| /* Copyright (c) 2009-2012, Code Aurora Forum. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/err.h> |
| #include <linux/ctype.h> |
| #include <linux/bitops.h> |
| #include <linux/io.h> |
| #include <linux/spinlock.h> |
| #include <linux/delay.h> |
| #include <linux/clk.h> |
| |
| #include <mach/msm_iomap.h> |
| #include <mach/clk.h> |
| #include <mach/scm-io.h> |
| |
| #include "clock.h" |
| #include "clock-local.h" |
| |
| #ifdef CONFIG_MSM_SECURE_IO |
| #undef readl_relaxed |
| #undef writel_relaxed |
| #define readl_relaxed secure_readl |
| #define writel_relaxed secure_writel |
| #endif |
| |
| /* |
| * When enabling/disabling a clock, check the halt bit up to this number |
| * number of times (with a 1 us delay in between) before continuing. |
| */ |
| #define HALT_CHECK_MAX_LOOPS 200 |
| /* For clock without halt checking, wait this long after enables/disables. */ |
| #define HALT_CHECK_DELAY_US 10 |
| |
| DEFINE_SPINLOCK(local_clock_reg_lock); |
| struct clk_freq_tbl rcg_dummy_freq = F_END; |
| |
| /* |
| * Common Set-Rate Functions |
| */ |
| |
| /* For clocks with MND dividers. */ |
| void set_rate_mnd(struct rcg_clk *rcg, struct clk_freq_tbl *nf) |
| { |
| uint32_t ns_reg_val, ctl_reg_val; |
| |
| /* Assert MND reset. */ |
| ns_reg_val = readl_relaxed(rcg->ns_reg); |
| ns_reg_val |= BIT(7); |
| writel_relaxed(ns_reg_val, rcg->ns_reg); |
| |
| /* Program M and D values. */ |
| writel_relaxed(nf->md_val, rcg->md_reg); |
| |
| /* If the clock has a separate CC register, program it. */ |
| if (rcg->ns_reg != rcg->b.ctl_reg) { |
| ctl_reg_val = readl_relaxed(rcg->b.ctl_reg); |
| ctl_reg_val &= ~(rcg->ctl_mask); |
| ctl_reg_val |= nf->ctl_val; |
| writel_relaxed(ctl_reg_val, rcg->b.ctl_reg); |
| } |
| |
| /* Deassert MND reset. */ |
| ns_reg_val &= ~BIT(7); |
| writel_relaxed(ns_reg_val, rcg->ns_reg); |
| } |
| |
| void set_rate_nop(struct rcg_clk *rcg, struct clk_freq_tbl *nf) |
| { |
| /* |
| * Nothing to do for fixed-rate or integer-divider clocks. Any settings |
| * in NS registers are applied in the enable path, since power can be |
| * saved by leaving an un-clocked or slowly-clocked source selected |
| * until the clock is enabled. |
| */ |
| } |
| |
| void set_rate_mnd_8(struct rcg_clk *rcg, struct clk_freq_tbl *nf) |
| { |
| uint32_t ctl_reg_val; |
| |
| /* Assert MND reset. */ |
| ctl_reg_val = readl_relaxed(rcg->b.ctl_reg); |
| ctl_reg_val |= BIT(8); |
| writel_relaxed(ctl_reg_val, rcg->b.ctl_reg); |
| |
| /* Program M and D values. */ |
| writel_relaxed(nf->md_val, rcg->md_reg); |
| |
| /* Program MN counter Enable and Mode. */ |
| ctl_reg_val &= ~(rcg->ctl_mask); |
| ctl_reg_val |= nf->ctl_val; |
| writel_relaxed(ctl_reg_val, rcg->b.ctl_reg); |
| |
| /* Deassert MND reset. */ |
| ctl_reg_val &= ~BIT(8); |
| writel_relaxed(ctl_reg_val, rcg->b.ctl_reg); |
| } |
| |
| void set_rate_mnd_banked(struct rcg_clk *rcg, struct clk_freq_tbl *nf) |
| { |
| struct bank_masks *banks = rcg->bank_info; |
| const struct bank_mask_info *new_bank_masks; |
| const struct bank_mask_info *old_bank_masks; |
| uint32_t ns_reg_val, ctl_reg_val; |
| uint32_t bank_sel; |
| |
| /* |
| * Determine active bank and program the other one. If the clock is |
| * off, program the active bank since bank switching won't work if |
| * both banks aren't running. |
| */ |
| ctl_reg_val = readl_relaxed(rcg->b.ctl_reg); |
