w %d",
service, entity->weight);
bfq_log_bfqq(bfqq->bfqd, bfqq,
"calc_finish: start %llu, finish %llu, delta %llu",
entity->start, entity->finish,
bfq_delta(service, entity->weight));
}
}
/**
* bfq_entity_of - get an entity from a node.
* @node: the node field of the entity.
*
* Convert a node pointer to the relative entity. This is used only
* to simplify the logic of some functions and not as the generic
* conversion mechanism because, e.g., in the tree walking functions,
* the check for a %NULL value would be redundant.
*/
static inline struct bfq_entity *bfq_entity_of(struct rb_node *node)
{
struct bfq_entity *entity = NULL;
if (node != NULL)
entity = rb_entry(node, struct bfq_entity, rb_node);
return entity;
}
/**
* bfq_extract - remove an entity from a tree.
* @root: the tree root.
* @entity: the entity to remove.
*/
static inline void bfq_extract(struct rb_root *root,
struct bfq_entity *entity)
{
BUG_ON(entity->tree != root);
entity->tree = NULL;
rb_erase(&entity->rb_node, root);
}
/**
* bfq_idle_extract - extract an entity from the idle tree.
* @st: the service tree of the owning @entity.
* @entity: the entity being removed.
*/
static void bfq_idle_extract(struct bfq_service_tree *st,
struct bfq_entity *entity)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
struct rb_node *next;
BUG_ON(entity->tree != &st->idle);
if (entity == st->first_idle) {
next = rb_next(&entity->rb_node);
st->first_idle = bfq_entity_of(next);
}
if (entity == st->last_idle) {
next = rb_prev(&entity->rb_node);
st->last_idle = bfq_entity_of(next);
}
bfq_extract(&st->idle, entity);
if (bfqq != NULL)
list_del(&bfqq->bfqq_list);
}
/**
* bfq_insert - generic tree insertion.
* @root: tree root.
* @entity: entity to insert.
*
* This is used for the idle and the active tree, since they are both
* ordered by finish time.
*/
static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
{
struct bfq_entity *entry;
struct rb_node **node = &root->rb_node;
struct rb_node *parent = NULL;
BUG_ON(entity->tree != NULL);
while (*node != NULL) {
parent = *node;
entry = rb_entry(parent, struct bfq_entity, rb_node);
if (bfq_gt(entry->finish, entity->finish))
node = &parent->rb_left;
else
node = &parent->rb_right;
}
rb_link_node(&entity->rb_node, parent, node);
rb_insert_color(&entity->rb_node, root);
entity->tree = root;
}
/**
* bfq_update_min - update the min_start field of a entity.
* @entity: the entity to update.
* @node: one of its children.
*
* This function is called when @entity may store an invalid value for
* min_start due to updates to the active tree. The function assumes
* that the subtree rooted at @node (which may be its left or its right
* child) has a valid min_start value.
*/
static inline void bfq_update_min(struct bfq_entity *entity,
struct rb_node *node)
{
struct bfq_entity *child;
if (node != NULL) {
child = rb_entry(node, struct bfq_entity, rb_node);
if (bfq_gt(entity->min_start, child->min_start))
entity->min_start = child->min_start;
}
}
/**
* bfq_update_active_node - recalculate min_start.
* @node: the node to update.
*
* @node may have changed position or one of its children may have moved,
* this function updates its min_start value. The left and right subtrees
* are assumed to hold a correct min_start value.
*/
static inline void bfq_update_active_node(struct rb_node *node)
{
struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
entity->min_start = entity->start;
bfq_update_min(entity, node->rb_right);
bfq_update_min(entity, node->rb_left);
}
/**
* bfq_update_active_tree - update min_start for the whole active tree.
* @node: the starting node.
*
* @node must be the deepest modified node after an update. This function
* updates its min_start using the values held by its children, assuming
* that they did not change, and then updates all the nodes that may have
* changed in the path to the root. The only nodes that may have changed
* are the ones in the path or their siblings.
