| /* |
| * Copyright (c) 2004 Video54 Technologies, Inc. |
| * Copyright (c) 2004-2009 Atheros Communications, Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <linux/slab.h> |
| |
| #include "ath9k.h" |
| |
| static const struct ath_rate_table ar5416_11na_ratetable = { |
| 42, |
| 8, /* MCS start */ |
| { |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ |
| 5400, 0, 12, 0, 0, 0, 0, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ |
| 7800, 1, 18, 0, 1, 1, 1, 1 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ |
| 10000, 2, 24, 2, 2, 2, 2, 2 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ |
| 13900, 3, 36, 2, 3, 3, 3, 3 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ |
| 17300, 4, 48, 4, 4, 4, 4, 4 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ |
| 23000, 5, 72, 4, 5, 5, 5, 5 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ |
| 27400, 6, 96, 4, 6, 6, 6, 6 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ |
| 29300, 7, 108, 4, 7, 7, 7, 7 }, |
| { VALID_2040, VALID_2040, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */ |
| 6400, 0, 0, 0, 8, 24, 8, 24 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */ |
| 12700, 1, 1, 2, 9, 25, 9, 25 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */ |
| 18800, 2, 2, 2, 10, 26, 10, 26 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */ |
| 25000, 3, 3, 4, 11, 27, 11, 27 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */ |
| 36700, 4, 4, 4, 12, 28, 12, 28 }, |
| { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */ |
| 48100, 5, 5, 4, 13, 29, 13, 29 }, |
| { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */ |
| 53500, 6, 6, 4, 14, 30, 14, 30 }, |
| { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */ |
| 59000, 7, 7, 4, 15, 31, 15, 32 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */ |
| 12700, 8, 8, 3, 16, 33, 16, 33 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */ |
| 24800, 9, 9, 2, 17, 34, 17, 34 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */ |
| 36600, 10, 10, 2, 18, 35, 18, 35 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */ |
| 48100, 11, 11, 4, 19, 36, 19, 36 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */ |
| 69500, 12, 12, 4, 20, 37, 20, 37 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */ |
| 89500, 13, 13, 4, 21, 38, 21, 38 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */ |
| 98900, 14, 14, 4, 22, 39, 22, 39 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */ |
| 108300, 15, 15, 4, 23, 40, 23, 41 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */ |
| 13200, 0, 0, 0, 8, 24, 24, 24 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */ |
| 25900, 1, 1, 2, 9, 25, 25, 25 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */ |
| 38600, 2, 2, 2, 10, 26, 26, 26 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */ |
| 49800, 3, 3, 4, 11, 27, 27, 27 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */ |
| 72200, 4, 4, 4, 12, 28, 28, 28 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */ |
| 92900, 5, 5, 4, 13, 29, 29, 29 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */ |
| 102700, 6, 6, 4, 14, 30, 30, 30 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */ |
| 112000, 7, 7, 4, 15, 31, 32, 32 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ |
| 122000, 7, 7, 4, 15, 31, 32, 32 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */ |
| 25800, 8, 8, 0, 16, 33, 33, 33 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */ |
| 49800, 9, 9, 2, 17, 34, 34, 34 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */ |
| 71900, 10, 10, 2, 18, 35, 35, 35 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */ |
| 92500, 11, 11, 4, 19, 36, 36, 36 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */ |
| 130300, 12, 12, 4, 20, 37, 37, 37 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */ |
| 162800, 13, 13, 4, 21, 38, 38, 38 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */ |
| 178200, 14, 14, 4, 22, 39, 39, 39 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */ |
| 192100, 15, 15, 4, 23, 40, 41, 41 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ |
| 207000, 15, 15, 4, 23, 40, 41, 41 }, |
| }, |
| 50, /* probe interval */ |
| WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ |
| }; |
| |
| /* 4ms frame limit not used for NG mode. The values filled |
| * for HT are the 64K max aggregate limit */ |
| |
| static const struct ath_rate_table ar5416_11ng_ratetable = { |
| 46, |
| 12, /* MCS start */ |
| { |
| { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */ |
| 900, 0, 2, 0, 0, 0, 0, 0 }, |
| { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */ |
| 1900, 1, 4, 1, 1, 1, 1, 1 }, |
| { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */ |
| 4900, 2, 11, 2, 2, 2, 2, 2 }, |
| { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */ |
| 8100, 3, 22, 3, 3, 3, 3, 3 }, |
| { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ |
| 5400, 4, 12, 4, 4, 4, 4, 4 }, |
| { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ |
| 7800, 5, 18, 4, 5, 5, 5, 5 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ |
| 10100, 6, 24, 6, 6, 6, 6, 6 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ |
| 14100, 7, 36, 6, 7, 7, 7, 7 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ |
| 17700, 8, 48, 8, 8, 8, 8, 8 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ |
| 23700, 9, 72, 8, 9, 9, 9, 9 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ |
| 27400, 10, 96, 8, 10, 10, 10, 10 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ |
| 30900, 11, 108, 8, 11, 11, 11, 11 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */ |
| 6400, 0, 0, 4, 12, 28, 12, 28 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */ |
| 12700, 1, 1, 6, 13, 29, 13, 29 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */ |
| 18800, 2, 2, 6, 14, 30, 14, 30 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */ |
| 25000, 3, 3, 8, 15, 31, 15, 31 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */ |
| 36700, 4, 4, 8, 16, 32, 16, 32 }, |
| { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */ |
| 48100, 5, 5, 8, 17, 33, 17, 33 }, |
| { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */ |
| 53500, 6, 6, 8, 18, 34, 18, 34 }, |
| { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */ |
| 59000, 7, 7, 8, 19, 35, 19, 36 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */ |
| 12700, 8, 8, 4, 20, 37, 20, 37 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */ |
| 24800, 9, 9, 6, 21, 38, 21, 38 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */ |
| 36600, 10, 10, 6, 22, 39, 22, 39 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */ |
| 48100, 11, 11, 8, 23, 40, 23, 40 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */ |
| 69500, 12, 12, 8, 24, 41, 24, 41 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */ |
| 89500, 13, 13, 8, 25, 42, 25, 42 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */ |
| 98900, 14, 14, 8, 26, 43, 26, 44 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */ |
| 108300, 15, 15, 8, 27, 44, 27, 45 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */ |
| 13200, 0, 0, 8, 12, 28, 28, 28 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */ |
| 25900, 1, 1, 8, 13, 29, 29, 29 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */ |
| 38600, 2, 2, 8, 14, 30, 30, 30 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */ |
| 49800, 3, 3, 8, 15, 31, 31, 31 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */ |
| 72200, 4, 4, 8, 16, 32, 32, 32 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */ |
| 92900, 5, 5, 8, 17, 33, 33, 33 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */ |
| 102700, 6, 6, 8, 18, 34, 34, 34 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */ |
| 112000, 7, 7, 8, 19, 35, 36, 36 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ |
| 122000, 7, 7, 8, 19, 35, 36, 36 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */ |
| 25800, 8, 8, 8, 20, 37, 37, 37 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */ |
| 49800, 9, 9, 8, 21, 38, 38, 38 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */ |
| 71900, 10, 10, 8, 22, 39, 39, 39 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */ |
| 92500, 11, 11, 8, 23, 40, 40, 40 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */ |
| 130300, 12, 12, 8, 24, 41, 41, 41 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */ |
| 162800, 13, 13, 8, 25, 42, 42, 42 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */ |
| 178200, 14, 14, 8, 26, 43, 43, 43 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */ |
| 192100, 15, 15, 8, 27, 44, 45, 45 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ |
| 207000, 15, 15, 8, 27, 44, 45, 45 }, |
| }, |
| 50, /* probe interval */ |
| WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ |
| }; |
| |
| static const struct ath_rate_table ar5416_11a_ratetable = { |
| 8, |
| 0, |
| { |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ |
| 5400, 0, 12, 0, 0, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ |
| 7800, 1, 18, 0, 1, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ |
| 10000, 2, 24, 2, 2, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ |
| 13900, 3, 36, 2, 3, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ |
| 17300, 4, 48, 4, 4, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ |
| 23000, 5, 72, 4, 5, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ |
| 27400, 6, 96, 4, 6, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ |
| 29300, 7, 108, 4, 7, 0 }, |
| }, |
| 50, /* probe interval */ |
| 0, /* Phy rates allowed initially */ |
| }; |
| |
| static const struct ath_rate_table ar5416_11g_ratetable = { |
| 12, |
| 0, |
| { |
| { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */ |
| 900, 0, 2, 0, 0, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */ |
| 1900, 1, 4, 1, 1, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */ |
| 4900, 2, 11, 2, 2, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */ |
| 8100, 3, 22, 3, 3, 0 }, |
| { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ |
| 5400, 4, 12, 4, 4, 0 }, |
| { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ |
| 7800, 5, 18, 4, 5, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ |
| 10000, 6, 24, 6, 6, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ |
| 13900, 7, 36, 6, 7, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ |
| 17300, 8, 48, 8, 8, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ |
| 23000, 9, 72, 8, 9, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ |
| 27400, 10, 96, 8, 10, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ |
| 29300, 11, 108, 8, 11, 0 }, |
| }, |
| 50, /* probe interval */ |
| 0, /* Phy rates allowed initially */ |
| }; |
| |
| static const struct ath_rate_table *hw_rate_table[ATH9K_MODE_MAX] = { |
| [ATH9K_MODE_11A] = &ar5416_11a_ratetable, |
| [ATH9K_MODE_11G] = &ar5416_11g_ratetable, |
| [ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable, |
| [ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable, |
| [ATH9K_MODE_11NA_HT40PLUS] = &ar5416_11na_ratetable, |
| [ATH9K_MODE_11NA_HT40MINUS] = &ar5416_11na_ratetable, |
| [ATH9K_MODE_11NG_HT40PLUS] = &ar5416_11ng_ratetable, |
| [ATH9K_MODE_11NG_HT40MINUS] = &ar5416_11ng_ratetable, |
| }; |
| |
| static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table, |
| struct ieee80211_tx_rate *rate); |
| |
