| /********************************************************************* |
| * |
| * Filename: af_irda.c |
| * Version: 0.9 |
| * Description: IrDA sockets implementation |
| * Status: Stable |
| * Author: Dag Brattli <dagb@cs.uit.no> |
| * Created at: Sun May 31 10:12:43 1998 |
| * Modified at: Sat Dec 25 21:10:23 1999 |
| * Modified by: Dag Brattli <dag@brattli.net> |
| * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc. |
| * |
| * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no> |
| * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com> |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| * |
| * Linux-IrDA now supports four different types of IrDA sockets: |
| * |
| * o SOCK_STREAM: TinyTP connections with SAR disabled. The |
| * max SDU size is 0 for conn. of this type |
| * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may |
| * fragment the messages, but will preserve |
| * the message boundaries |
| * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata |
| * (unreliable) transfers |
| * IRDAPROTO_ULTRA: Connectionless and unreliable data |
| * |
| ********************************************************************/ |
| |
| #include <linux/capability.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/socket.h> |
| #include <linux/sockios.h> |
| #include <linux/init.h> |
| #include <linux/net.h> |
| #include <linux/irda.h> |
| #include <linux/poll.h> |
| |
| #include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */ |
| #include <asm/uaccess.h> |
| |
| #include <net/sock.h> |
| #include <net/tcp_states.h> |
| |
| #include <net/irda/af_irda.h> |
| |
| static int irda_create(struct net *net, struct socket *sock, int protocol); |
| |
| static const struct proto_ops irda_stream_ops; |
| static const struct proto_ops irda_seqpacket_ops; |
| static const struct proto_ops irda_dgram_ops; |
| |
| #ifdef CONFIG_IRDA_ULTRA |
| static const struct proto_ops irda_ultra_ops; |
| #define ULTRA_MAX_DATA 382 |
| #endif /* CONFIG_IRDA_ULTRA */ |
| |
| #define IRDA_MAX_HEADER (TTP_MAX_HEADER) |
| |
| /* |
| * Function irda_data_indication (instance, sap, skb) |
| * |
| * Received some data from TinyTP. Just queue it on the receive queue |
| * |
| */ |
| static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb) |
| { |
| struct irda_sock *self; |
| struct sock *sk; |
| int err; |
| |
| IRDA_DEBUG(3, "%s()\n", __FUNCTION__); |
| |
| self = instance; |
| sk = instance; |
| |
| err = sock_queue_rcv_skb(sk, skb); |
| if (err) { |
| IRDA_DEBUG(1, "%s(), error: no more mem!\n", __FUNCTION__); |
| self->rx_flow = FLOW_STOP; |
| |
| /* When we return error, TTP will need to requeue the skb */ |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Function irda_disconnect_indication (instance, sap, reason, skb) |
| * |
| * Connection has been closed. Check reason to find out why |
| * |
| */ |
| static void irda_disconnect_indication(void *instance, void *sap, |
| LM_REASON reason, struct sk_buff *skb) |
| { |
| struct irda_sock *self; |
| struct sock *sk; |
| |
| self = instance; |
| |
| IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); |
| |
| /* Don't care about it, but let's not leak it */ |
| if(skb) |
| dev_kfree_skb(skb); |
| |
| sk = instance; |
| if (sk == NULL) { |
| IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n", |
| __FUNCTION__, self); |
| return; |
| } |
| |
| /* Prevent race conditions with irda_release() and irda_shutdown() */ |
| bh_lock_sock(sk); |
| if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) { |
| sk->sk_state = TCP_CLOSE; |
| sk->sk_shutdown |= SEND_SHUTDOWN; |
| |
| sk->sk_state_change(sk); |
| |
| /* Close our TSAP. |