*/
static void bfq_update_active_tree(struct rb_node *node)
{
struct rb_node *parent;
up:
bfq_update_active_node(node);
parent = rb_parent(node);
if (parent == NULL)
return;
if (node == parent->rb_left && parent->rb_right != NULL)
bfq_update_active_node(parent->rb_right);
else if (parent->rb_left != NULL)
bfq_update_active_node(parent->rb_left);
node = parent;
goto up;
}
static void bfq_weights_tree_add(struct bfq_data *bfqd,
struct bfq_entity *entity,
struct rb_root *root);
static void bfq_weights_tree_remove(struct bfq_data *bfqd,
struct bfq_entity *entity,
struct rb_root *root);
/**
* bfq_active_insert - insert an entity in the active tree of its
* group/device.
* @st: the service tree of the entity.
* @entity: the entity being inserted.
*
* The active tree is ordered by finish time, but an extra key is kept
* per each node, containing the minimum value for the start times of
* its children (and the node itself), so it's possible to search for
* the eligible node with the lowest finish time in logarithmic time.
*/
static void bfq_active_insert(struct bfq_service_tree *st,
struct bfq_entity *entity)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
struct rb_node *node = &entity->rb_node;
#ifdef CONFIG_CGROUP_BFQIO
struct bfq_sched_data *sd = NULL;
struct bfq_group *bfqg = NULL;
struct bfq_data *bfqd = NULL;
#endif
bfq_insert(&st->active, entity);
if (node->rb_left != NULL)
node = node->rb_left;
else if (node->rb_right != NULL)
node = node->rb_right;
bfq_update_active_tree(node);
#ifdef CONFIG_CGROUP_BFQIO
sd = entity->sched_data;
bfqg = container_of(sd, struct bfq_group, sched_data);
BUG_ON(!bfqg);
bfqd = (struct bfq_data *)bfqg->bfqd;
#endif
if (bfqq != NULL)
list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
#ifdef CONFIG_CGROUP_BFQIO
else { /* bfq_group */
BUG_ON(!bfqd);
bfq_weights_tree_add(bfqd, entity, &bfqd->group_weights_tree);
}
if (bfqg != bfqd->root_group) {
BUG_ON(!bfqg);
BUG_ON(!bfqd);
bfqg->active_entities++;
if (bfqg->active_entities == 2)
bfqd->active_numerous_groups++;
}
#endif
}
/**
* bfq_ioprio_to_weight - calc a weight from an ioprio.
* @ioprio: the ioprio value to convert.
*/
static inline unsigned short bfq_ioprio_to_weight(int ioprio)
{
BUG_ON(ioprio < 0 || ioprio >= IOPRIO_BE_NR);
return IOPRIO_BE_NR - ioprio;
}
/**
* bfq_weight_to_ioprio - calc an ioprio from a weight.
* @weight: the weight value to convert.
*
* To preserve as mush as possible the old only-ioprio user interface,
* 0 is used as an escape ioprio value for weights (numerically) equal or
* larger than IOPRIO_BE_NR
*/
static inline unsigned short bfq_weight_to_ioprio(int weight)
{
BUG_ON(weight < BFQ_MIN_WEIGHT || weight > BFQ_MAX_WEIGHT);
return IOPRIO_BE_NR - weight < 0 ? 0 : IOPRIO_BE_NR - weight;
}
static inline void bfq_get_entity(struct bfq_entity *entity)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
if (bfqq != NULL) {
atomic_inc(&bfqq->ref);
bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
bfqq, atomic_read(&bfqq->ref));
}
}
/**
* bfq_find_deepest - find the deepest node that an extraction can modify.
* @node: the node being removed.
*
* Do the first step of an extraction in an rb tree, looking for the
* node that will replace @node, and returning the deepest node that
* the following modifications to the tree can touch. If @node is the
* last node in the tree return %NULL.
*/
static struct rb_node *bfq_find_deepest(struct rb_node *node)
{
struct rb_node *deepest;
if (node->rb_right == NULL && node->rb_left == NULL)
deepest = rb_parent(node);
else if (node->rb_right == NULL)
deepest = node->rb_left;
else if (node->rb_left == NULL)
deepest = node->rb_right;
else {
deepest = rb_next(node);
if (deepest->rb_right != NULL)
deepest = deepest->rb_right;
else if (rb_parent(deepest) != node)
deepest = rb_parent(deepest);
}
return deepest;
}
/**
* bfq_active_extract - remove an entity from the active tree.
