| /* |
| * H-TCP congestion control. The algorithm is detailed in: |
| * R.N.Shorten, D.J.Leith: |
| * "H-TCP: TCP for high-speed and long-distance networks" |
| * Proc. PFLDnet, Argonne, 2004. |
| * http://www.hamilton.ie/net/htcp3.pdf |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <net/tcp.h> |
| |
| #define ALPHA_BASE (1<<7) /* 1.0 with shift << 7 */ |
| #define BETA_MIN (1<<6) /* 0.5 with shift << 7 */ |
| #define BETA_MAX 102 /* 0.8 with shift << 7 */ |
| |
| static int use_rtt_scaling = 1; |
| module_param(use_rtt_scaling, int, 0644); |
| MODULE_PARM_DESC(use_rtt_scaling, "turn on/off RTT scaling"); |
| |
| static int use_bandwidth_switch = 1; |
| module_param(use_bandwidth_switch, int, 0644); |
| MODULE_PARM_DESC(use_bandwidth_switch, "turn on/off bandwidth switcher"); |
| |
| struct htcp { |
| u16 alpha; /* Fixed point arith, << 7 */ |
| u8 beta; /* Fixed point arith, << 7 */ |
| u8 modeswitch; /* Delay modeswitch until we had at least one congestion event */ |
| u8 ccount; /* Number of RTTs since last congestion event */ |
| u8 undo_ccount; |
| u16 packetcount; |
| u32 minRTT; |
| u32 maxRTT; |
| u32 snd_cwnd_cnt2; |
| |
| u32 undo_maxRTT; |
| u32 undo_old_maxB; |
| |
| /* Bandwidth estimation */ |
| u32 minB; |
| u32 maxB; |
| u32 old_maxB; |
| u32 Bi; |
| u32 lasttime; |
| }; |
| |
| static inline void htcp_reset(struct htcp *ca) |
| { |
| ca->undo_ccount = ca->ccount; |
| ca->undo_maxRTT = ca->maxRTT; |
| ca->undo_old_maxB = ca->old_maxB; |
| |
| ca->ccount = 0; |
| ca->snd_cwnd_cnt2 = 0; |
| } |
| |
| static u32 htcp_cwnd_undo(struct sock *sk) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| struct htcp *ca = inet_csk_ca(sk); |
| ca->ccount = ca->undo_ccount; |
| ca->maxRTT = ca->undo_maxRTT; |
| ca->old_maxB = ca->undo_old_maxB; |
| return max(tp->snd_cwnd, (tp->snd_ssthresh<<7)/ca->beta); |
| } |
| |
| static inline void measure_rtt(struct sock *sk) |
| { |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| const struct tcp_sock *tp = tcp_sk(sk); |
| struct htcp *ca = inet_csk_ca(sk); |
| u32 srtt = tp->srtt>>3; |
| |
| /* keep track of minimum RTT seen so far, minRTT is zero at first */ |
| if (ca->minRTT > srtt || !ca->minRTT) |
| ca->minRTT = srtt; |
| |
| /* max RTT */ |
| if (icsk->icsk_ca_state == TCP_CA_Open && tp->snd_ssthresh < 0xFFFF && ca->ccount > 3) { |
| if (ca->maxRTT < ca->minRTT) |
| ca->maxRTT = ca->minRTT; |
| if (ca->maxRTT < srtt && srtt <= ca->maxRTT+HZ/50) |
| ca->maxRTT = srtt; |
| } |
| } |
| |
| static void measure_achieved_throughput(struct sock *sk, u32 pkts_acked) |
| { |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| const struct tcp_sock *tp = tcp_sk(sk); |
| struct htcp *ca = inet_csk_ca(sk); |
| u32 now = tcp_time_stamp; |
| |
| /* achieved throughput calculations */ |
| if (icsk->icsk_ca_state != TCP_CA_Open && |
| icsk->icsk_ca_state != TCP_CA_Disorder) { |
| ca->packetcount = 0; |
| ca->lasttime = now; |
| return; |
| } |
| |
| ca->packetcount += pkts_acked; |
| |
| if (ca->packetcount >= tp->snd_cwnd - (ca->alpha>>7? : 1) |
| && now - ca->lasttime >= ca->minRTT |
| && ca->minRTT > 0) { |
| __u32 cur_Bi = ca->packetcount*HZ/(now - ca->lasttime); |
| if (ca->ccount <= 3) { |
| /* just after backoff */ |
| ca->minB = ca->maxB = ca->Bi = cur_Bi; |
| } else { |
| ca->Bi = (3*ca->Bi + cur_Bi)/4; |
| if (ca->Bi > ca->maxB) |
| ca->maxB = ca->Bi; |
| if (ca->minB > ca->maxB) |
| ca->minB = ca->maxB; |
| } |
| ca->packetcount = 0; |
| ca->lasttime = now; |
| } |
| } |
| |
| static inline void htcp_beta_update(struct htcp *ca, u32 minRTT, u32 maxRTT) |
| { |
| if (use_bandwidth_switch) { |
| u32 maxB = ca->maxB; |
| u32 old_maxB = ca->old_maxB; |
| ca->old_maxB = ca->maxB; |
| |
| if (!between(5*maxB, 4*old_maxB, 6*old_maxB)) { |
| ca->beta = BETA_MIN; |
| ca->modeswitch = 0; |
| return; |
| } |
| } |
| |
| if (ca->modeswitch && minRTT > max(HZ/100, 1) && maxRTT) { |
| ca->beta = (minRTT<<7)/maxRTT; |
| if (ca->beta < BETA_MIN) |
| ca->beta = BETA_MIN; |
| else if (ca->beta > BETA_MAX) |
| ca->beta = BETA_MAX; |
