blob: d9e9e0967ceb409843514fbaddd61fedf4294151 [file] [log] [blame]
/*
* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/err.h>
#include <linux/io.h>
#include <linux/msm_ion.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/iommu.h>
#include <linux/pfn.h>
#include <linux/dma-mapping.h>
#include "ion_priv.h"
#include <asm/mach/map.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <mach/iommu_domains.h>
#include <trace/events/kmem.h>
struct ion_iommu_heap {
struct ion_heap heap;
struct ion_page_pool **cached_pools;
struct ion_page_pool **uncached_pools;
};
/*
* We will attempt to allocate high-order pages and store those in an
* sg_list. However, some APIs expect an array of struct page * where
* each page is of size PAGE_SIZE. We use this extra structure to
* carry around an array of such pages (derived from the high-order
* pages with nth_page).
*/
struct ion_iommu_priv_data {
struct page **pages;
unsigned int pages_uses_vmalloc;
int nrpages;
unsigned long size;
};
#define MAX_VMAP_RETRIES 10
#define BAD_ORDER -1
static const unsigned int orders[] = {9, 8, 4, 0};
static const int num_orders = ARRAY_SIZE(orders);
static unsigned int low_gfp_flags = __GFP_HIGHMEM | GFP_KERNEL | __GFP_ZERO;
static unsigned int high_gfp_flags = (__GFP_HIGHMEM | __GFP_NORETRY
| __GFP_NO_KSWAPD | __GFP_NOWARN |
__GFP_IO | __GFP_FS | __GFP_ZERO);
struct page_info {
struct page *page;
unsigned int order;
struct list_head list;
};
static int order_to_index(unsigned int order)
{
int i;
for (i = 0; i < num_orders; i++)
if (order == orders[i])
return i;
BUG();
return BAD_ORDER;
}
static unsigned int order_to_size(int order)
{
return PAGE_SIZE << order;
}
static struct page_info *alloc_largest_available(struct ion_iommu_heap *heap,
unsigned long size,
unsigned int max_order,
unsigned long flags)
{
struct page *page;
struct page_info *info;
int i;
for (i = 0; i < num_orders; i++) {
gfp_t gfp;
int idx = order_to_index(orders[i]);
struct ion_page_pool *pool;
if (idx == BAD_ORDER)
continue;
if (ION_IS_CACHED(flags)) {
pool = heap->cached_pools[idx];
BUG_ON(!pool);
} else {
pool = heap->uncached_pools[idx];
BUG_ON(!pool);
}
if (size < order_to_size(orders[i]))
continue;
if (max_order < orders[i])
continue;
if (orders[i]) {
gfp = high_gfp_flags;
} else {
gfp = low_gfp_flags;
}
trace_alloc_pages_iommu_start(gfp, orders[i]);
if (flags & ION_FLAG_POOL_FORCE_ALLOC)
page = alloc_pages(gfp, orders[i]);
else
page = ion_page_pool_alloc(pool);
trace_alloc_pages_iommu_end(gfp, orders[i]);
if (!page) {
trace_alloc_pages_iommu_fail(gfp, orders[i]);
continue;
}
info = kmalloc(sizeof(struct page_info), GFP_KERNEL);
if (info) {
info->page = page;
info->order = orders[i];
}
return info;
}
return NULL;
}
static int ion_iommu_buffer_zero(struct ion_iommu_priv_data *data,
bool is_cached)
{
int i, j, k;
unsigned int npages_to_vmap;
unsigned int total_pages;
void *ptr = NULL;
/*
* It's cheaper just to use writecombine memory and skip the
* cache vs. using a cache memory and trying to flush it afterwards
*/
pgprot_t pgprot = pgprot_writecombine(pgprot_kernel);
/*
* As an optimization, we manually zero out all of the
* pages in one fell swoop here. To safeguard against
* insufficient vmalloc space, we only vmap
* `npages_to_vmap' at a time, starting with a
* conservative estimate of 1/8 of the total number of
* vmalloc pages available. Note that the `pages'
* array is composed of all 4K pages, irrespective of
* the size of the pages on the sg list.