| bank_sel = !!(ctl_reg_val & banks->bank_sel_mask); |
| /* If clock isn't running, don't switch banks. */ |
| bank_sel ^= (!rcg->enabled || rcg->current_freq->freq_hz == 0); |
| if (bank_sel == 0) { |
| new_bank_masks = &banks->bank1_mask; |
| old_bank_masks = &banks->bank0_mask; |
| } else { |
| new_bank_masks = &banks->bank0_mask; |
| old_bank_masks = &banks->bank1_mask; |
| } |
| |
| ns_reg_val = readl_relaxed(rcg->ns_reg); |
| |
| /* Assert bank MND reset. */ |
| ns_reg_val |= new_bank_masks->rst_mask; |
| writel_relaxed(ns_reg_val, rcg->ns_reg); |
| |
| /* |
| * Program NS only if the clock is enabled, since the NS will be set |
| * as part of the enable procedure and should remain with a low-power |
| * MUX input selected until then. |
| */ |
| if (rcg->enabled) { |
| ns_reg_val &= ~(new_bank_masks->ns_mask); |
| ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask); |
| writel_relaxed(ns_reg_val, rcg->ns_reg); |
| } |
| |
| writel_relaxed(nf->md_val, new_bank_masks->md_reg); |
| |
| /* Enable counter only if clock is enabled. */ |
| if (rcg->enabled) |
| ctl_reg_val |= new_bank_masks->mnd_en_mask; |
| else |
| ctl_reg_val &= ~(new_bank_masks->mnd_en_mask); |
| |
| ctl_reg_val &= ~(new_bank_masks->mode_mask); |
| ctl_reg_val |= (nf->ctl_val & new_bank_masks->mode_mask); |
| writel_relaxed(ctl_reg_val, rcg->b.ctl_reg); |
| |
| /* Deassert bank MND reset. */ |
| ns_reg_val &= ~(new_bank_masks->rst_mask); |
| writel_relaxed(ns_reg_val, rcg->ns_reg); |
| |
| /* |
| * Switch to the new bank if clock is running. If it isn't, then |
| * no switch is necessary since we programmed the active bank. |
| */ |
| if (rcg->enabled && rcg->current_freq->freq_hz) { |
| ctl_reg_val ^= banks->bank_sel_mask; |
| writel_relaxed(ctl_reg_val, rcg->b.ctl_reg); |
| /* |
| * Wait at least 6 cycles of slowest bank's clock |
| * for the glitch-free MUX to fully switch sources. |
| */ |
| mb(); |
| udelay(1); |
| |
| /* Disable old bank's MN counter. */ |
| ctl_reg_val &= ~(old_bank_masks->mnd_en_mask); |
| writel_relaxed(ctl_reg_val, rcg->b.ctl_reg); |
| |
| /* Program old bank to a low-power source and divider. */ |
| ns_reg_val &= ~(old_bank_masks->ns_mask); |
| ns_reg_val |= (rcg->freq_tbl->ns_val & old_bank_masks->ns_mask); |
| writel_relaxed(ns_reg_val, rcg->ns_reg); |
| } |
| |
| /* Update the MND_EN and NS masks to match the current bank. */ |
| rcg->mnd_en_mask = new_bank_masks->mnd_en_mask; |
| rcg->ns_mask = new_bank_masks->ns_mask; |
| } |
| |
| void set_rate_div_banked(struct rcg_clk *rcg, struct clk_freq_tbl *nf) |
| { |
| struct bank_masks *banks = rcg->bank_info; |
| const struct bank_mask_info *new_bank_masks; |
| const struct bank_mask_info *old_bank_masks; |
| uint32_t ns_reg_val, bank_sel; |
| |
| /* |
| * Determine active bank and program the other one. If the clock is |
| * off, program the active bank since bank switching won't work if |
| * both banks aren't running. |
| */ |
| ns_reg_val = readl_relaxed(rcg->ns_reg); |
| bank_sel = !!(ns_reg_val & banks->bank_sel_mask); |
| /* If clock isn't running, don't switch banks. */ |
| bank_sel ^= (!rcg->enabled || rcg->current_freq->freq_hz == 0); |
| if (bank_sel == 0) { |
| new_bank_masks = &banks->bank1_mask; |
| old_bank_masks = &banks->bank0_mask; |
| } else { |
| new_bank_masks = &banks->bank0_mask; |
| old_bank_masks = &banks->bank1_mask; |