* @st: the service_tree containing the tree.
* @entity: the entity being removed.
*/
static void bfq_active_extract(struct bfq_service_tree *st,
struct bfq_entity *entity)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
struct rb_node *node;
#ifdef CONFIG_CGROUP_BFQIO
struct bfq_sched_data *sd = NULL;
struct bfq_group *bfqg = NULL;
struct bfq_data *bfqd = NULL;
#endif
node = bfq_find_deepest(&entity->rb_node);
bfq_extract(&st->active, entity);
if (node != NULL)
bfq_update_active_tree(node);
#ifdef CONFIG_CGROUP_BFQIO
sd = entity->sched_data;
bfqg = container_of(sd, struct bfq_group, sched_data);
BUG_ON(!bfqg);
bfqd = (struct bfq_data *)bfqg->bfqd;
#endif
if (bfqq != NULL)
list_del(&bfqq->bfqq_list);
#ifdef CONFIG_CGROUP_BFQIO
else { /* bfq_group */
BUG_ON(!bfqd);
bfq_weights_tree_remove(bfqd, entity,
&bfqd->group_weights_tree);
}
if (bfqg != bfqd->root_group) {
BUG_ON(!bfqg);
BUG_ON(!bfqd);
BUG_ON(!bfqg->active_entities);
bfqg->active_entities--;
if (bfqg->active_entities == 1) {
BUG_ON(!bfqd->active_numerous_groups);
bfqd->active_numerous_groups--;
}
}
#endif
}
/**
* bfq_idle_insert - insert an entity into the idle tree.
* @st: the service tree containing the tree.
* @entity: the entity to insert.
*/
static void bfq_idle_insert(struct bfq_service_tree *st,
struct bfq_entity *entity)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
struct bfq_entity *first_idle = st->first_idle;
struct bfq_entity *last_idle = st->last_idle;
if (first_idle == NULL || bfq_gt(first_idle->finish, entity->finish))
st->first_idle = entity;
if (last_idle == NULL || bfq_gt(entity->finish, last_idle->finish))
st->last_idle = entity;
bfq_insert(&st->idle, entity);
if (bfqq != NULL)
list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
}
/**
* bfq_forget_entity - remove an entity from the wfq trees.
* @st: the service tree.
* @entity: the entity being removed.
*
* Update the device status and forget everything about @entity, putting
* the device reference to it, if it is a queue. Entities belonging to
* groups are not refcounted.
*/
static void bfq_forget_entity(struct bfq_service_tree *st,
struct bfq_entity *entity)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
struct bfq_sched_data *sd;
BUG_ON(!entity->on_st);
entity->on_st = 0;
st->wsum -= entity->weight;
if (bfqq != NULL) {
sd = entity->sched_data;
bfq_log_bfqq(bfqq->bfqd, bfqq, "forget_entity: %p %d",
bfqq, atomic_read(&bfqq->ref));
bfq_put_queue(bfqq);
}
}
/**
* bfq_put_idle_entity - release the idle tree ref of an entity.
* @st: service tree for the entity.
* @entity: the entity being released.
*/
static void bfq_put_idle_entity(struct bfq_service_tree *st,
struct bfq_entity *entity)
{
bfq_idle_extract(st, entity);
bfq_forget_entity(st, entity);
}
/**
* bfq_forget_idle - update the idle tree if necessary.
* @st: the service tree to act upon.
*
* To preserve the global O(log N) complexity we only remove one entry here;
* as the idle tree will not grow indefinitely this can be done safely.
*/
static void bfq_forget_idle(struct bfq_service_tree *st)
{
struct bfq_entity *first_idle = st->first_idle;
struct bfq_entity *last_idle = st->last_idle;
if (RB_EMPTY_ROOT(&st->active) && last_idle != NULL &&
!bfq_gt(last_idle->finish, st->vtime)) {
/*
* Forget the whole idle tree, increasing the vtime past
* the last finish time of idle entities.