| * If we leave it open, IrLMP put it back into the list of |
| * unconnected LSAPs. The problem is that any incoming request |
| * can then be matched to this socket (and it will be, because |
| * it is at the head of the list). This would prevent any |
| * listening socket waiting on the same TSAP to get those |
| * requests. Some apps forget to close sockets, or hang to it |
| * a bit too long, so we may stay in this dead state long |
| * enough to be noticed... |
| * Note : all socket function do check sk->sk_state, so we are |
| * safe... |
| * Jean II |
| */ |
| if (self->tsap) { |
| irttp_close_tsap(self->tsap); |
| self->tsap = NULL; |
| } |
| } |
| bh_unlock_sock(sk); |
| |
| /* Note : once we are there, there is not much you want to do |
| * with the socket anymore, apart from closing it. |
| * For example, bind() and connect() won't reset sk->sk_err, |
| * sk->sk_shutdown and sk->sk_flags to valid values... |
| * Jean II |
| */ |
| } |
| |
| /* |
| * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb) |
| * |
| * Connections has been confirmed by the remote device |
| * |
| */ |
| static void irda_connect_confirm(void *instance, void *sap, |
| struct qos_info *qos, |
| __u32 max_sdu_size, __u8 max_header_size, |
| struct sk_buff *skb) |
| { |
| struct irda_sock *self; |
| struct sock *sk; |
| |
| self = instance; |
| |
| IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); |
| |
| sk = instance; |
| if (sk == NULL) { |
| dev_kfree_skb(skb); |
| return; |
| } |
| |
| dev_kfree_skb(skb); |
| // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb); |
| |
| /* How much header space do we need to reserve */ |
| self->max_header_size = max_header_size; |
| |
| /* IrTTP max SDU size in transmit direction */ |
| self->max_sdu_size_tx = max_sdu_size; |
| |
| /* Find out what the largest chunk of data that we can transmit is */ |
| switch (sk->sk_type) { |
| case SOCK_STREAM: |
| if (max_sdu_size != 0) { |
| IRDA_ERROR("%s: max_sdu_size must be 0\n", |
| __FUNCTION__); |
| return; |
| } |
| self->max_data_size = irttp_get_max_seg_size(self->tsap); |
| break; |
| case SOCK_SEQPACKET: |
| if (max_sdu_size == 0) { |
| IRDA_ERROR("%s: max_sdu_size cannot be 0\n", |
| __FUNCTION__); |
| return; |
| } |
| self->max_data_size = max_sdu_size; |
| break; |
| default: |
| self->max_data_size = irttp_get_max_seg_size(self->tsap); |
| } |
| |
| IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__, |
| self->max_data_size); |
| |
| memcpy(&self->qos_tx, qos, sizeof(struct qos_info)); |
| |
| /* We are now connected! */ |
| sk->sk_state = TCP_ESTABLISHED; |
| sk->sk_state_change(sk); |
| } |
| |
| /* |
| * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata) |
| * |
| * Incoming connection |
| * |
| */ |
| static void irda_connect_indication(void *instance, void *sap, |
| struct qos_info *qos, __u32 max_sdu_size, |
| __u8 max_header_size, struct sk_buff *skb) |
| { |
| struct irda_sock *self; |
| struct sock *sk; |
| |
| self = instance; |
| |
| IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); |
| |
| sk = instance; |
| if (sk == NULL) { |
| dev_kfree_skb(skb); |
| return; |
| } |
| |
| /* How much header space do we need to reserve */ |
| self->max_header_size = max_header_size; |
| |
| /* IrTTP max SDU size in transmit direction */ |
| self->max_sdu_size_tx = max_sdu_size; |
| |
| /* Find out what the largest chunk of data that we can transmit is */ |
| switch (sk->sk_type) { |
| case SOCK_STREAM: |
| if (max_sdu_size != 0) { |
| IRDA_ERROR("%s: max_sdu_size must be 0\n", |
| __FUNCTION__); |
| kfree_skb(skb); |
| return; |
| } |
| self->max_data_size = irttp_get_max_seg_size(self->tsap); |
| break; |