| } |
| |
| /* |
| * Program NS only if the clock is enabled, since the NS will be set |
| * as part of the enable procedure and should remain with a low-power |
| * MUX input selected until then. |
| */ |
| if (rcg->enabled) { |
| ns_reg_val &= ~(new_bank_masks->ns_mask); |
| ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask); |
| writel_relaxed(ns_reg_val, rcg->ns_reg); |
| } |
| |
| /* |
| * Switch to the new bank if clock is running. If it isn't, then |
| * no switch is necessary since we programmed the active bank. |
| */ |
| if (rcg->enabled && rcg->current_freq->freq_hz) { |
| ns_reg_val ^= banks->bank_sel_mask; |
| writel_relaxed(ns_reg_val, rcg->ns_reg); |
| /* |
| * Wait at least 6 cycles of slowest bank's clock |
| * for the glitch-free MUX to fully switch sources. |
| */ |
| mb(); |
| udelay(1); |
| |
| /* Program old bank to a low-power source and divider. */ |
| ns_reg_val &= ~(old_bank_masks->ns_mask); |
| ns_reg_val |= (rcg->freq_tbl->ns_val & old_bank_masks->ns_mask); |
| writel_relaxed(ns_reg_val, rcg->ns_reg); |
| } |
| |
| /* Update the NS mask to match the current bank. */ |
| rcg->ns_mask = new_bank_masks->ns_mask; |
| } |
| |
| /* |
| * Clock enable/disable functions |
| */ |
| |
| /* Return non-zero if a clock status registers shows the clock is halted. */ |
| static int branch_clk_is_halted(const struct branch *b) |
| { |
| int invert = (b->halt_check == ENABLE); |
| int status_bit = readl_relaxed(b->halt_reg) & BIT(b->halt_bit); |
| return invert ? !status_bit : status_bit; |
| } |
| |
| static int branch_in_hwcg_mode(const struct branch *b) |
| { |
| if (!b->hwcg_mask) |
| return 0; |
| |
| return !!(readl_relaxed(b->hwcg_reg) & b->hwcg_mask); |
| } |
| |
| void __branch_enable_reg(const struct branch *b, const char *name) |
| { |
| u32 reg_val; |
| |
| if (b->en_mask) { |
| reg_val = readl_relaxed(b->ctl_reg); |
| reg_val |= b->en_mask; |
| writel_relaxed(reg_val, b->ctl_reg); |
| } |
| |
| /* |
| * Use a memory barrier since some halt status registers are |
| * not within the same 1K segment as the branch/root enable |
| * registers. It's also needed in the udelay() case to ensure |
| * the delay starts after the branch enable. |
| */ |
| mb(); |
| |
| /* Skip checking halt bit if the clock is in hardware gated mode */ |
| if (branch_in_hwcg_mode(b)) |
| return; |
| |
| /* Wait for clock to enable before returning. */ |
| if (b->halt_check == DELAY) { |
| udelay(HALT_CHECK_DELAY_US); |
| } else if (b->halt_check == ENABLE || b->halt_check == HALT |
| || b->halt_check == ENABLE_VOTED |
| || b->halt_check == HALT_VOTED) { |
| int count; |
| |
| /* Wait up to HALT_CHECK_MAX_LOOPS for clock to enable. */ |
| for (count = HALT_CHECK_MAX_LOOPS; branch_clk_is_halted(b) |
| && count > 0; count--) |
| udelay(1); |
| WARN(count == 0, "%s status stuck at 'off'", name); |
| } |
| } |
| |
| /* Perform any register operations required to enable the clock. */ |
| static void __rcg_clk_enable_reg(struct rcg_clk *rcg) |
| { |
| u32 reg_val; |
| void __iomem *const reg = rcg->b.ctl_reg; |
| |
| WARN(rcg->current_freq == &rcg_dummy_freq, |
| "Attempting to enable %s before setting its rate. " |
| "Set the rate first!\n", rcg->c.dbg_name); |
| |
| /* |
| * Program the NS register, if applicable. NS registers are not |
| * set in the set_rate path because power can be saved by deferring |