| static inline int8_t median(int8_t a, int8_t b, int8_t c) |
| { |
| if (a >= b) { |
| if (b >= c) |
| return b; |
| else if (a > c) |
| return c; |
| else |
| return a; |
| } else { |
| if (a >= c) |
| return a; |
| else if (b >= c) |
| return c; |
| else |
| return b; |
| } |
| } |
| |
| static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table, |
| struct ath_rate_priv *ath_rc_priv) |
| { |
| u8 i, j, idx, idx_next; |
| |
| for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) { |
| for (j = 0; j <= i-1; j++) { |
| idx = ath_rc_priv->valid_rate_index[j]; |
| idx_next = ath_rc_priv->valid_rate_index[j+1]; |
| |
| if (rate_table->info[idx].ratekbps > |
| rate_table->info[idx_next].ratekbps) { |
| ath_rc_priv->valid_rate_index[j] = idx_next; |
| ath_rc_priv->valid_rate_index[j+1] = idx; |
| } |
| } |
| } |
| } |
| |
| static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv) |
| { |
| u8 i; |
| |
| for (i = 0; i < ath_rc_priv->rate_table_size; i++) |
| ath_rc_priv->valid_rate_index[i] = 0; |
| } |
| |
| static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv, |
| u8 index, int valid_tx_rate) |
| { |
| BUG_ON(index > ath_rc_priv->rate_table_size); |
| ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0; |
| } |
| |
| static inline |
| int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table, |
| struct ath_rate_priv *ath_rc_priv, |
| u8 cur_valid_txrate, |
| u8 *next_idx) |
| { |
| u8 i; |
| |
| for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) { |
| if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) { |
| *next_idx = ath_rc_priv->valid_rate_index[i+1]; |
| return 1; |
| } |
| } |
| |
| /* No more valid rates */ |
| *next_idx = 0; |
| |
| return 0; |
| } |
| |
| /* Return true only for single stream */ |
| |
| static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw) |
| { |
| if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG)) |
| return 0; |
| if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG)) |
| return 0; |
| if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG)) |
| return 0; |
| if (!ignore_cw && WLAN_RC_PHY_HT(phy)) |
| if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG)) |
| return 0; |
| return 1; |
| } |
| |
| static inline int |
| ath_rc_get_lower_rix(const struct ath_rate_table *rate_table, |
| struct ath_rate_priv *ath_rc_priv, |
| u8 cur_valid_txrate, u8 *next_idx) |
| { |
| int8_t i; |
| |
| for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) { |
| if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) { |
| *next_idx = ath_rc_priv->valid_rate_index[i-1]; |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv, |
| const struct ath_rate_table *rate_table, |
| u32 capflag) |
| { |
| u8 i, hi = 0; |
| u32 valid; |
| |
| for (i = 0; i < rate_table->rate_cnt; i++) { |
| valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? |
| rate_table->info[i].valid_single_stream : |
| rate_table->info[i].valid); |
| if (valid == 1) { |
| u32 phy = rate_table->info[i].phy; |
| u8 valid_rate_count = 0; |
| |
| if (!ath_rc_valid_phyrate(phy, capflag, 0)) |
| continue; |
| |
| valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy]; |
| |
| ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i; |
| ath_rc_priv->valid_phy_ratecnt[phy] += 1; |
| ath_rc_set_valid_txmask(ath_rc_priv, i, 1); |
| hi = A_MAX(hi, i); |
| } |
| } |
| |
| return hi; |
| } |
| |
| static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv, |
| const struct ath_rate_table *rate_table, |
| struct ath_rateset *rateset, |
| u32 capflag) |
| { |
| u8 i, j, hi = 0; |
| |
| /* Use intersection of working rates and valid rates */ |
| for (i = 0; i < rateset->rs_nrates; i++) { |
| for (j = 0; j < rate_table->rate_cnt; j++) { |
| u32 phy = rate_table->info[j].phy; |
| u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? |
| rate_table->info[j].valid_single_stream : |
| rate_table->info[j].valid); |
| u8 rate = rateset->rs_rates[i]; |
| u8 dot11rate = rate_table->info[j].dot11rate; |
| |
| /* We allow a rate only if its valid and the |
| * capflag matches one of the validity |
| * (VALID/VALID_20/VALID_40) flags */ |
| |
| if ((rate == dot11rate) && |
| ((valid & WLAN_RC_CAP_MODE(capflag)) == |
| WLAN_RC_CAP_MODE(capflag)) && |
| !WLAN_RC_PHY_HT(phy)) { |
| u8 valid_rate_count = 0; |
| |
| if (!ath_rc_valid_phyrate(phy, capflag, 0)) |
| continue; |
| |
| valid_rate_count = |
| ath_rc_priv->valid_phy_ratecnt[phy]; |
| |
| ath_rc_priv->valid_phy_rateidx[phy] |
| [valid_rate_count] = j; |
| ath_rc_priv->valid_phy_ratecnt[phy] += 1; |
| ath_rc_set_valid_txmask(ath_rc_priv, j, 1); |
| hi = A_MAX(hi, j); |
| } |
| } |
| } |
| |
| return hi; |
| } |
| |
| static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv, |
| const struct ath_rate_table *rate_table, |
| u8 *mcs_set, u32 capflag) |
| { |
| struct ath_rateset *rateset = (struct ath_rateset *)mcs_set; |
| |
| u8 i, j, hi = 0; |
| |
| /* Use intersection of working rates and valid rates */ |
| for (i = 0; i < rateset->rs_nrates; i++) { |
| for (j = 0; j < rate_table->rate_cnt; j++) { |
| u32 phy = rate_table->info[j].phy; |
| u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? |
| rate_table->info[j].valid_single_stream : |
| rate_table->info[j].valid); |
| u8 rate = rateset->rs_rates[i]; |
| u8 dot11rate = rate_table->info[j].dot11rate; |
| |
| if ((rate != dot11rate) || !WLAN_RC_PHY_HT(phy) || |
| !WLAN_RC_PHY_HT_VALID(valid, capflag)) |
| continue; |
| |
| if (!ath_rc_valid_phyrate(phy, capflag, 0)) |
| continue; |
| |
| ath_rc_priv->valid_phy_rateidx[phy] |
| [ath_rc_priv->valid_phy_ratecnt[phy]] = j; |
| ath_rc_priv->valid_phy_ratecnt[phy] += 1; |
| ath_rc_set_valid_txmask(ath_rc_priv, j, 1); |
| hi = A_MAX(hi, j); |
| } |
| } |
| |