*/
npages_to_vmap = ((VMALLOC_END - VMALLOC_START)/8)
>> PAGE_SHIFT;
total_pages = data->nrpages;
for (i = 0; i < total_pages; i += npages_to_vmap) {
npages_to_vmap = min(npages_to_vmap, total_pages - i);
for (j = 0; j < MAX_VMAP_RETRIES && npages_to_vmap;
++j) {
ptr = vmap(&data->pages[i], npages_to_vmap,
VM_IOREMAP, pgprot);
if (ptr)
break;
else
npages_to_vmap >>= 1;
}
if (!ptr)
return -ENOMEM;
memset(ptr, 0, npages_to_vmap * PAGE_SIZE);
if (is_cached) {
/*
* invalidate the cache to pick up the zeroing
*/
for (k = 0; k < npages_to_vmap; k++) {
void *p = kmap_atomic(data->pages[i + k]);
phys_addr_t phys = page_to_phys(
data->pages[i + k]);
dmac_inv_range(p, p + PAGE_SIZE);
outer_inv_range(phys, phys + PAGE_SIZE);
kunmap_atomic(p);
}
}
vunmap(ptr);
}
return 0;
}
static int ion_iommu_heap_allocate(struct ion_heap *heap,
struct ion_buffer *buffer,
unsigned long size, unsigned long align,
unsigned long flags)
{
int ret, i;
struct list_head pages_list;
struct page_info *info, *tmp_info;
struct ion_iommu_priv_data *data = NULL;
struct ion_iommu_heap *iommu_heap =
container_of(heap, struct ion_iommu_heap, heap);
if (msm_use_iommu()) {
struct scatterlist *sg;
struct sg_table *table;
int j;
unsigned int num_large_pages = 0;
unsigned long size_remaining = PAGE_ALIGN(size);
unsigned int max_order = ION_IS_CACHED(flags) ? 0 : orders[0];
unsigned int page_tbl_size;
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
INIT_LIST_HEAD(&pages_list);
while (size_remaining > 0) {
info = alloc_largest_available(iommu_heap,
size_remaining,
max_order,
flags);
if (!info) {
ret = -ENOMEM;
goto err_free_data;
}
list_add_tail(&info->list, &pages_list);
size_remaining -= order_to_size(info->order);
max_order = info->order;
num_large_pages++;
}
data->size = PFN_ALIGN(size);
data->nrpages = data->size >> PAGE_SHIFT;
data->pages_uses_vmalloc = 0;
page_tbl_size = sizeof(struct page *) * data->nrpages;
if (page_tbl_size > SZ_8K) {
/*
* Do fallback to ensure we have a balance between
* performance and availability.
*/
data->pages = kmalloc(page_tbl_size,
__GFP_COMP | __GFP_NORETRY |
__GFP_NO_KSWAPD | __GFP_NOWARN);
if (!data->pages) {
data->pages = vmalloc(page_tbl_size);
data->pages_uses_vmalloc = 1;
}
} else {
data->pages = kmalloc(page_tbl_size, GFP_KERNEL);
}
if (!data->pages) {
ret = -ENOMEM;
goto err_free_data;
}
table = buffer->sg_table =
kzalloc(sizeof(struct sg_table), GFP_KERNEL);
if (!table) {
ret = -ENOMEM;
goto err1;
}
ret = sg_alloc_table(table, num_large_pages, GFP_KERNEL);
if (ret)
goto err2;
i = 0;
sg = table->sgl;
list_for_each_entry_safe(info, tmp_info, &pages_list, list) {
struct page *page = info->page;
sg_set_page(sg, page, order_to_size(info->order), 0);
sg_dma_address(sg) = sg_phys(sg);
sg = sg_next(sg);
for (j = 0; j < (1 << info->order); ++j)
data->pages[i++] = nth_page(page, j);
list_del(&info->list);
kfree(info);
}
if (flags & ION_FLAG_POOL_FORCE_ALLOC) {
ret = ion_iommu_buffer_zero(data, ION_IS_CACHED(flags));
if (ret) {
pr_err("Couldn't vmap the pages for zeroing\n");
goto err3;
}
if (!ION_IS_CACHED(flags))
dma_sync_sg_for_device(NULL, table->sgl,
table->nents,
DMA_BIDIRECTIONAL);
}
buffer->priv_virt = data;
return 0;
} else {
return -ENOMEM;
}
err3:
sg_free_table(buffer->sg_table);
err2:
kfree(buffer->sg_table);
buffer->sg_table = 0;
err1:
if (data->pages_uses_vmalloc)
vfree(data->pages);
else
kfree(data->pages);
err_free_data:
kfree(data);
list_for_each_entry_safe(info, tmp_info, &pages_list, list) {
if (info->page)
__free_pages(info->page, info->order);
list_del(&info->list);
kfree(info);
}
return ret;
}
static void ion_iommu_heap_free(struct ion_buffer *buffer)
{
int i;
struct scatterlist *sg;
struct sg_table *table = buffer->sg_table;
struct ion_iommu_priv_data *data = buffer->priv_virt;
bool cached = ion_buffer_cached(buffer);
struct ion_iommu_heap *iommu_heap =
container_of(buffer->heap, struct ion_iommu_heap, heap);
if (!table)
return;
if (!data)
return;
if (!(buffer->flags & ION_FLAG_POOL_FORCE_ALLOC))
ion_iommu_buffer_zero(data, ION_IS_CACHED(buffer->flags));
for_each_sg(table->sgl, sg, table->nents, i) {
int order = get_order(sg_dma_len(sg));
int idx = order_to_index(order);
struct ion_page_pool *pool;
if (idx == BAD_ORDER) {
WARN_ON(1);
continue;
}
if (cached)
pool = iommu_heap->cached_pools[idx];
else
pool = iommu_heap->uncached_pools[idx];
if (buffer->flags & ION_FLAG_POOL_FORCE_ALLOC)
__free_pages(sg_page(sg), order);
else
ion_page_pool_free(pool, sg_page(sg));
}
sg_free_table(table);
kfree(table);
table = 0;
if (data->pages_uses_vmalloc)
vfree(data->pages);
else
kfree(data->pages);
kfree(data);
}
void *ion_iommu_heap_map_kernel(struct ion_heap *heap,
struct ion_buffer *buffer)
{
struct ion_iommu_priv_data *data = buffer->priv_virt;
pgprot_t page_prot = PAGE_KERNEL;
if (!data)
return NULL;
if (!ION_IS_CACHED(buffer->flags))
page_prot = pgprot_writecombine(page_prot);
buffer->vaddr = vmap(data->pages, data->nrpages, VM_IOREMAP, page_prot);
return buffer->vaddr;
}
void ion_iommu_heap_unmap_kernel(struct ion_heap *heap,
struct ion_buffer *buffer)
{
if (!buffer->vaddr)
return;
vunmap(buffer->vaddr);
buffer->vaddr = NULL;
}
int ion_iommu_heap_map_user(struct ion_heap *heap, struct ion_buffer *buffer,
struct vm_area_struct *vma)
{
struct sg_table *table = buffer->sg_table;
unsigned long addr = vma->vm_start;
unsigned long offset = vma->vm_pgoff * PAGE_SIZE;
struct scatterlist *sg;
int i;
if (!ION_IS_CACHED(buffer->flags))
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
for_each_sg(table->sgl, sg, table->nents, i) {
struct page *page = sg_page(sg);
unsigned long remainder = vma->vm_end - addr;
unsigned long len = sg_dma_len(sg);
if (offset >= sg_dma_len(sg)) {
offset -= sg_dma_len(sg);
continue;
} else if (offset) {
page += offset / PAGE_SIZE;
len = sg_dma_len(sg) - offset;
offset = 0;
}
len = min(len, remainder);
remap_pfn_range(vma, addr, page_to_pfn(page), len,
vma->vm_page_prot);
addr += len;
if (addr >= vma->vm_end)
return 0;
}
return 0;
}
static struct sg_table *ion_iommu_heap_map_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
return buffer->sg_table;
}
static void ion_iommu_heap_unmap_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
}
static int ion_iommu_heap_debug_show(struct ion_heap *heap, struct seq_file *s,
void *unused)
{
struct ion_iommu_heap *iommu_heap = container_of(heap,
struct ion_iommu_heap,
heap);
int i;
unsigned long total = 0;
seq_printf(s, "Cached Pools:\n");
for (i = 0; i < num_orders; i++) {
struct ion_page_pool *pool = iommu_heap->cached_pools[i];