| * the selection of a clocked source until the clock is enabled. |
| */ |
| if (rcg->ns_mask) { |
| reg_val = readl_relaxed(rcg->ns_reg); |
| reg_val &= ~(rcg->ns_mask); |
| reg_val |= (rcg->current_freq->ns_val & rcg->ns_mask); |
| writel_relaxed(reg_val, rcg->ns_reg); |
| } |
| |
| /* Enable MN counter, if applicable. */ |
| reg_val = readl_relaxed(reg); |
| if (rcg->current_freq->md_val) { |
| reg_val |= rcg->mnd_en_mask; |
| writel_relaxed(reg_val, reg); |
| } |
| /* Enable root. */ |
| if (rcg->root_en_mask) { |
| reg_val |= rcg->root_en_mask; |
| writel_relaxed(reg_val, reg); |
| } |
| __branch_enable_reg(&rcg->b, rcg->c.dbg_name); |
| } |
| |
| /* Perform any register operations required to disable the branch. */ |
| u32 __branch_disable_reg(const struct branch *b, const char *name) |
| { |
| u32 reg_val; |
| |
| reg_val = b->ctl_reg ? readl_relaxed(b->ctl_reg) : 0; |
| if (b->en_mask) { |
| reg_val &= ~(b->en_mask); |
| writel_relaxed(reg_val, b->ctl_reg); |
| } |
| |
| /* |
| * Use a memory barrier since some halt status registers are |
| * not within the same K segment as the branch/root enable |
| * registers. It's also needed in the udelay() case to ensure |
| * the delay starts after the branch disable. |
| */ |
| mb(); |
| |
| /* Skip checking halt bit if the clock is in hardware gated mode */ |
| if (branch_in_hwcg_mode(b)) |
| return reg_val; |
| |
| /* Wait for clock to disable before continuing. */ |
| if (b->halt_check == DELAY || b->halt_check == ENABLE_VOTED |
| || b->halt_check == HALT_VOTED) { |
| udelay(HALT_CHECK_DELAY_US); |
| } else if (b->halt_check == ENABLE || b->halt_check == HALT) { |
| int count; |
| |
| /* Wait up to HALT_CHECK_MAX_LOOPS for clock to disable. */ |
| for (count = HALT_CHECK_MAX_LOOPS; !branch_clk_is_halted(b) |
| && count > 0; count--) |
| udelay(1); |
| WARN(count == 0, "%s status stuck at 'on'", name); |
| } |
| |
| return reg_val; |
| } |
| |
| /* Perform any register operations required to disable the generator. */ |
| static void __rcg_clk_disable_reg(struct rcg_clk *rcg) |
| { |
| void __iomem *const reg = rcg->b.ctl_reg; |
| uint32_t reg_val; |
| |
| reg_val = __branch_disable_reg(&rcg->b, rcg->c.dbg_name); |
| /* Disable root. */ |
| if (rcg->root_en_mask) { |
| reg_val &= ~(rcg->root_en_mask); |
| writel_relaxed(reg_val, reg); |
| } |
| /* Disable MN counter, if applicable. */ |
| if (rcg->current_freq->md_val) { |
| reg_val &= ~(rcg->mnd_en_mask); |
| writel_relaxed(reg_val, reg); |
| } |
| /* |
| * Program NS register to low-power value with an un-clocked or |
| * slowly-clocked source selected. |
| */ |
| if (rcg->ns_mask) { |
| reg_val = readl_relaxed(rcg->ns_reg); |
| reg_val &= ~(rcg->ns_mask); |
| reg_val |= (rcg->freq_tbl->ns_val & rcg->ns_mask); |
| writel_relaxed(reg_val, rcg->ns_reg); |
| } |
| } |
| |
| /* Enable a rate-settable clock. */ |
| static int rcg_clk_enable(struct clk *c) |
| { |
| unsigned long flags; |
| struct rcg_clk *rcg = to_rcg_clk(c); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| __rcg_clk_enable_reg(rcg); |
| rcg->enabled = true; |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| |
| return 0; |
| } |
| |
| /* Disable a rate-settable clock. */ |
| static void rcg_clk_disable(struct clk *c) |
| { |
| unsigned long flags; |
| struct rcg_clk *rcg = to_rcg_clk(c); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| __rcg_clk_disable_reg(rcg); |