| return hi; |
| } |
| |
| /* Finds the highest rate index we can use */ |
| static u8 ath_rc_get_highest_rix(struct ath_softc *sc, |
| struct ath_rate_priv *ath_rc_priv, |
| const struct ath_rate_table *rate_table, |
| int *is_probing) |
| { |
| u32 best_thruput, this_thruput, now_msec; |
| u8 rate, next_rate, best_rate, maxindex, minindex; |
| int8_t index = 0; |
| |
| now_msec = jiffies_to_msecs(jiffies); |
| *is_probing = 0; |
| best_thruput = 0; |
| maxindex = ath_rc_priv->max_valid_rate-1; |
| minindex = 0; |
| best_rate = minindex; |
| |
| /* |
| * Try the higher rate first. It will reduce memory moving time |
| * if we have very good channel characteristics. |
| */ |
| for (index = maxindex; index >= minindex ; index--) { |
| u8 per_thres; |
| |
| rate = ath_rc_priv->valid_rate_index[index]; |
| if (rate > ath_rc_priv->rate_max_phy) |
| continue; |
| |
| /* |
| * For TCP the average collision rate is around 11%, |
| * so we ignore PERs less than this. This is to |
| * prevent the rate we are currently using (whose |
| * PER might be in the 10-15 range because of TCP |
| * collisions) looking worse than the next lower |
| * rate whose PER has decayed close to 0. If we |
| * used to next lower rate, its PER would grow to |
| * 10-15 and we would be worse off then staying |
| * at the current rate. |
| */ |
| per_thres = ath_rc_priv->per[rate]; |
| if (per_thres < 12) |
| per_thres = 12; |
| |
| this_thruput = rate_table->info[rate].user_ratekbps * |
| (100 - per_thres); |
| |
| if (best_thruput <= this_thruput) { |
| best_thruput = this_thruput; |
| best_rate = rate; |
| } |
| } |
| |
| rate = best_rate; |
| |
| /* |
| * Must check the actual rate (ratekbps) to account for |
| * non-monoticity of 11g's rate table |
| */ |
| |
| if (rate >= ath_rc_priv->rate_max_phy) { |
| rate = ath_rc_priv->rate_max_phy; |
| |
| /* Probe the next allowed phy state */ |
| if (ath_rc_get_nextvalid_txrate(rate_table, |
| ath_rc_priv, rate, &next_rate) && |
| (now_msec - ath_rc_priv->probe_time > |
| rate_table->probe_interval) && |
| (ath_rc_priv->hw_maxretry_pktcnt >= 1)) { |
| rate = next_rate; |
| ath_rc_priv->probe_rate = rate; |
| ath_rc_priv->probe_time = now_msec; |
| ath_rc_priv->hw_maxretry_pktcnt = 0; |
| *is_probing = 1; |
| } |
| } |
| |
| if (rate > (ath_rc_priv->rate_table_size - 1)) |
| rate = ath_rc_priv->rate_table_size - 1; |
| |
| if (rate_table->info[rate].valid && |
| (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG)) |
| return rate; |
| |
| if (rate_table->info[rate].valid_single_stream && |
| !(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG)) |
| return rate; |
| |
| /* This should not happen */ |
| WARN_ON(1); |
| |
| rate = ath_rc_priv->valid_rate_index[0]; |
| |
| return rate; |
| } |
| |
| static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table, |
| struct ieee80211_tx_rate *rate, |
| struct ieee80211_tx_rate_control *txrc, |
| u8 tries, u8 rix, int rtsctsenable) |
| { |
| rate->count = tries; |
| rate->idx = rate_table->info[rix].ratecode; |
| |
| if (txrc->short_preamble) |
| rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE; |
| if (txrc->rts || rtsctsenable) |
| rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS; |
| |
| if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) { |
| rate->flags |= IEEE80211_TX_RC_MCS; |
| if (WLAN_RC_PHY_40(rate_table->info[rix].phy)) |
| rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; |
| if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy)) |
| rate->flags |= IEEE80211_TX_RC_SHORT_GI; |
| } |
| } |
| |
| static void ath_rc_rate_set_rtscts(struct ath_softc *sc, |
| const struct ath_rate_table *rate_table, |
| struct ieee80211_tx_info *tx_info) |
| { |
| struct ieee80211_tx_rate *rates = tx_info->control.rates; |
| int i = 0, rix = 0, cix, enable_g_protection = 0; |
| |
| /* get the cix for the lowest valid rix */ |
| for (i = 3; i >= 0; i--) { |
| if (rates[i].count && (rates[i].idx >= 0)) { |
| rix = ath_rc_get_rateindex(rate_table, &rates[i]); |
| break; |
| } |
| } |
| cix = rate_table->info[rix].ctrl_rate; |
| |
| /* All protection frames are transmited at 2Mb/s for 802.11g, |
| * otherwise we transmit them at 1Mb/s */ |
| if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ && |
| !conf_is_ht(&sc->hw->conf)) |
| enable_g_protection = 1; |
| |
| /* |
| * If 802.11g protection is enabled, determine whether to use RTS/CTS or |
| * just CTS. Note that this is only done for OFDM/HT unicast frames. |
| */ |
| if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) && |
| (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM || |
| WLAN_RC_PHY_HT(rate_table->info[rix].phy))) { |
| rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT; |
| cix = rate_table->info[enable_g_protection].ctrl_rate; |
| } |
| |
| tx_info->control.rts_cts_rate_idx = cix; |
| } |
| |
| static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta, |
| struct ieee80211_tx_rate_control *txrc) |
| { |
| struct ath_softc *sc = priv; |
| struct ath_rate_priv *ath_rc_priv = priv_sta; |
| const struct ath_rate_table *rate_table; |
| struct sk_buff *skb = txrc->skb; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_tx_rate *rates = tx_info->control.rates; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| __le16 fc = hdr->frame_control; |
| u8 try_per_rate, i = 0, rix; |
| int is_probe = 0; |
| |
| if (rate_control_send_low(sta, priv_sta, txrc)) |
| return; |
| |
| /* |
| * For Multi Rate Retry we use a different number of |
| * retry attempt counts. This ends up looking like this: |
| * |
| * MRR[0] = 4 |
| * MRR[1] = 4 |
| * MRR[2] = 4 |
| * MRR[3] = 8 |
| * |
| */ |
| try_per_rate = 4; |
| |
| rate_table = sc->cur_rate_table; |
| rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table, &is_probe); |
| |
| /* |
| * If we're in HT mode and both us and our peer supports LDPC. |
| * We don't need to check our own device's capabilities as our own |
| * ht capabilities would have already been intersected with our peer's. |
| */ |
| if (conf_is_ht(&sc->hw->conf) && |
| (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)) |
| tx_info->flags |= IEEE80211_TX_CTL_LDPC; |
| |
| if (conf_is_ht(&sc->hw->conf) && |
| (sta->ht_cap.cap & IEEE80211_HT_CAP_TX_STBC)) |
| tx_info->flags |= (1 << IEEE80211_TX_CTL_STBC_SHIFT); |
| |
| if (is_probe) { |
| /* set one try for probe rates. For the |
| * probes don't enable rts */ |
| ath_rc_rate_set_series(rate_table, &rates[i++], txrc, |
| 1, rix, 0); |
| |
| /* Get the next tried/allowed rate. No RTS for the next series |
| * after the probe rate |
| */ |
| ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix); |
| ath_rc_rate_set_series(rate_table, &rates[i++], txrc, |
| try_per_rate, rix, 0); |
| |
| tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE; |
| } else { |
| /* Set the choosen rate. No RTS for first series entry. */ |
| ath_rc_rate_set_series(rate_table, &rates[i++], txrc, |
| try_per_rate, rix, 0); |
| } |
| |
| /* Fill in the other rates for multirate retry */ |
| for ( ; i < 4; i++) { |
| /* Use twice the number of tries for the last MRR segment. */ |
| if (i + 1 == 4) |
| try_per_rate = 8; |
| |
| ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix); |
| /* All other rates in the series have RTS enabled */ |
| ath_rc_rate_set_series(rate_table, &rates[i], txrc, |
| try_per_rate, rix, 1); |
| } |
| |
| /* |
| * NB:Change rate series to enable aggregation when operating |
| * at lower MCS rates. When first rate in series is MCS2 |
| * in HT40 @ 2.4GHz, series should look like: |
| * |
| * {MCS2, MCS1, MCS0, MCS0}. |
| * |
| * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should |
| * look like: |
| * |
| * {MCS3, MCS2, MCS1, MCS1} |
| * |
| * So, set fourth rate in series to be same as third one for |
| * above conditions. |
| */ |
| if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) && |
| (conf_is_ht(&sc->hw->conf))) { |
| u8 dot11rate = rate_table->info[rix].dot11rate; |
| u8 phy = rate_table->info[rix].phy; |
| if (i == 4 && |
| ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) || |
| (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) { |
| rates[3].idx = rates[2].idx; |
| rates[3].flags = rates[2].flags; |
| } |
| } |
| |
| /* |
| * Force hardware to use computed duration for next |
| * fragment by disabling multi-rate retry, which |
| * updates duration based on the multi-rate duration table. |
| * |
| * FIXME: Fix duration |
| */ |
| if (ieee80211_has_morefrags(fc) || |
| (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) { |
| rates[1].count = rates[2].count = rates[3].count = 0; |
| rates[1].idx = rates[2].idx = rates[3].idx = 0; |
| rates[0].count = ATH_TXMAXTRY; |
| } |
| |
| /* Setup RTS/CTS */ |
| ath_rc_rate_set_rtscts(sc, rate_table, tx_info); |
| } |
| |
| static bool ath_rc_update_per(struct ath_softc *sc, |
| const struct ath_rate_table *rate_table, |
| struct ath_rate_priv *ath_rc_priv, |
| struct ieee80211_tx_info *tx_info, |
| int tx_rate, int xretries, int retries, |
| u32 now_msec) |
| { |
| bool state_change = false; |
| int count, n_bad_frames; |
| u8 last_per; |
| static u32 nretry_to_per_lookup[10] = { |
| 100 * 0 / 1, |
| 100 * 1 / 4, |
| 100 * 1 / 2, |
| 100 * 3 / 4, |
| 100 * 4 / 5, |
| 100 * 5 / 6, |
| 100 * 6 / 7, |
| 100 * 7 / 8, |
| 100 * 8 / 9, |
| 100 * 9 / 10 |
| }; |
| |
| last_per = ath_rc_priv->per[tx_rate]; |
| n_bad_frames = tx_info->status.ampdu_len - tx_info->status.ampdu_ack_len; |
| |
| if (xretries) { |
| if (xretries == 1) { |
| ath_rc_priv->per[tx_rate] += 30; |
| if (ath_rc_priv->per[tx_rate] > 100) |
| ath_rc_priv->per[tx_rate] = 100; |
| } else { |
| /* xretries == 2 */ |
| count = ARRAY_SIZE(nretry_to_per_lookup); |
| if (retries >= count) |
| retries = count - 1; |
| |
| /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ |
| ath_rc_priv->per[tx_rate] = |
| (u8)(last_per - (last_per >> 3) + (100 >> 3)); |
| } |
| |
| /* xretries == 1 or 2 */ |
| |
| if (ath_rc_priv->probe_rate == tx_rate) |
| ath_rc_priv->probe_rate = 0; |
| |
| } else { /* xretries == 0 */ |
| count = ARRAY_SIZE(nretry_to_per_lookup); |
| if (retries >= count) |
| retries = count - 1; |
| |
| if (n_bad_frames) { |
| /* new_PER = 7/8*old_PER + 1/8*(currentPER) |
| * Assuming that n_frames is not 0. The current PER |
| * from the retries is 100 * retries / (retries+1), |
| * since the first retries attempts failed, and the |
| * next one worked. For the one that worked, |
| * n_bad_frames subframes out of n_frames wored, |
| * so the PER for that part is |
| * 100 * n_bad_frames / n_frames, and it contributes |
| * 100 * n_bad_frames / (n_frames * (retries+1)) to |
| * the above PER. The expression below is a |
| * simplified version of the sum of these two terms. |
| */ |
| if (tx_info->status.ampdu_len > 0) { |
| int n_frames, n_bad_tries; |
| u8 cur_per, new_per; |
| |
| n_bad_tries = retries * tx_info->status.ampdu_len + |
| n_bad_frames; |
| n_frames = tx_info->status.ampdu_len * (retries + 1); |
| cur_per = (100 * n_bad_tries / n_frames) >> 3; |
| new_per = (u8)(last_per - (last_per >> 3) + cur_per); |
| ath_rc_priv->per[tx_rate] = new_per; |
| } |
| } else { |
| ath_rc_priv->per[tx_rate] = |
| (u8)(last_per - (last_per >> 3) + |
| (nretry_to_per_lookup[retries] >> 3)); |
| } |
| |
| |
| /* |
| * If we got at most one retry then increase the max rate if |
| * this was a probe. Otherwise, ignore the probe. |
| */ |