seq_printf(s, "%d order %u highmem pages in pool = %lx total\n",
pool->high_count, pool->order,
(1 << pool->order) * PAGE_SIZE * pool->high_count);
seq_printf(s, "%d order %u lowmem pages in pool = %lx total\n",
pool->low_count, pool->order,
(1 << pool->order) * PAGE_SIZE * pool->low_count);
total += (1 << pool->order) * PAGE_SIZE *
(pool->low_count + pool->high_count);
}
seq_printf(s, "Uncached Pools:\n");
for (i = 0; i < num_orders; i++) {
struct ion_page_pool *pool = iommu_heap->uncached_pools[i];
seq_printf(s, "%d order %u highmem pages in pool = %lx total\n",
pool->high_count, pool->order,
(1 << pool->order) * PAGE_SIZE * pool->high_count);
seq_printf(s, "%d order %u lowmem pages in pool = %lx total\n",
pool->low_count, pool->order,
(1 << pool->order) * PAGE_SIZE * pool->low_count);
total += (1 << pool->order) * PAGE_SIZE *
(pool->low_count + pool->high_count);
}
seq_printf(s, "Total bytes in pool: %lx\n", total);
return 0;
}
static struct ion_heap_ops iommu_heap_ops = {
.allocate = ion_iommu_heap_allocate,
.free = ion_iommu_heap_free,
.map_user = ion_iommu_heap_map_user,
.map_kernel = ion_iommu_heap_map_kernel,
.unmap_kernel = ion_iommu_heap_unmap_kernel,
.map_dma = ion_iommu_heap_map_dma,
.unmap_dma = ion_iommu_heap_unmap_dma,
};
struct ion_heap *ion_iommu_heap_create(struct ion_platform_heap *heap_data)
{
struct ion_iommu_heap *iommu_heap;
int i;
iommu_heap = kzalloc(sizeof(struct ion_iommu_heap), GFP_KERNEL);
if (!iommu_heap)
return ERR_PTR(-ENOMEM);
iommu_heap->heap.ops = &iommu_heap_ops;
iommu_heap->heap.type = ION_HEAP_TYPE_IOMMU;
iommu_heap->uncached_pools = kzalloc(
sizeof(struct ion_page_pool *) * num_orders,
GFP_KERNEL);
if (!iommu_heap->uncached_pools)
goto err_alloc_uncached_pools;
iommu_heap->cached_pools = kzalloc(
sizeof(struct ion_page_pool *) * num_orders,
GFP_KERNEL);
if (!iommu_heap->cached_pools)
goto err_alloc_cached_pools;
for (i = 0; i < num_orders; i++) {
struct ion_page_pool *pool;
gfp_t gfp_flags;
if (orders[i])
gfp_flags = high_gfp_flags | __GFP_ZERO;
else
gfp_flags = low_gfp_flags | __GFP_ZERO;
pool = ion_page_pool_create(gfp_flags, orders[i]);
if (!pool)
goto err_create_cached_pool;
iommu_heap->cached_pools[i] = pool;
}
for (i = 0; i < num_orders; i++) {
struct ion_page_pool *pool;
gfp_t gfp_flags;
if (orders[i])
gfp_flags = high_gfp_flags | __GFP_ZERO;
else
gfp_flags = low_gfp_flags | __GFP_ZERO;
pool = ion_page_pool_create(gfp_flags, orders[i]);
if (!pool)
goto err_create_uncached_pool;
iommu_heap->uncached_pools[i] = pool;
}
iommu_heap->heap.debug_show = ion_iommu_heap_debug_show;
return &iommu_heap->heap;
err_create_uncached_pool:
for (i = 0; i < num_orders; i++)
if (iommu_heap->cached_pools[i])
ion_page_pool_destroy(iommu_heap->uncached_pools[i]);
err_create_cached_pool:
for (i = 0; i < num_orders; i++)
if (iommu_heap->uncached_pools[i])
ion_page_pool_destroy(iommu_heap->cached_pools[i]);
kfree(iommu_heap->cached_pools);
err_alloc_cached_pools:
kfree(iommu_heap->uncached_pools);
err_alloc_uncached_pools:
kfree(iommu_heap);
return ERR_PTR(-ENOMEM);
}
void ion_iommu_heap_destroy(struct ion_heap *heap)
{
struct ion_iommu_heap *iommu_heap =
container_of(heap, struct ion_iommu_heap, heap);
kfree(iommu_heap);
iommu_heap = NULL;
}