| rcg->enabled = false; |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| } |
| |
| /* |
| * Frequency-related functions |
| */ |
| |
| /* Set a clock to an exact rate. */ |
| static int rcg_clk_set_rate(struct clk *c, unsigned long rate) |
| { |
| struct rcg_clk *rcg = to_rcg_clk(c); |
| struct clk_freq_tbl *nf, *cf; |
| struct clk *chld; |
| int rc = 0; |
| |
| for (nf = rcg->freq_tbl; nf->freq_hz != FREQ_END |
| && nf->freq_hz != rate; nf++) |
| ; |
| |
| if (nf->freq_hz == FREQ_END) |
| return -EINVAL; |
| |
| cf = rcg->current_freq; |
| |
| if (rcg->enabled) { |
| /* Enable source clock dependency for the new freq. */ |
| rc = clk_enable(nf->src_clk); |
| if (rc) |
| return rc; |
| } |
| |
| spin_lock(&local_clock_reg_lock); |
| |
| /* Disable branch if clock isn't dual-banked with a glitch-free MUX. */ |
| if (!rcg->bank_info) { |
| /* Disable all branches to prevent glitches. */ |
| list_for_each_entry(chld, &rcg->c.children, siblings) { |
| struct branch_clk *x = to_branch_clk(chld); |
| /* |
| * We don't need to grab the child's lock because |
| * we hold the local_clock_reg_lock and 'enabled' is |
| * only modified within lock. |
| */ |
| if (x->enabled) |
| __branch_disable_reg(&x->b, x->c.dbg_name); |
| } |
| if (rcg->enabled) |
| __rcg_clk_disable_reg(rcg); |
| } |
| |
| /* Perform clock-specific frequency switch operations. */ |
| BUG_ON(!rcg->set_rate); |
| rcg->set_rate(rcg, nf); |
| |
| /* |
| * Current freq must be updated before __rcg_clk_enable_reg() |
| * is called to make sure the MNCNTR_EN bit is set correctly. |
| */ |
| rcg->current_freq = nf; |
| |
| /* Enable any clocks that were disabled. */ |
| if (!rcg->bank_info) { |
| if (rcg->enabled) |
| __rcg_clk_enable_reg(rcg); |
| /* Enable only branches that were ON before. */ |
| list_for_each_entry(chld, &rcg->c.children, siblings) { |
| struct branch_clk *x = to_branch_clk(chld); |
| if (x->enabled) |
| __branch_enable_reg(&x->b, x->c.dbg_name); |
| } |
| } |
| |
| spin_unlock(&local_clock_reg_lock); |
| |
| /* Release source requirements of the old freq. */ |
| if (rcg->enabled) |
| clk_disable(cf->src_clk); |
| |
| return rc; |
| } |
| |
| /* Check if a clock is currently enabled. */ |
| static int rcg_clk_is_enabled(struct clk *c) |
| { |
| return to_rcg_clk(c)->enabled; |
| } |
| |
| /* Return a supported rate that's at least the specified rate. */ |
| static long rcg_clk_round_rate(struct clk *c, unsigned long rate) |
| { |
| struct rcg_clk *rcg = to_rcg_clk(c); |
| struct clk_freq_tbl *f; |
| |
| for (f = rcg->freq_tbl; f->freq_hz != FREQ_END; f++) |
| if (f->freq_hz >= rate) |
| return f->freq_hz; |
| |
| return -EPERM; |
| } |
| |
| /* Return the nth supported frequency for a given clock. */ |
| static int rcg_clk_list_rate(struct clk *c, unsigned n) |
| { |
| struct rcg_clk *rcg = to_rcg_clk(c); |
| |
| if (!rcg->freq_tbl || rcg->freq_tbl->freq_hz == FREQ_END) |
| return -ENXIO; |
| |
| return (rcg->freq_tbl + n)->freq_hz; |
| } |
| |
| static struct clk *rcg_clk_get_parent(struct clk *c) |
| { |
| return to_rcg_clk(c)->current_freq->src_clk; |
| } |
| |
| /* Disable hw clock gating if not set at boot */ |
| enum handoff branch_handoff(struct branch *b, struct clk *c) |
| { |
| if (!branch_in_hwcg_mode(b)) { |
| b->hwcg_mask = 0; |