| case SOCK_SEQPACKET: |
| if (max_sdu_size == 0) { |
| IRDA_ERROR("%s: max_sdu_size cannot be 0\n", |
| __FUNCTION__); |
| kfree_skb(skb); |
| return; |
| } |
| self->max_data_size = max_sdu_size; |
| break; |
| default: |
| self->max_data_size = irttp_get_max_seg_size(self->tsap); |
| } |
| |
| IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__, |
| self->max_data_size); |
| |
| memcpy(&self->qos_tx, qos, sizeof(struct qos_info)); |
| |
| skb_queue_tail(&sk->sk_receive_queue, skb); |
| sk->sk_state_change(sk); |
| } |
| |
| /* |
| * Function irda_connect_response (handle) |
| * |
| * Accept incoming connection |
| * |
| */ |
| static void irda_connect_response(struct irda_sock *self) |
| { |
| struct sk_buff *skb; |
| |
| IRDA_DEBUG(2, "%s()\n", __FUNCTION__); |
| |
| skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER, |
| GFP_ATOMIC); |
| if (skb == NULL) { |
| IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n", |
| __FUNCTION__); |
| return; |
| } |
| |
| /* Reserve space for MUX_CONTROL and LAP header */ |
| skb_reserve(skb, IRDA_MAX_HEADER); |
| |
| irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb); |
| } |
| |
| /* |
| * Function irda_flow_indication (instance, sap, flow) |
| * |
| * Used by TinyTP to tell us if it can accept more data or not |
| * |
| */ |
| static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow) |
| { |
| struct irda_sock *self; |
| struct sock *sk; |
| |
| IRDA_DEBUG(2, "%s()\n", __FUNCTION__); |
| |
| self = instance; |
| sk = instance; |
| BUG_ON(sk == NULL); |
| |
| switch (flow) { |
| case FLOW_STOP: |
| IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n", |
| __FUNCTION__); |
| self->tx_flow = flow; |
| break; |
| case FLOW_START: |
| self->tx_flow = flow; |
| IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n", |
| __FUNCTION__); |
| wake_up_interruptible(sk->sk_sleep); |
| break; |
| default: |
| IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __FUNCTION__); |
| /* Unknown flow command, better stop */ |
| self->tx_flow = flow; |
| break; |
| } |
| } |
| |
| /* |
| * Function irda_getvalue_confirm (obj_id, value, priv) |
| * |
| * Got answer from remote LM-IAS, just pass object to requester... |
| * |
| * Note : duplicate from above, but we need our own version that |
| * doesn't touch the dtsap_sel and save the full value structure... |
| */ |
| static void irda_getvalue_confirm(int result, __u16 obj_id, |
| struct ias_value *value, void *priv) |
| { |
| struct irda_sock *self; |
| |
| self = (struct irda_sock *) priv; |
| if (!self) { |
| IRDA_WARNING("%s: lost myself!\n", __FUNCTION__); |
| return; |
| } |
| |
| IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); |
| |
| /* We probably don't need to make any more queries */ |
| iriap_close(self->iriap); |
| self->iriap = NULL; |
| |
| /* Check if request succeeded */ |
| if (result != IAS_SUCCESS) { |
| IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __FUNCTION__, |
| result); |
| |
| self->errno = result; /* We really need it later */ |
| |
| /* Wake up any processes waiting for result */ |
| wake_up_interruptible(&self->query_wait); |
| |
| return; |
| } |
| |
| /* Pass the object to the caller (so the caller must delete it) */ |
| self->ias_result = value; |
| self->errno = 0; |
| |
| /* Wake up any processes waiting for result */ |
| wake_up_interruptible(&self->query_wait); |
| } |
| |
| /* |
| * Function irda_selective_discovery_indication (discovery) |
| * |
| * Got a selective discovery indication from IrLMP. |
| * |
| * IrLMP is telling us that this node is new and matching our hint bit |
| * filter. Wake up any process waiting for answer... |
| */ |