*/
st->vtime = last_idle->finish;
}
if (first_idle != NULL && !bfq_gt(first_idle->finish, st->vtime))
bfq_put_idle_entity(st, first_idle);
}
static struct bfq_service_tree *
__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
struct bfq_entity *entity)
{
struct bfq_service_tree *new_st = old_st;
if (entity->ioprio_changed) {
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
unsigned short prev_weight, new_weight;
struct bfq_data *bfqd = NULL;
struct rb_root *root;
#ifdef CONFIG_CGROUP_BFQIO
struct bfq_sched_data *sd;
struct bfq_group *bfqg;
#endif
if (bfqq != NULL)
bfqd = bfqq->bfqd;
#ifdef CONFIG_CGROUP_BFQIO
else {
sd = entity->my_sched_data;
bfqg = container_of(sd, struct bfq_group, sched_data);
BUG_ON(!bfqg);
bfqd = (struct bfq_data *)bfqg->bfqd;
BUG_ON(!bfqd);
}
#endif
BUG_ON(old_st->wsum < entity->weight);
old_st->wsum -= entity->weight;
if (entity->new_weight != entity->orig_weight) {
if (entity->new_weight < BFQ_MIN_WEIGHT ||
entity->new_weight > BFQ_MAX_WEIGHT) {
printk(KERN_CRIT "update_weight_prio: "
"new_weight %d\n",
entity->new_weight);
BUG();
}
entity->orig_weight = entity->new_weight;
entity->ioprio =
bfq_weight_to_ioprio(entity->orig_weight);
}
entity->ioprio_class = entity->new_ioprio_class;
entity->ioprio_changed = 0;
/*
* NOTE: here we may be changing the weight too early,
* this will cause unfairness. The correct approach
* would have required additional complexity to defer
* weight changes to the proper time instants (i.e.,
* when entity->finish <= old_st->vtime).
*/
new_st = bfq_entity_service_tree(entity);
prev_weight = entity->weight;
new_weight = entity->orig_weight *
(bfqq != NULL ? bfqq->wr_coeff : 1);
/*
* If the weight of the entity changes, remove the entity
* from its old weight counter (if there is a counter
* associated with the entity), and add it to the counter
* associated with its new weight.
*/
if (prev_weight != new_weight) {
root = bfqq ? &bfqd->queue_weights_tree :
&bfqd->group_weights_tree;
bfq_weights_tree_remove(bfqd, entity, root);
}
entity->weight = new_weight;
/*
* Add the entity to its weights tree only if it is
* not associated with a weight-raised queue.
*/
if (prev_weight != new_weight &&
(bfqq ? bfqq->wr_coeff == 1 : 1))
/* If we get here, root has been initialized. */
bfq_weights_tree_add(bfqd, entity, root);
new_st->wsum += entity->weight;
if (new_st != old_st)
entity->start = new_st->vtime;
}
return new_st;
}
/**
* bfq_bfqq_served - update the scheduler status after selection for
* service.
* @bfqq: the queue being served.
* @served: bytes to transfer.
*
* NOTE: this can be optimized, as the timestamps of upper level entities
* are synchronized every time a new bfqq is selected for service. By now,
* we keep it to better check consistency.
*/
static void bfq_bfqq_served(struct bfq_queue *bfqq, unsigned long served)
{
struct bfq_entity *entity = &bfqq->entity;
struct bfq_service_tree *st;
for_each_entity(entity) {
st = bfq_entity_service_tree(entity);
entity->service += served;
BUG_ON(entity->service > entity->budget);
BUG_ON(st->wsum == 0);
st->vtime += bfq_delta(served, st->wsum);
bfq_forget_idle(st);
}
bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %lu secs", served);
}
/**
* bfq_bfqq_charge_full_budget - set the service to the entity budget.
* @bfqq: the queue that needs a service update.
*
* When it's not possible to be fair in the service domain, because
* a queue is not consuming its budget fast enough (the meaning of
* fast depends on the timeout parameter), we charge it a full
* budget. In this way we should obtain a sort of time-domain
* fairness among all the seeky/slow queues.
*/
static inline void bfq_bfqq_charge_full_budget(struct bfq_queue *bfqq)
{
struct bfq_entity *entity = &bfqq->entity;
bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_full_budget");
bfq_bfqq_served(bfqq, entity->budget - entity->service);
}
/**
* __bfq_activate_entity - activate an entity.