| if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) { |
| if (retries > 0 || 2 * n_bad_frames > tx_info->status.ampdu_len) { |
| /* |
| * Since we probed with just a single attempt, |
| * any retries means the probe failed. Also, |
| * if the attempt worked, but more than half |
| * the subframes were bad then also consider |
| * the probe a failure. |
| */ |
| ath_rc_priv->probe_rate = 0; |
| } else { |
| u8 probe_rate = 0; |
| |
| ath_rc_priv->rate_max_phy = |
| ath_rc_priv->probe_rate; |
| probe_rate = ath_rc_priv->probe_rate; |
| |
| if (ath_rc_priv->per[probe_rate] > 30) |
| ath_rc_priv->per[probe_rate] = 20; |
| |
| ath_rc_priv->probe_rate = 0; |
| |
| /* |
| * Since this probe succeeded, we allow the next |
| * probe twice as soon. This allows the maxRate |
| * to move up faster if the probes are |
| * successful. |
| */ |
| ath_rc_priv->probe_time = |
| now_msec - rate_table->probe_interval / 2; |
| } |
| } |
| |
| if (retries > 0) { |
| /* |
| * Don't update anything. We don't know if |
| * this was because of collisions or poor signal. |
| */ |
| ath_rc_priv->hw_maxretry_pktcnt = 0; |
| } else { |
| /* |
| * It worked with no retries. First ignore bogus (small) |
| * rssi_ack values. |
| */ |
| if (tx_rate == ath_rc_priv->rate_max_phy && |
| ath_rc_priv->hw_maxretry_pktcnt < 255) { |
| ath_rc_priv->hw_maxretry_pktcnt++; |
| } |
| |
| } |
| } |
| |
| return state_change; |
| } |
| |
| /* Update PER, RSSI and whatever else that the code thinks it is doing. |
| If you can make sense of all this, you really need to go out more. */ |
| |
| static void ath_rc_update_ht(struct ath_softc *sc, |
| struct ath_rate_priv *ath_rc_priv, |
| struct ieee80211_tx_info *tx_info, |
| int tx_rate, int xretries, int retries) |
| { |
| u32 now_msec = jiffies_to_msecs(jiffies); |
| int rate; |
| u8 last_per; |
| bool state_change = false; |
| const struct ath_rate_table *rate_table = sc->cur_rate_table; |
| int size = ath_rc_priv->rate_table_size; |
| |
| if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt)) |
| return; |
| |
| last_per = ath_rc_priv->per[tx_rate]; |
| |
| /* Update PER first */ |
| state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv, |
| tx_info, tx_rate, xretries, |
| retries, now_msec); |
| |
| /* |
| * If this rate looks bad (high PER) then stop using it for |
| * a while (except if we are probing). |
| */ |
| if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 && |
| rate_table->info[tx_rate].ratekbps <= |
| rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) { |
| ath_rc_get_lower_rix(rate_table, ath_rc_priv, |
| (u8)tx_rate, &ath_rc_priv->rate_max_phy); |
| |
| /* Don't probe for a little while. */ |
| ath_rc_priv->probe_time = now_msec; |
| } |
| |
| /* Make sure the rates below this have lower PER */ |
| /* Monotonicity is kept only for rates below the current rate. */ |
| if (ath_rc_priv->per[tx_rate] < last_per) { |
| for (rate = tx_rate - 1; rate >= 0; rate--) { |
| |
| if (ath_rc_priv->per[rate] > |
| ath_rc_priv->per[rate+1]) { |
| ath_rc_priv->per[rate] = |
| ath_rc_priv->per[rate+1]; |
| } |
| } |
| } |
| |
| /* Maintain monotonicity for rates above the current rate */ |
| for (rate = tx_rate; rate < size - 1; rate++) { |
| if (ath_rc_priv->per[rate+1] < |
| ath_rc_priv->per[rate]) |
| ath_rc_priv->per[rate+1] = |
| ath_rc_priv->per[rate]; |
| } |
| |
| /* Every so often, we reduce the thresholds |
| * and PER (different for CCK and OFDM). */ |
| if (now_msec - ath_rc_priv->per_down_time >= |
| rate_table->probe_interval) { |
| for (rate = 0; rate < size; rate++) { |
| ath_rc_priv->per[rate] = |
| 7 * ath_rc_priv->per[rate] / 8; |
| } |
| |
| ath_rc_priv->per_down_time = now_msec; |
| } |
| |
| ath_debug_stat_retries(sc, tx_rate, xretries, retries, |
| ath_rc_priv->per[tx_rate]); |
| |
| } |
| |
| static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table, |
| struct ieee80211_tx_rate *rate) |
| { |
| int rix; |
| |
| if (!(rate->flags & IEEE80211_TX_RC_MCS)) |
| return rate->idx; |
| |
| rix = rate->idx + rate_table->mcs_start; |
| if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) && |
| (rate->flags & IEEE80211_TX_RC_SHORT_GI)) |
| rix = rate_table->info[rix].ht_index; |
| else if (rate->flags & IEEE80211_TX_RC_SHORT_GI) |
| rix = rate_table->info[rix].sgi_index; |
| else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) |
| rix = rate_table->info[rix].cw40index; |
| else |
| rix = rate_table->info[rix].base_index; |
| |
| return rix; |
| } |
| |
| static void ath_rc_tx_status(struct ath_softc *sc, |
| struct ath_rate_priv *ath_rc_priv, |
| struct ieee80211_tx_info *tx_info, |
| int final_ts_idx, int xretries, int long_retry) |
| { |
| const struct ath_rate_table *rate_table; |
| struct ieee80211_tx_rate *rates = tx_info->status.rates; |
| u8 flags; |
| u32 i = 0, rix; |
| |
| rate_table = sc->cur_rate_table; |
| |
| /* |
| * If the first rate is not the final index, there |
| * are intermediate rate failures to be processed. |
| */ |
| if (final_ts_idx != 0) { |
| /* Process intermediate rates that failed.*/ |
| for (i = 0; i < final_ts_idx ; i++) { |
| if (rates[i].count != 0 && (rates[i].idx >= 0)) { |
| flags = rates[i].flags; |
| |
| /* If HT40 and we have switched mode from |
| * 40 to 20 => don't update */ |
| |
| if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) && |
| !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG)) |
| return; |
| |
| rix = ath_rc_get_rateindex(rate_table, &rates[i]); |
| ath_rc_update_ht(sc, ath_rc_priv, tx_info, |
| rix, xretries ? 1 : 2, |
| rates[i].count); |
| } |
| } |
| } else { |
| /* |
| * Handle the special case of MIMO PS burst, where the second |
| * aggregate is sent out with only one rate and one try. |