| static void irda_selective_discovery_indication(discinfo_t *discovery, |
| DISCOVERY_MODE mode, |
| void *priv) |
| { |
| struct irda_sock *self; |
| |
| IRDA_DEBUG(2, "%s()\n", __FUNCTION__); |
| |
| self = (struct irda_sock *) priv; |
| if (!self) { |
| IRDA_WARNING("%s: lost myself!\n", __FUNCTION__); |
| return; |
| } |
| |
| /* Pass parameter to the caller */ |
| self->cachedaddr = discovery->daddr; |
| |
| /* Wake up process if its waiting for device to be discovered */ |
| wake_up_interruptible(&self->query_wait); |
| } |
| |
| /* |
| * Function irda_discovery_timeout (priv) |
| * |
| * Timeout in the selective discovery process |
| * |
| * We were waiting for a node to be discovered, but nothing has come up |
| * so far. Wake up the user and tell him that we failed... |
| */ |
| static void irda_discovery_timeout(u_long priv) |
| { |
| struct irda_sock *self; |
| |
| IRDA_DEBUG(2, "%s()\n", __FUNCTION__); |
| |
| self = (struct irda_sock *) priv; |
| BUG_ON(self == NULL); |
| |
| /* Nothing for the caller */ |
| self->cachelog = NULL; |
| self->cachedaddr = 0; |
| self->errno = -ETIME; |
| |
| /* Wake up process if its still waiting... */ |
| wake_up_interruptible(&self->query_wait); |
| } |
| |
| /* |
| * Function irda_open_tsap (self) |
| * |
| * Open local Transport Service Access Point (TSAP) |
| * |
| */ |
| static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name) |
| { |
| notify_t notify; |
| |
| if (self->tsap) { |
| IRDA_WARNING("%s: busy!\n", __FUNCTION__); |
| return -EBUSY; |
| } |
| |
| /* Initialize callbacks to be used by the IrDA stack */ |
| irda_notify_init(¬ify); |
| notify.connect_confirm = irda_connect_confirm; |
| notify.connect_indication = irda_connect_indication; |
| notify.disconnect_indication = irda_disconnect_indication; |
| notify.data_indication = irda_data_indication; |
| notify.udata_indication = irda_data_indication; |
| notify.flow_indication = irda_flow_indication; |
| notify.instance = self; |
| strncpy(notify.name, name, NOTIFY_MAX_NAME); |
| |
| self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT, |
| ¬ify); |
| if (self->tsap == NULL) { |
| IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n", |
| __FUNCTION__); |
| return -ENOMEM; |
| } |
| /* Remember which TSAP selector we actually got */ |
| self->stsap_sel = self->tsap->stsap_sel; |
| |
| return 0; |
| } |
| |
| /* |
| * Function irda_open_lsap (self) |
| * |
| * Open local Link Service Access Point (LSAP). Used for opening Ultra |
| * sockets |
| */ |
| #ifdef CONFIG_IRDA_ULTRA |
| static int irda_open_lsap(struct irda_sock *self, int pid) |
| { |
| notify_t notify; |
| |
| if (self->lsap) { |
| IRDA_WARNING("%s(), busy!\n", __FUNCTION__); |
| return -EBUSY; |
| } |
| |
| /* Initialize callbacks to be used by the IrDA stack */ |
| irda_notify_init(¬ify); |
| notify.udata_indication = irda_data_indication; |
| notify.instance = self; |
| strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME); |
| |
| self->lsap = irlmp_open_lsap(LSAP_CONNLESS, ¬ify, pid); |
| if (self->lsap == NULL) { |
| IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __FUNCTION__); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| #endif /* CONFIG_IRDA_ULTRA */ |
| |
| /* |
| * Function irda_find_lsap_sel (self, name) |
| * |
| * Try to lookup LSAP selector in remote LM-IAS |
| * |
| * Basically, we start a IAP query, and then go to sleep. When the query |
| * return, irda_getvalue_confirm will wake us up, and we can examine the |
| * result of the query... |
| * Note that in some case, the query fail even before we go to sleep, |
| * creating some races... |
| */ |
| static int irda_find_lsap_sel(struct irda_sock *self, char *name) |