| if (b->ctl_reg && readl_relaxed(b->ctl_reg) & b->en_mask) |
| return HANDOFF_ENABLED_CLK; |
| } |
| return HANDOFF_DISABLED_CLK; |
| } |
| |
| static enum handoff branch_clk_handoff(struct clk *c) |
| { |
| struct branch_clk *br = to_branch_clk(c); |
| return branch_handoff(&br->b, &br->c); |
| } |
| |
| static enum handoff rcg_clk_handoff(struct clk *c) |
| { |
| struct rcg_clk *rcg = to_rcg_clk(c); |
| uint32_t ctl_val, ns_val, md_val, ns_mask; |
| struct clk_freq_tbl *freq; |
| enum handoff ret; |
| |
| ctl_val = readl_relaxed(rcg->b.ctl_reg); |
| ret = branch_handoff(&rcg->b, &rcg->c); |
| if (ret == HANDOFF_DISABLED_CLK) |
| return HANDOFF_DISABLED_CLK; |
| |
| if (rcg->bank_info) { |
| const struct bank_masks *bank_masks = rcg->bank_info; |
| const struct bank_mask_info *bank_info; |
| if (!(ctl_val & bank_masks->bank_sel_mask)) |
| bank_info = &bank_masks->bank0_mask; |
| else |
| bank_info = &bank_masks->bank1_mask; |
| |
| ns_mask = bank_info->ns_mask; |
| md_val = bank_info->md_reg ? |
| readl_relaxed(bank_info->md_reg) : 0; |
| } else { |
| ns_mask = rcg->ns_mask; |
| md_val = rcg->md_reg ? readl_relaxed(rcg->md_reg) : 0; |
| } |
| if (!ns_mask) |
| return HANDOFF_UNKNOWN_RATE; |
| ns_val = readl_relaxed(rcg->ns_reg) & ns_mask; |
| for (freq = rcg->freq_tbl; freq->freq_hz != FREQ_END; freq++) { |
| if ((freq->ns_val & ns_mask) == ns_val && |
| (!freq->md_val || freq->md_val == md_val)) |
| break; |
| } |
| if (freq->freq_hz == FREQ_END) |
| return HANDOFF_UNKNOWN_RATE; |
| |
| rcg->current_freq = freq; |
| c->rate = freq->freq_hz; |
| |
| return HANDOFF_ENABLED_CLK; |
| } |
| |
| struct clk_ops clk_ops_empty; |
| |
| struct fixed_clk gnd_clk = { |
| .c = { |
| .dbg_name = "ground_clk", |
| .ops = &clk_ops_empty, |
| CLK_INIT(gnd_clk.c), |
| }, |
| }; |
| |
| static int branch_clk_enable(struct clk *c) |
| { |
| unsigned long flags; |
| struct branch_clk *br = to_branch_clk(c); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| __branch_enable_reg(&br->b, br->c.dbg_name); |
| br->enabled = true; |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| |
| return 0; |
| } |
| |
| static void branch_clk_disable(struct clk *c) |
| { |
| unsigned long flags; |
| struct branch_clk *br = to_branch_clk(c); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| __branch_disable_reg(&br->b, br->c.dbg_name); |
| br->enabled = false; |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| } |
| |
| static struct clk *branch_clk_get_parent(struct clk *c) |
| { |
| return to_branch_clk(c)->parent; |
| } |
| |
| static int branch_clk_is_enabled(struct clk *c) |
| { |
| return to_branch_clk(c)->enabled; |
| } |
| |
| static void branch_enable_hwcg(struct branch *b) |
| { |
| unsigned long flags; |
| u32 reg_val; |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| reg_val = readl_relaxed(b->hwcg_reg); |
| reg_val |= b->hwcg_mask; |
| writel_relaxed(reg_val, b->hwcg_reg); |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| } |
| |
| static void branch_disable_hwcg(struct branch *b) |
| { |
| unsigned long flags; |
| u32 reg_val; |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| reg_val = readl_relaxed(b->hwcg_reg); |
| reg_val &= ~b->hwcg_mask; |
| writel_relaxed(reg_val, b->hwcg_reg); |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| } |
| |
| static void branch_clk_enable_hwcg(struct clk *c) |
| { |