* @entity: the entity being activated.
*
* Called whenever an entity is activated, i.e., it is not active and one
* of its children receives a new request, or has to be reactivated due to
* budget exhaustion. It uses the current budget of the entity (and the
* service received if @entity is active) of the queue to calculate its
* timestamps.
*/
static void __bfq_activate_entity(struct bfq_entity *entity)
{
struct bfq_sched_data *sd = entity->sched_data;
struct bfq_service_tree *st = bfq_entity_service_tree(entity);
if (entity == sd->in_service_entity) {
BUG_ON(entity->tree != NULL);
/*
* If we are requeueing the current entity we have
* to take care of not charging to it service it has
* not received.
*/
bfq_calc_finish(entity, entity->service);
entity->start = entity->finish;
sd->in_service_entity = NULL;
} else if (entity->tree == &st->active) {
/*
* Requeueing an entity due to a change of some
* next_in_service entity below it. We reuse the
* old start time.
*/
bfq_active_extract(st, entity);
} else if (entity->tree == &st->idle) {
/*
* Must be on the idle tree, bfq_idle_extract() will
* check for that.
*/
bfq_idle_extract(st, entity);
entity->start = bfq_gt(st->vtime, entity->finish) ?
st->vtime : entity->finish;
} else {
/*
* The finish time of the entity may be invalid, and
* it is in the past for sure, otherwise the queue
* would have been on the idle tree.
*/
entity->start = st->vtime;
st->wsum += entity->weight;
bfq_get_entity(entity);
BUG_ON(entity->on_st);
entity->on_st = 1;
}
st = __bfq_entity_update_weight_prio(st, entity);
bfq_calc_finish(entity, entity->budget);
bfq_active_insert(st, entity);
}
/**
* bfq_activate_entity - activate an entity and its ancestors if necessary.
* @entity: the entity to activate.
*
* Activate @entity and all the entities on the path from it to the root.
*/
static void bfq_activate_entity(struct bfq_entity *entity)
{
struct bfq_sched_data *sd;
for_each_entity(entity) {
__bfq_activate_entity(entity);
sd = entity->sched_data;
if (!bfq_update_next_in_service(sd))
/*
* No need to propagate the activation to the
* upper entities, as they will be updated when
* the in-service entity is rescheduled.
*/
break;
}
}
/**
* __bfq_deactivate_entity - deactivate an entity from its service tree.
* @entity: the entity to deactivate.
* @requeue: if false, the entity will not be put into the idle tree.
*
* Deactivate an entity, independently from its previous state. If the
* entity was not on a service tree just return, otherwise if it is on
* any scheduler tree, extract it from that tree, and if necessary
* and if the caller did not specify @requeue, put it on the idle tree.
*
* Return %1 if the caller should update the entity hierarchy, i.e.,
* if the entity was in service or if it was the next_in_service for
* its sched_data; return %0 otherwise.
*/
static int __bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
{
struct bfq_sched_data *sd = entity->sched_data;
struct bfq_service_tree *st = bfq_entity_service_tree(entity);
int was_in_service = entity == sd->in_service_entity;
int ret = 0;
if (!entity->on_st)
return 0;
BUG_ON(was_in_service && entity->tree != NULL);
if (was_in_service) {
bfq_calc_finish(entity, entity->service);
sd->in_service_entity = NULL;
} else if (entity->tree == &st->active)
bfq_active_extract(st, entity);
else if (entity->tree == &st->idle)
bfq_idle_extract(st, entity);
else if (entity->tree != NULL)
BUG();
if (was_in_service || sd->next_in_service == entity)
ret = bfq_update_next_in_service(sd);
if (!requeue || !bfq_gt(entity->finish, st->vtime))
bfq_forget_entity(st, entity);
else
bfq_idle_insert(st, entity);
BUG_ON(sd->in_service_entity == entity);
BUG_ON(sd->next_in_service == entity);
return ret;
}
/**
* bfq_deactivate_entity - deactivate an entity.
* @entity: the entity to deactivate.