| { |
| IRDA_DEBUG(2, "%s(%p, %s)\n", __FUNCTION__, self, name); |
| |
| if (self->iriap) { |
| IRDA_WARNING("%s(): busy with a previous query\n", |
| __FUNCTION__); |
| return -EBUSY; |
| } |
| |
| self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self, |
| irda_getvalue_confirm); |
| if(self->iriap == NULL) |
| return -ENOMEM; |
| |
| /* Treat unexpected wakeup as disconnect */ |
| self->errno = -EHOSTUNREACH; |
| |
| /* Query remote LM-IAS */ |
| iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr, |
| name, "IrDA:TinyTP:LsapSel"); |
| |
| /* Wait for answer, if not yet finished (or failed) */ |
| if (wait_event_interruptible(self->query_wait, (self->iriap==NULL))) |
| /* Treat signals as disconnect */ |
| return -EHOSTUNREACH; |
| |
| /* Check what happened */ |
| if (self->errno) |
| { |
| /* Requested object/attribute doesn't exist */ |
| if((self->errno == IAS_CLASS_UNKNOWN) || |
| (self->errno == IAS_ATTRIB_UNKNOWN)) |
| return (-EADDRNOTAVAIL); |
| else |
| return (-EHOSTUNREACH); |
| } |
| |
| /* Get the remote TSAP selector */ |
| switch (self->ias_result->type) { |
| case IAS_INTEGER: |
| IRDA_DEBUG(4, "%s() int=%d\n", |
| __FUNCTION__, self->ias_result->t.integer); |
| |
| if (self->ias_result->t.integer != -1) |
| self->dtsap_sel = self->ias_result->t.integer; |
| else |
| self->dtsap_sel = 0; |
| break; |
| default: |
| self->dtsap_sel = 0; |
| IRDA_DEBUG(0, "%s(), bad type!\n", __FUNCTION__); |
| break; |
| } |
| if (self->ias_result) |
| irias_delete_value(self->ias_result); |
| |
| if (self->dtsap_sel) |
| return 0; |
| |
| return -EADDRNOTAVAIL; |
| } |
| |
| /* |
| * Function irda_discover_daddr_and_lsap_sel (self, name) |
| * |
| * This try to find a device with the requested service. |
| * |
| * It basically look into the discovery log. For each address in the list, |
| * it queries the LM-IAS of the device to find if this device offer |
| * the requested service. |
| * If there is more than one node supporting the service, we complain |
| * to the user (it should move devices around). |
| * The, we set both the destination address and the lsap selector to point |
| * on the service on the unique device we have found. |
| * |
| * Note : this function fails if there is more than one device in range, |
| * because IrLMP doesn't disconnect the LAP when the last LSAP is closed. |
| * Moreover, we would need to wait the LAP disconnection... |
| */ |
| static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name) |
| { |
| discinfo_t *discoveries; /* Copy of the discovery log */ |
| int number; /* Number of nodes in the log */ |
| int i; |
| int err = -ENETUNREACH; |
| __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */ |
| __u8 dtsap_sel = 0x0; /* TSAP associated with it */ |
| |
| IRDA_DEBUG(2, "%s(), name=%s\n", __FUNCTION__, name); |
| |
| /* Ask lmp for the current discovery log |
| * Note : we have to use irlmp_get_discoveries(), as opposed |
| * to play with the cachelog directly, because while we are |
| * making our ias query, le log might change... */ |
| discoveries = irlmp_get_discoveries(&number, self->mask.word, |
| self->nslots); |
| /* Check if the we got some results */ |
| if (discoveries == NULL) |
| return -ENETUNREACH; /* No nodes discovered */ |
| |
| /* |
| * Now, check all discovered devices (if any), and connect |
| * client only about the services that the client is |
| * interested in... |
| */ |
| for(i = 0; i < number; i++) { |
| /* Try the address in the log */ |
| self->daddr = discoveries[i].daddr; |
| self->saddr = 0x0; |
| IRDA_DEBUG(1, "%s(), trying daddr = %08x\n", |
| __FUNCTION__, self->daddr); |
| |