| branch_enable_hwcg(&to_branch_clk(c)->b); |
| } |
| |
| static void branch_clk_disable_hwcg(struct clk *c) |
| { |
| branch_disable_hwcg(&to_branch_clk(c)->b); |
| } |
| |
| static int branch_set_flags(struct branch *b, unsigned flags) |
| { |
| unsigned long irq_flags; |
| u32 reg_val; |
| int ret = 0; |
| |
| if (!b->retain_reg) |
| return -EPERM; |
| |
| spin_lock_irqsave(&local_clock_reg_lock, irq_flags); |
| reg_val = readl_relaxed(b->retain_reg); |
| switch (flags) { |
| case CLKFLAG_RETAIN: |
| reg_val |= b->retain_mask; |
| break; |
| case CLKFLAG_NORETAIN: |
| reg_val &= ~b->retain_mask; |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| writel_relaxed(reg_val, b->retain_reg); |
| spin_unlock_irqrestore(&local_clock_reg_lock, irq_flags); |
| |
| return ret; |
| } |
| |
| static int branch_clk_set_flags(struct clk *clk, unsigned flags) |
| { |
| return branch_set_flags(&to_branch_clk(clk)->b, flags); |
| } |
| |
| static int branch_clk_in_hwcg_mode(struct clk *c) |
| { |
| return branch_in_hwcg_mode(&to_branch_clk(c)->b); |
| } |
| |
| static void rcg_clk_enable_hwcg(struct clk *c) |
| { |
| branch_enable_hwcg(&to_rcg_clk(c)->b); |
| } |
| |
| static void rcg_clk_disable_hwcg(struct clk *c) |
| { |
| branch_disable_hwcg(&to_rcg_clk(c)->b); |
| } |
| |
| static int rcg_clk_in_hwcg_mode(struct clk *c) |
| { |
| return branch_in_hwcg_mode(&to_rcg_clk(c)->b); |
| } |
| |
| static int rcg_clk_set_flags(struct clk *clk, unsigned flags) |
| { |
| return branch_set_flags(&to_rcg_clk(clk)->b, flags); |
| } |
| |
| int branch_reset(struct branch *b, enum clk_reset_action action) |
| { |
| int ret = 0; |
| u32 reg_val; |
| unsigned long flags; |
| |
| if (!b->reset_reg) |
| return -EPERM; |
| |
| /* Disable hw gating when asserting a reset */ |
| if (b->hwcg_mask && action == CLK_RESET_ASSERT) |
| branch_disable_hwcg(b); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| /* Assert/Deassert reset */ |
| reg_val = readl_relaxed(b->reset_reg); |
| switch (action) { |
| case CLK_RESET_ASSERT: |
| reg_val |= b->reset_mask; |
| break; |
| case CLK_RESET_DEASSERT: |
| reg_val &= ~b->reset_mask; |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| writel_relaxed(reg_val, b->reset_reg); |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| |
| /* Enable hw gating when deasserting a reset */ |
| if (b->hwcg_mask && action == CLK_RESET_DEASSERT) |
| branch_enable_hwcg(b); |
| /* Make sure write is issued before returning. */ |
| mb(); |
| return ret; |
| } |
| |
| static int branch_clk_reset(struct clk *c, enum clk_reset_action action) |
| { |
| return branch_reset(&to_branch_clk(c)->b, action); |
| } |
| |
| struct clk_ops clk_ops_branch = { |
| .enable = branch_clk_enable, |
| .disable = branch_clk_disable, |
| .enable_hwcg = branch_clk_enable_hwcg, |
| .disable_hwcg = branch_clk_disable_hwcg, |
| .in_hwcg_mode = branch_clk_in_hwcg_mode, |
| .is_enabled = branch_clk_is_enabled, |
| .reset = branch_clk_reset, |
| .get_parent = branch_clk_get_parent, |
| .handoff = branch_clk_handoff, |
| .set_flags = branch_clk_set_flags, |
| }; |
| |
| struct clk_ops clk_ops_reset = { |
| .reset = branch_clk_reset, |
| }; |
| |
| static int rcg_clk_reset(struct clk *c, enum clk_reset_action action) |
| { |
| return branch_reset(&to_rcg_clk(c)->b, action); |
| } |
| |
| struct clk_ops clk_ops_rcg = { |
| .enable = rcg_clk_enable, |