| * Treating it as an excessive retry penalizes the rate |
| * inordinately. |
| */ |
| if (rates[0].count == 1 && xretries == 1) |
| xretries = 2; |
| } |
| |
| flags = rates[i].flags; |
| |
| /* If HT40 and we have switched mode from 40 to 20 => don't update */ |
| if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) && |
| !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG)) |
| return; |
| |
| rix = ath_rc_get_rateindex(rate_table, &rates[i]); |
| ath_rc_update_ht(sc, ath_rc_priv, tx_info, rix, xretries, long_retry); |
| } |
| |
| static const |
| struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc, |
| enum ieee80211_band band, |
| bool is_ht, |
| bool is_cw_40) |
| { |
| int mode = 0; |
| struct ath_common *common = ath9k_hw_common(sc->sc_ah); |
| |
| switch(band) { |
| case IEEE80211_BAND_2GHZ: |
| mode = ATH9K_MODE_11G; |
| if (is_ht) |
| mode = ATH9K_MODE_11NG_HT20; |
| if (is_cw_40) |
| mode = ATH9K_MODE_11NG_HT40PLUS; |
| break; |
| case IEEE80211_BAND_5GHZ: |
| mode = ATH9K_MODE_11A; |
| if (is_ht) |
| mode = ATH9K_MODE_11NA_HT20; |
| if (is_cw_40) |
| mode = ATH9K_MODE_11NA_HT40PLUS; |
| break; |
| default: |
| ath_print(common, ATH_DBG_CONFIG, "Invalid band\n"); |
| return NULL; |
| } |
| |
| BUG_ON(mode >= ATH9K_MODE_MAX); |
| |
| ath_print(common, ATH_DBG_CONFIG, |
| "Choosing rate table for mode: %d\n", mode); |
| |
| sc->cur_rate_mode = mode; |
| return hw_rate_table[mode]; |
| } |
| |
| static void ath_rc_init(struct ath_softc *sc, |
| struct ath_rate_priv *ath_rc_priv, |
| struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta, |
| const struct ath_rate_table *rate_table) |
| { |
| struct ath_rateset *rateset = &ath_rc_priv->neg_rates; |
| struct ath_common *common = ath9k_hw_common(sc->sc_ah); |
| u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates; |
| u8 i, j, k, hi = 0, hthi = 0; |
| |
| /* Initial rate table size. Will change depending |
| * on the working rate set */ |
| ath_rc_priv->rate_table_size = RATE_TABLE_SIZE; |
| |
| /* Initialize thresholds according to the global rate table */ |
| for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) { |
| ath_rc_priv->per[i] = 0; |
| } |
| |
| /* Determine the valid rates */ |
| ath_rc_init_valid_txmask(ath_rc_priv); |
| |
| for (i = 0; i < WLAN_RC_PHY_MAX; i++) { |
| for (j = 0; j < MAX_TX_RATE_PHY; j++) |
| ath_rc_priv->valid_phy_rateidx[i][j] = 0; |
| ath_rc_priv->valid_phy_ratecnt[i] = 0; |
| } |
| |
| if (!rateset->rs_nrates) { |
| /* No working rate, just initialize valid rates */ |
| hi = ath_rc_init_validrates(ath_rc_priv, rate_table, |
| ath_rc_priv->ht_cap); |
| } else { |
| /* Use intersection of working rates and valid rates */ |
| hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table, |
| rateset, ath_rc_priv->ht_cap); |
| if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) { |
| hthi = ath_rc_setvalid_htrates(ath_rc_priv, |
| rate_table, |
| ht_mcs, |
| ath_rc_priv->ht_cap); |
| } |
| hi = A_MAX(hi, hthi); |
| } |
| |
| ath_rc_priv->rate_table_size = hi + 1; |
| ath_rc_priv->rate_max_phy = 0; |
| BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE); |
| |
| for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) { |
| for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) { |
| ath_rc_priv->valid_rate_index[k++] = |
| ath_rc_priv->valid_phy_rateidx[i][j]; |
| } |
| |
| if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1) |
| || !ath_rc_priv->valid_phy_ratecnt[i]) |
| continue; |
| |
| ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1]; |
| } |
| BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE); |
| BUG_ON(k > RATE_TABLE_SIZE); |
| |
| ath_rc_priv->max_valid_rate = k; |
| ath_rc_sort_validrates(rate_table, ath_rc_priv); |
| ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4]; |
| sc->cur_rate_table = rate_table; |
| |
| ath_print(common, ATH_DBG_CONFIG, |
| "RC Initialized with capabilities: 0x%x\n", |
| ath_rc_priv->ht_cap); |
| } |
| |
| static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta, |
| bool is_cw40, bool is_sgi40) |
| { |
| u8 caps = 0; |
| |
| if (sta->ht_cap.ht_supported) { |
| caps = WLAN_RC_HT_FLAG; |
| if (sc->sc_ah->caps.tx_chainmask != 1 && |
| ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_DS, 0, NULL)) { |
| if (sta->ht_cap.mcs.rx_mask[1]) |
| caps |= WLAN_RC_DS_FLAG; |
| } |
| if (is_cw40) |
| caps |= WLAN_RC_40_FLAG; |
| if (is_sgi40) |
| caps |= WLAN_RC_SGI_FLAG; |
| } |
| |
| return caps; |
| } |
| |
| /***********************************/ |
| /* mac80211 Rate Control callbacks */ |
| /***********************************/ |
| |
| static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta, void *priv_sta, |
| struct sk_buff *skb) |
| { |
| struct ath_softc *sc = priv; |
| struct ath_rate_priv *ath_rc_priv = priv_sta; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_hdr *hdr; |
| int final_ts_idx = 0, tx_status = 0, is_underrun = 0; |
| int long_retry = 0; |
| __le16 fc; |
| int i; |
| |
| hdr = (struct ieee80211_hdr *)skb->data; |
| fc = hdr->frame_control; |
| for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { |
| struct ieee80211_tx_rate *rate = &tx_info->status.rates[i]; |
| if (!rate->count) |
| break; |
| |
| final_ts_idx = i; |
| long_retry = rate->count - 1; |
| } |
| |
| if (!priv_sta || !ieee80211_is_data(fc)) |
| return; |
| |
| /* This packet was aggregated but doesn't carry status info */ |
| if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && |
| !(tx_info->flags & IEEE80211_TX_STAT_AMPDU)) |
| return; |
| |
| if (tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) |
| return; |
| |
| /* |
| * If an underrun error is seen assume it as an excessive retry only |