| /* Query remote LM-IAS for this service */ |
| err = irda_find_lsap_sel(self, name); |
| switch (err) { |
| case 0: |
| /* We found the requested service */ |
| if(daddr != DEV_ADDR_ANY) { |
| IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n", |
| __FUNCTION__, name); |
| self->daddr = DEV_ADDR_ANY; |
| kfree(discoveries); |
| return(-ENOTUNIQ); |
| } |
| /* First time we found that one, save it ! */ |
| daddr = self->daddr; |
| dtsap_sel = self->dtsap_sel; |
| break; |
| case -EADDRNOTAVAIL: |
| /* Requested service simply doesn't exist on this node */ |
| break; |
| default: |
| /* Something bad did happen :-( */ |
| IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __FUNCTION__); |
| self->daddr = DEV_ADDR_ANY; |
| kfree(discoveries); |
| return(-EHOSTUNREACH); |
| break; |
| } |
| } |
| /* Cleanup our copy of the discovery log */ |
| kfree(discoveries); |
| |
| /* Check out what we found */ |
| if(daddr == DEV_ADDR_ANY) { |
| IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n", |
| __FUNCTION__, name); |
| self->daddr = DEV_ADDR_ANY; |
| return(-EADDRNOTAVAIL); |
| } |
| |
| /* Revert back to discovered device & service */ |
| self->daddr = daddr; |
| self->saddr = 0x0; |
| self->dtsap_sel = dtsap_sel; |
| |
| IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n", |
| __FUNCTION__, name, self->daddr); |
| |
| return 0; |
| } |
| |
| /* |
| * Function irda_getname (sock, uaddr, uaddr_len, peer) |
| * |
| * Return the our own, or peers socket address (sockaddr_irda) |
| * |
| */ |
| static int irda_getname(struct socket *sock, struct sockaddr *uaddr, |
| int *uaddr_len, int peer) |
| { |
| struct sockaddr_irda saddr; |
| struct sock *sk = sock->sk; |
| struct irda_sock *self = irda_sk(sk); |
| |
| if (peer) { |
| if (sk->sk_state != TCP_ESTABLISHED) |
| return -ENOTCONN; |
| |
| saddr.sir_family = AF_IRDA; |
| saddr.sir_lsap_sel = self->dtsap_sel; |
| saddr.sir_addr = self->daddr; |
| } else { |
| saddr.sir_family = AF_IRDA; |
| saddr.sir_lsap_sel = self->stsap_sel; |
| saddr.sir_addr = self->saddr; |
| } |
| |
| IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __FUNCTION__, saddr.sir_lsap_sel); |
| IRDA_DEBUG(1, "%s(), addr = %08x\n", __FUNCTION__, saddr.sir_addr); |
| |
| /* uaddr_len come to us uninitialised */ |
| *uaddr_len = sizeof (struct sockaddr_irda); |
| memcpy(uaddr, &saddr, *uaddr_len); |
| |
| return 0; |
| } |
| |
| /* |
| * Function irda_listen (sock, backlog) |
| * |
| * Just move to the listen state |
| * |
| */ |
| static int irda_listen(struct socket *sock, int backlog) |
| { |
| struct sock *sk = sock->sk; |
| |
| IRDA_DEBUG(2, "%s()\n", __FUNCTION__); |
| |
| if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) && |
| (sk->sk_type != SOCK_DGRAM)) |
| return -EOPNOTSUPP; |
| |
| if (sk->sk_state != TCP_LISTEN) { |
| sk->sk_max_ack_backlog = backlog; |
| sk->sk_state = TCP_LISTEN; |
| |
| return 0; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| /* |
| * Function irda_bind (sock, uaddr, addr_len) |
| * |
| * Used by servers to register their well known TSAP |
| * |
| */ |
| static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) |
| { |
| struct sock *sk = sock->sk; |
| struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr; |
| struct irda_sock *self = irda_sk(sk); |
| int err; |
| |
| IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); |
| |
| if (addr_len != sizeof(struct sockaddr_irda)) |
| return -EINVAL; |
| |
| #ifdef CONFIG_IRDA_ULTRA |
| /* Special care for Ultra sockets */ |
| if ((sk->sk_type == SOCK_DGRAM) && |
| (sk->sk_protocol == IRDAPROTO_ULTRA)) { |
| self->pid = addr->sir_lsap_sel; |
| if (self->pid & 0x80) { |
| IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__); |
| return -EOPNOTSUPP; |
| } |
| err = irda_open_lsap(self, self->pid); |
| if (err < 0) |
| return err; |
| |
| /* Pretend we are connected */ |
| sock->state = SS_CONNECTED; |
| sk->sk_state = TCP_ESTABLISHED; |
| |
| return 0; |
| } |
| #endif /* CONFIG_IRDA_ULTRA */ |
| |
| err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name); |
| if (err < 0) |
| return err; |
| |
| /* Register with LM-IAS */ |
| self->ias_obj = irias_new_object(addr->sir_name, jiffies); |
| irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel", |
| self->stsap_sel, IAS_KERNEL_ATTR); |
| irias_insert_object(self->ias_obj); |
| |
| return 0; |
| } |
| |
| /* |
| * Function irda_accept (sock, newsock, flags) |
| * |
| * Wait for incoming connection |
| * |
| */ |
| static int irda_accept(struct socket *sock, struct socket *newsock, int flags) |
| { |
| struct sock *sk = sock->sk; |
| struct irda_sock *new, *self = irda_sk(sk); |
| struct sock *newsk; |
| struct sk_buff *skb; |
| int err; |
| |
| IRDA_DEBUG(2, "%s()\n", __FUNCTION__); |
| |
| err = irda_create(sk->sk_net, newsock, sk->sk_protocol); |
| if (err) |
| return err; |
| |
| if (sock->state != SS_UNCONNECTED) |
| return -EINVAL; |
| |
| if ((sk = sock->sk) == NULL) |
| return -EINVAL; |
| |
| if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) && |
| (sk->sk_type != SOCK_DGRAM)) |
| return -EOPNOTSUPP; |
| |
| if (sk->sk_state != TCP_LISTEN) |
| return -EINVAL; |
| |
| /* |
| * The read queue this time is holding sockets ready to use |
| * hooked into the SABM we saved |
| */ |
| |
| /* |
| * We can perform the accept only if there is incoming data |
| * on the listening socket. |
| * So, we will block the caller until we receive any data. |
| * If the caller was waiting on select() or poll() before |
| * calling us, the data is waiting for us ;-) |
| * Jean II |
| */ |
| while (1) { |
| skb = skb_dequeue(&sk->sk_receive_queue); |
| if (skb) |
| break; |
| |
| /* Non blocking operation */ |
| if (flags & O_NONBLOCK) |
| return -EWOULDBLOCK; |
| |
| err = wait_event_interruptible(*(sk->sk_sleep), |
| skb_peek(&sk->sk_receive_queue)); |
| if (err) |
| return err; |
| } |
| |
| newsk = newsock->sk; |
| if (newsk == NULL) |
| return -EIO; |
| |
| newsk->sk_state = TCP_ESTABLISHED; |
| |
| new = irda_sk(newsk); |
| |
| /* Now attach up the new socket */ |
| new->tsap = irttp_dup(self->tsap, new); |
| if (!new->tsap) { |
| IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__); |
| kfree_skb(skb); |
| return -1; |
| } |
| |
| new->stsap_sel = new->tsap->stsap_sel; |
| new->dtsap_sel = new->tsap->dtsap_sel; |
| new->saddr = irttp_get_saddr(new->tsap); |
| new->daddr = irttp_get_daddr(new->tsap); |
| |
| new->max_sdu_size_tx = self->max_sdu_size_tx; |
| new->max_sdu_size_rx = self->max_sdu_size_rx; |
| new->max_data_size = self->max_data_size; |
| new->max_header_size = self->max_header_size; |
| |
| memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info)); |
| |
| /* Clean up the original one to keep it in listen state */ |
| irttp_listen(self->tsap); |
| |
| /* Wow ! What is that ? Jean II */ |
| skb->sk = NULL; |
| skb->destructor = NULL; |
| kfree_skb(skb); |
| sk->sk_ack_backlog--; |
| |
| newsock->state = SS_CONNECTED; |
| |
| irda_connect_response(new); |
| |
| return 0; |
| } |
| |
| /* |
| * Function irda_connect (sock, uaddr, addr_len, flags) |
| * |
| * Connect to a IrDA device |
| * |
| * The main difference with a "standard" connect is that with IrDA we need |
| * to resolve the service name into a TSAP selector (in TCP, port number |
| * doesn't have to be resolved). |
| * Because of this service name resoltion, we can offer "auto-connect", |