| .disable = rcg_clk_disable, |
| .enable_hwcg = rcg_clk_enable_hwcg, |
| .disable_hwcg = rcg_clk_disable_hwcg, |
| .in_hwcg_mode = rcg_clk_in_hwcg_mode, |
| .handoff = rcg_clk_handoff, |
| .set_rate = rcg_clk_set_rate, |
| .list_rate = rcg_clk_list_rate, |
| .is_enabled = rcg_clk_is_enabled, |
| .round_rate = rcg_clk_round_rate, |
| .reset = rcg_clk_reset, |
| .get_parent = rcg_clk_get_parent, |
| .set_flags = rcg_clk_set_flags, |
| }; |
| |
| static int cdiv_clk_enable(struct clk *c) |
| { |
| unsigned long flags; |
| struct cdiv_clk *cdiv = to_cdiv_clk(c); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| __branch_enable_reg(&cdiv->b, cdiv->c.dbg_name); |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| |
| return 0; |
| } |
| |
| static void cdiv_clk_disable(struct clk *c) |
| { |
| unsigned long flags; |
| struct cdiv_clk *cdiv = to_cdiv_clk(c); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| __branch_disable_reg(&cdiv->b, cdiv->c.dbg_name); |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| } |
| |
| static int cdiv_clk_set_rate(struct clk *c, unsigned long rate) |
| { |
| struct cdiv_clk *cdiv = to_cdiv_clk(c); |
| u32 reg_val; |
| |
| if (rate > cdiv->max_div) |
| return -EINVAL; |
| |
| spin_lock(&local_clock_reg_lock); |
| reg_val = readl_relaxed(cdiv->ns_reg); |
| reg_val &= ~(cdiv->ext_mask | (cdiv->max_div - 1) << cdiv->div_offset); |
| /* Non-zero rates mean set a divider, zero means use external input */ |
| if (rate) |
| reg_val |= (rate - 1) << cdiv->div_offset; |
| else |
| reg_val |= cdiv->ext_mask; |
| writel_relaxed(reg_val, cdiv->ns_reg); |
| spin_unlock(&local_clock_reg_lock); |
| |
| cdiv->cur_div = rate; |
| return 0; |
| } |
| |
| static unsigned long cdiv_clk_get_rate(struct clk *c) |
| { |
| return to_cdiv_clk(c)->cur_div; |
| } |
| |
| static long cdiv_clk_round_rate(struct clk *c, unsigned long rate) |
| { |
| return rate > to_cdiv_clk(c)->max_div ? -EPERM : rate; |
| } |
| |
| static int cdiv_clk_list_rate(struct clk *c, unsigned n) |
| { |
| return n > to_cdiv_clk(c)->max_div ? -ENXIO : n; |
| } |
| |
| static enum handoff cdiv_clk_handoff(struct clk *c) |
| { |
| struct cdiv_clk *cdiv = to_cdiv_clk(c); |
| enum handoff ret; |
| u32 reg_val; |
| |
| ret = branch_handoff(&cdiv->b, &cdiv->c); |
| if (ret == HANDOFF_DISABLED_CLK) |
| return ret; |
| |
| reg_val = readl_relaxed(cdiv->ns_reg); |
| if (reg_val & cdiv->ext_mask) { |
| cdiv->cur_div = 0; |
| } else { |
| reg_val >>= cdiv->div_offset; |
| cdiv->cur_div = (reg_val & (cdiv->max_div - 1)) + 1; |
| } |
| |
| return HANDOFF_ENABLED_CLK; |
| } |
| |
| static void cdiv_clk_enable_hwcg(struct clk *c) |
| { |
| branch_enable_hwcg(&to_cdiv_clk(c)->b); |
| } |
| |
| static void cdiv_clk_disable_hwcg(struct clk *c) |
| { |
| branch_disable_hwcg(&to_cdiv_clk(c)->b); |
| } |
| |
| static int cdiv_clk_in_hwcg_mode(struct clk *c) |
| { |
| return branch_in_hwcg_mode(&to_cdiv_clk(c)->b); |
| } |
| |
| struct clk_ops clk_ops_cdiv = { |
| .enable = cdiv_clk_enable, |
| .disable = cdiv_clk_disable, |
| .in_hwcg_mode = cdiv_clk_in_hwcg_mode, |
| .enable_hwcg = cdiv_clk_enable_hwcg, |
| .disable_hwcg = cdiv_clk_disable_hwcg, |
| .handoff = cdiv_clk_handoff, |
| .set_rate = cdiv_clk_set_rate, |
| .get_rate = cdiv_clk_get_rate, |
| .list_rate = cdiv_clk_list_rate, |
| .round_rate = cdiv_clk_round_rate, |
| }; |