| * if max frame trigger level has been reached (2 KB for singel stream, |
| * and 4 KB for dual stream). Adjust the long retry as if the frame was |
| * tried hw->max_rate_tries times to affect how ratectrl updates PER for |
| * the failed rate. In case of congestion on the bus penalizing these |
| * type of underruns should help hardware actually transmit new frames |
| * successfully by eventually preferring slower rates. This itself |
| * should also alleviate congestion on the bus. |
| */ |
| if ((tx_info->pad[0] & ATH_TX_INFO_UNDERRUN) && |
| (sc->sc_ah->tx_trig_level >= ath_rc_priv->tx_triglevel_max)) { |
| tx_status = 1; |
| is_underrun = 1; |
| } |
| |
| if (tx_info->pad[0] & ATH_TX_INFO_XRETRY) |
| tx_status = 1; |
| |
| ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status, |
| (is_underrun) ? sc->hw->max_rate_tries : long_retry); |
| |
| /* Check if aggregation has to be enabled for this tid */ |
| if (conf_is_ht(&sc->hw->conf) && |
| !(skb->protocol == cpu_to_be16(ETH_P_PAE))) { |
| if (ieee80211_is_data_qos(fc)) { |
| u8 *qc, tid; |
| struct ath_node *an; |
| |
| qc = ieee80211_get_qos_ctl(hdr); |
| tid = qc[0] & 0xf; |
| an = (struct ath_node *)sta->drv_priv; |
| |
| if(ath_tx_aggr_check(sc, an, tid)) |
| ieee80211_start_tx_ba_session(sta, tid); |
| } |
| } |
| |
| ath_debug_stat_rc(sc, ath_rc_get_rateindex(sc->cur_rate_table, |
| &tx_info->status.rates[final_ts_idx])); |
| } |
| |
| static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta, void *priv_sta) |
| { |
| struct ath_softc *sc = priv; |
| struct ath_rate_priv *ath_rc_priv = priv_sta; |
| const struct ath_rate_table *rate_table; |
| bool is_cw40, is_sgi40; |
| int i, j = 0; |
| |
| for (i = 0; i < sband->n_bitrates; i++) { |
| if (sta->supp_rates[sband->band] & BIT(i)) { |
| ath_rc_priv->neg_rates.rs_rates[j] |
| = (sband->bitrates[i].bitrate * 2) / 10; |
| j++; |
| } |
| } |
| ath_rc_priv->neg_rates.rs_nrates = j; |
| |
| if (sta->ht_cap.ht_supported) { |
| for (i = 0, j = 0; i < 77; i++) { |
| if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8))) |
| ath_rc_priv->neg_ht_rates.rs_rates[j++] = i; |
| if (j == ATH_RATE_MAX) |
| break; |
| } |
| ath_rc_priv->neg_ht_rates.rs_nrates = j; |
| } |
| |
| is_cw40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40; |
| is_sgi40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40; |
| |
| /* Choose rate table first */ |
| |
| if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) || |
| (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT) || |
| (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)) { |
| rate_table = ath_choose_rate_table(sc, sband->band, |
| sta->ht_cap.ht_supported, is_cw40); |
| } else { |
| rate_table = hw_rate_table[sc->cur_rate_mode]; |
| } |
| |
| ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi40); |
| ath_rc_init(sc, priv_sta, sband, sta, rate_table); |
| } |
| |
| static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta, void *priv_sta, |
| u32 changed, enum nl80211_channel_type oper_chan_type) |
| { |
| struct ath_softc *sc = priv; |
| struct ath_rate_priv *ath_rc_priv = priv_sta; |
| const struct ath_rate_table *rate_table = NULL; |
| bool oper_cw40 = false, oper_sgi40; |
| bool local_cw40 = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG) ? |
| true : false; |
| bool local_sgi40 = (ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG) ? |
| true : false; |
| |
| /* FIXME: Handle AP mode later when we support CWM */ |
| |
| if (changed & IEEE80211_RC_HT_CHANGED) { |
| if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION) |
| return; |
| |
| if (oper_chan_type == NL80211_CHAN_HT40MINUS || |
| oper_chan_type == NL80211_CHAN_HT40PLUS) |
| oper_cw40 = true; |
| |
| oper_sgi40 = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? |
| true : false; |
| |
| if ((local_cw40 != oper_cw40) || (local_sgi40 != oper_sgi40)) { |
| rate_table = ath_choose_rate_table(sc, sband->band, |
| sta->ht_cap.ht_supported, |
| oper_cw40); |
| ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, |
| oper_cw40, oper_sgi40); |
| ath_rc_init(sc, priv_sta, sband, sta, rate_table); |
| |
| ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG, |
| "Operating HT Bandwidth changed to: %d\n", |
| sc->hw->conf.channel_type); |
| sc->cur_rate_table = hw_rate_table[sc->cur_rate_mode]; |
| } |
| } |
| } |
| |
| static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| return aphy->sc; |
| } |
| |
| static void ath_rate_free(void *priv) |
| { |
| return; |
| } |
| |
| static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp) |
| { |
| struct ath_softc *sc = priv; |
| struct ath_rate_priv *rate_priv; |
| |
| rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp); |
| if (!rate_priv) { |
| ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL, |
| "Unable to allocate private rc structure\n"); |
| return NULL; |
| } |
| |
| rate_priv->tx_triglevel_max = sc->sc_ah->caps.tx_triglevel_max; |
| |
| return rate_priv; |
| } |
| |
| static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta, |
| void *priv_sta) |
| { |
| struct ath_rate_priv *rate_priv = priv_sta; |
| kfree(rate_priv); |
| } |
| |
| static struct rate_control_ops ath_rate_ops = { |
| .module = NULL, |
| .name = "ath9k_rate_control", |
| .tx_status = ath_tx_status, |
| .get_rate = ath_get_rate, |
| .rate_init = ath_rate_init, |
| .rate_update = ath_rate_update, |
| .alloc = ath_rate_alloc, |
| .free = ath_rate_free, |
| .alloc_sta = ath_rate_alloc_sta, |
| .free_sta = ath_rate_free_sta, |
| }; |
| |
| int ath_rate_control_register(void) |
| { |
| return ieee80211_rate_control_register(&ath_rate_ops); |
| } |
| |
| void ath_rate_control_unregister(void) |
| { |
| ieee80211_rate_control_unregister(&ath_rate_ops); |
| } |