* @requeue: true if the entity can be put on the idle tree
*/
static void bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
{
struct bfq_sched_data *sd;
struct bfq_entity *parent;
for_each_entity_safe(entity, parent) {
sd = entity->sched_data;
if (!__bfq_deactivate_entity(entity, requeue))
/*
* The parent entity is still backlogged, and
* we don't need to update it as it is still
* in service.
*/
break;
if (sd->next_in_service != NULL)
/*
* The parent entity is still backlogged and
* the budgets on the path towards the root
* need to be updated.
*/
goto update;
/*
* If we reach there the parent is no more backlogged and
* we want to propagate the dequeue upwards.
*/
requeue = 1;
}
return;
update:
entity = parent;
for_each_entity(entity) {
__bfq_activate_entity(entity);
sd = entity->sched_data;
if (!bfq_update_next_in_service(sd))
break;
}
}
/**
* bfq_update_vtime - update vtime if necessary.
* @st: the service tree to act upon.
*
* If necessary update the service tree vtime to have at least one
* eligible entity, skipping to its start time. Assumes that the
* active tree of the device is not empty.
*
* NOTE: this hierarchical implementation updates vtimes quite often,
* we may end up with reactivated processes getting timestamps after a
* vtime skip done because we needed a ->first_active entity on some
* intermediate node.
*/
static void bfq_update_vtime(struct bfq_service_tree *st)
{
struct bfq_entity *entry;
struct rb_node *node = st->active.rb_node;
entry = rb_entry(node, struct bfq_entity, rb_node);
if (bfq_gt(entry->min_start, st->vtime)) {
st->vtime = entry->min_start;
bfq_forget_idle(st);
}
}
/**
* bfq_first_active_entity - find the eligible entity with
* the smallest finish time
* @st: the service tree to select from.
*
* This function searches the first schedulable entity, starting from the
* root of the tree and going on the left every time on this side there is
* a subtree with at least one eligible (start >= vtime) entity. The path on
* the right is followed only if a) the left subtree contains no eligible
* entities and b) no eligible entity has been found yet.
*/
static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st)
{
struct bfq_entity *entry, *first = NULL;
struct rb_node *node = st->active.rb_node;
while (node != NULL) {
entry = rb_entry(node, struct bfq_entity, rb_node);
left:
if (!bfq_gt(entry->start, st->vtime))
first = entry;
BUG_ON(bfq_gt(entry->min_start, st->vtime));
if (node->rb_left != NULL) {
entry = rb_entry(node->rb_left,
struct bfq_entity, rb_node);
if (!bfq_gt(entry->min_start, st->vtime)) {
node = node->rb_left;
goto left;
}
}
if (first != NULL)
break;
node = node->rb_right;
}
BUG_ON(first == NULL && !RB_EMPTY_ROOT(&st->active));
return first;
}
/**
* __bfq_lookup_next_entity - return the first eligible entity in @st.
* @st: the service tree.
*
* Update the virtual time in @st and return the first eligible entity
* it contains.
*/
static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st,
bool force)
{
struct bfq_entity *entity, *new_next_in_service = NULL;
if (RB_EMPTY_ROOT(&st->active))
return NULL;
bfq_update_vtime(st);
entity = bfq_first_active_entity(st);
BUG_ON(bfq_gt(entity->start, st->vtime));
/*
* If the chosen entity does not match with the sched_data's
* next_in_service and we are forcedly serving the IDLE priority
* class tree, bubble up budget update.
*/
if (unlikely(force && entity != entity->sched_data->next_in_service)) {
new_next_in_service = entity;
for_each_entity(new_next_in_service)
bfq_update_budget(new_next_in_service);
}
return entity;
}
/**
* bfq_lookup_next_entity - return the first eligible entity in @sd.
* @sd: the sched_data.
* @extract: if true the returned entity will be also extracted from @sd.
*
* NOTE: since we cache the next_in_service entity at each level of the
* hierarchy, the complexity of the lookup can be decreased with
* absolutely no effort just returning the cached next_in_service value;
* we prefer to do full lookups to test the consistency of * the data
* structures.