| } else { |
| ca->beta = BETA_MIN; |
| ca->modeswitch = 1; |
| } |
| } |
| |
| static inline void htcp_alpha_update(struct htcp *ca) |
| { |
| u32 minRTT = ca->minRTT; |
| u32 factor = 1; |
| u32 diff = ca->ccount * minRTT; /* time since last backoff */ |
| |
| if (diff > HZ) { |
| diff -= HZ; |
| factor = 1+ ( 10*diff + ((diff/2)*(diff/2)/HZ) )/HZ; |
| } |
| |
| if (use_rtt_scaling && minRTT) { |
| u32 scale = (HZ<<3)/(10*minRTT); |
| scale = min(max(scale, 1U<<2), 10U<<3); /* clamping ratio to interval [0.5,10]<<3 */ |
| factor = (factor<<3)/scale; |
| if (!factor) |
| factor = 1; |
| } |
| |
| ca->alpha = 2*factor*((1<<7)-ca->beta); |
| if (!ca->alpha) |
| ca->alpha = ALPHA_BASE; |
| } |
| |
| /* After we have the rtt data to calculate beta, we'd still prefer to wait one |
| * rtt before we adjust our beta to ensure we are working from a consistent |
| * data. |
| * |
| * This function should be called when we hit a congestion event since only at |
| * that point do we really have a real sense of maxRTT (the queues en route |
| * were getting just too full now). |
| */ |
| static void htcp_param_update(struct sock *sk) |
| { |
| struct htcp *ca = inet_csk_ca(sk); |
| u32 minRTT = ca->minRTT; |
| u32 maxRTT = ca->maxRTT; |
| |
| htcp_beta_update(ca, minRTT, maxRTT); |
| htcp_alpha_update(ca); |
| |
| /* add slowly fading memory for maxRTT to accommodate routing changes etc */ |
| if (minRTT > 0 && maxRTT > minRTT) |
| ca->maxRTT = minRTT + ((maxRTT-minRTT)*95)/100; |
| } |
| |
| static u32 htcp_recalc_ssthresh(struct sock *sk) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| const struct htcp *ca = inet_csk_ca(sk); |
| htcp_param_update(sk); |
| return max((tp->snd_cwnd * ca->beta) >> 7, 2U); |
| } |
| |
| static void htcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt, |
| u32 in_flight, int data_acked) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct htcp *ca = inet_csk_ca(sk); |
| |
| if (!tcp_is_cwnd_limited(sk, in_flight)) |
| return; |
| |
| if (tp->snd_cwnd <= tp->snd_ssthresh) |
| tcp_slow_start(tp); |
| else { |
| |
| measure_rtt(sk); |
| |
| /* keep track of number of round-trip times since last backoff event */ |
| if (ca->snd_cwnd_cnt2++ > tp->snd_cwnd) { |
| ca->ccount++; |
| ca->snd_cwnd_cnt2 = 0; |
| htcp_alpha_update(ca); |
| } |
| |
| /* In dangerous area, increase slowly. |
| * In theory this is tp->snd_cwnd += alpha / tp->snd_cwnd |
| */ |
| if ((tp->snd_cwnd_cnt++ * ca->alpha)>>7 >= tp->snd_cwnd) { |
| if (tp->snd_cwnd < tp->snd_cwnd_clamp) |
| tp->snd_cwnd++; |
| tp->snd_cwnd_cnt = 0; |
| } |
| } |
| } |
| |
| /* Lower bound on congestion window. */ |
| static u32 htcp_min_cwnd(struct sock *sk) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| return tp->snd_ssthresh; |
| } |
| |
| |
| static void htcp_init(struct sock *sk) |
| { |
| struct htcp *ca = inet_csk_ca(sk); |
| |
| memset(ca, 0, sizeof(struct htcp)); |
| ca->alpha = ALPHA_BASE; |
| ca->beta = BETA_MIN; |
| } |
| |
| static void htcp_state(struct sock *sk, u8 new_state) |
| { |
| switch (new_state) { |
| case TCP_CA_CWR: |
| case TCP_CA_Recovery: |
| case TCP_CA_Loss: |
| htcp_reset(inet_csk_ca(sk)); |
| break; |
| } |
| } |
| |
| static struct tcp_congestion_ops htcp = { |
| .init = htcp_init, |
| .ssthresh = htcp_recalc_ssthresh, |
| .min_cwnd = htcp_min_cwnd, |
| .cong_avoid = htcp_cong_avoid, |
| .set_state = htcp_state, |
| .undo_cwnd = htcp_cwnd_undo, |
| .pkts_acked = measure_achieved_throughput, |
| .owner = THIS_MODULE, |
| .name = "htcp", |
| }; |
| |
| static int __init htcp_register(void) |
| { |
| BUG_ON(sizeof(struct htcp) > ICSK_CA_PRIV_SIZE); |
| BUILD_BUG_ON(BETA_MIN >= BETA_MAX); |
| if (!use_bandwidth_switch) |
| htcp.pkts_acked = NULL; |
| return tcp_register_congestion_control(&htcp); |
| } |
| |
| static void __exit htcp_unregister(void) |
| { |
| tcp_unregister_congestion_control(&htcp); |
| } |
| |
| module_init(htcp_register); |
| module_exit(htcp_unregister); |
| |
| MODULE_AUTHOR("Baruch Even"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("H-TCP"); |