*/
static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
int extract,
struct bfq_data *bfqd)
{
struct bfq_service_tree *st = sd->service_tree;
struct bfq_entity *entity;
int i = 0;
BUG_ON(sd->in_service_entity != NULL);
if (bfqd != NULL &&
jiffies - bfqd->bfq_class_idle_last_service > BFQ_CL_IDLE_TIMEOUT) {
entity = __bfq_lookup_next_entity(st + BFQ_IOPRIO_CLASSES - 1,
true);
if (entity != NULL) {
i = BFQ_IOPRIO_CLASSES - 1;
bfqd->bfq_class_idle_last_service = jiffies;
sd->next_in_service = entity;
}
}
for (; i < BFQ_IOPRIO_CLASSES; i++) {
entity = __bfq_lookup_next_entity(st + i, false);
if (entity != NULL) {
if (extract) {
bfq_check_next_in_service(sd, entity);
bfq_active_extract(st + i, entity);
sd->in_service_entity = entity;
sd->next_in_service = NULL;
}
break;
}
}
return entity;
}
/*
* Get next queue for service.
*/
static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
{
struct bfq_entity *entity = NULL;
struct bfq_sched_data *sd;
struct bfq_queue *bfqq;
BUG_ON(bfqd->in_service_queue != NULL);
if (bfqd->busy_queues == 0)
return NULL;
sd = &bfqd->root_group->sched_data;
for (; sd != NULL; sd = entity->my_sched_data) {
entity = bfq_lookup_next_entity(sd, 1, bfqd);
BUG_ON(entity == NULL);
entity->service = 0;
}
bfqq = bfq_entity_to_bfqq(entity);
BUG_ON(bfqq == NULL);
return bfqq;
}
static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
{
if (bfqd->in_service_bic != NULL) {
put_io_context(bfqd->in_service_bic->icq.ioc);
bfqd->in_service_bic = NULL;
}
bfqd->in_service_queue = NULL;
del_timer(&bfqd->idle_slice_timer);
}
static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
int requeue)
{
struct bfq_entity *entity = &bfqq->entity;
if (bfqq == bfqd->in_service_queue)
__bfq_bfqd_reset_in_service(bfqd);
bfq_deactivate_entity(entity, requeue);
}
static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
struct bfq_entity *entity = &bfqq->entity;
bfq_activate_entity(entity);
}
/*
* Called when the bfqq no longer has requests pending, remove it from
* the service tree.
*/
static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
int requeue)
{
BUG_ON(!bfq_bfqq_busy(bfqq));
BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
bfq_log_bfqq(bfqd, bfqq, "del from busy");
bfq_clear_bfqq_busy(bfqq);
BUG_ON(bfqd->busy_queues == 0);
bfqd->busy_queues--;
if (!bfqq->dispatched) {
bfq_weights_tree_remove(bfqd, &bfqq->entity,
&bfqd->queue_weights_tree);
if (!blk_queue_nonrot(bfqd->queue)) {
BUG_ON(!bfqd->busy_in_flight_queues);
bfqd->busy_in_flight_queues--;
if (bfq_bfqq_constantly_seeky(bfqq)) {
BUG_ON(!bfqd->
const_seeky_busy_in_flight_queues);
bfqd->const_seeky_busy_in_flight_queues--;
}
}
}
if (bfqq->wr_coeff > 1)
bfqd->wr_busy_queues--;
bfq_deactivate_bfqq(bfqd, bfqq, requeue);
}
/*
* Called when an inactive queue receives a new request.
*/
static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
BUG_ON(bfq_bfqq_busy(bfqq));
BUG_ON(bfqq == bfqd->in_service_queue);
bfq_log_bfqq(bfqd, bfqq, "add to busy");
bfq_activate_bfqq(bfqd, bfqq);
bfq_mark_bfqq_busy(bfqq);
bfqd->busy_queues++;
if (!bfqq->dispatched) {
if (bfqq->wr_coeff == 1)
bfq_weights_tree_add(bfqd, &bfqq->entity,
&bfqd->queue_weights_tree);
if (!blk_queue_nonrot(bfqd->queue)) {
bfqd->busy_in_flight_queues++;
if (bfq_bfqq_constantly_seeky(bfqq))
bfqd->const_seeky_busy_in_flight_queues++;
}
}
if (bfqq->wr_coeff > 1)
bfqd->wr_busy_queues++;
}