| * where we connect to a service without specifying a destination address. |
| * |
| * Note : by consulting "errno", the user space caller may learn the cause |
| * of the failure. Most of them are visible in the function, others may come |
| * from subroutines called and are listed here : |
| * o EBUSY : already processing a connect |
| * o EHOSTUNREACH : bad addr->sir_addr argument |
| * o EADDRNOTAVAIL : bad addr->sir_name argument |
| * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect) |
| * o ENETUNREACH : no node found on the network (auto-connect) |
| */ |
| static int irda_connect(struct socket *sock, struct sockaddr *uaddr, |
| int addr_len, int flags) |
| { |
| struct sock *sk = sock->sk; |
| struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr; |
| struct irda_sock *self = irda_sk(sk); |
| int err; |
| |
| IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); |
| |
| /* Don't allow connect for Ultra sockets */ |
| if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA)) |
| return -ESOCKTNOSUPPORT; |
| |
| if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { |
| sock->state = SS_CONNECTED; |
| return 0; /* Connect completed during a ERESTARTSYS event */ |
| } |
| |
| if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) { |
| sock->state = SS_UNCONNECTED; |
| return -ECONNREFUSED; |
| } |
| |
| if (sk->sk_state == TCP_ESTABLISHED) |
| return -EISCONN; /* No reconnect on a seqpacket socket */ |
| |
| sk->sk_state = TCP_CLOSE; |
| sock->state = SS_UNCONNECTED; |
| |
| if (addr_len != sizeof(struct sockaddr_irda)) |
| return -EINVAL; |
| |
| /* Check if user supplied any destination device address */ |
| if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) { |
| /* Try to find one suitable */ |
| err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name); |
| if (err) { |
| IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __FUNCTION__); |
| return err; |
| } |
| } else { |
| /* Use the one provided by the user */ |
| self->daddr = addr->sir_addr; |
| IRDA_DEBUG(1, "%s(), daddr = %08x\n", __FUNCTION__, self->daddr); |
| |
| /* If we don't have a valid service name, we assume the |
| * user want to connect on a specific LSAP. Prevent |
| * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */ |
| if((addr->sir_name[0] != '\0') || |
| (addr->sir_lsap_sel >= 0x70)) { |
| /* Query remote LM-IAS using service name */ |
| err = irda_find_lsap_sel(self, addr->sir_name); |
| if (err) { |
| IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__); |
| return err; |
| } |
| } else { |
| /* Directly connect to the remote LSAP |
| * specified by the sir_lsap field. |
| * Please use with caution, in IrDA LSAPs are |
| * dynamic and there is no "well-known" LSAP. */ |
| self->dtsap_sel = addr->sir_lsap_sel; |
| } |
| } |
| |
| /* Check if we have opened a local TSAP */ |
| if (!self->tsap) |
| irda_open_tsap(self, LSAP_ANY, addr->sir_name); |
| |
| /* Move to connecting socket, start sending Connect Requests */ |
| sock->state = SS_CONNECTING; |
| sk->sk_state = TCP_SYN_SENT; |
| |
| /* Connect to remote device */ |
| err = irttp_connect_request(self->tsap, self->dtsap_sel, |
| self->saddr, self->daddr, NULL, |
| self->max_sdu_size_rx, NULL); |
| if (err) { |
| IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__); |
| return err; |
| } |
| |
| /* Now the loop */ |
| if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) |
| return -EINPROGRESS; |
| |
| if (wait_event_interruptible(*(sk->sk_sleep), |
| (sk->sk_state != TCP_SYN_SENT))) |
| return -ERESTARTSYS; |
| |
| if (sk->sk_state != TCP_ESTABLISHED) { |
| sock->state = SS_UNCONNECTED; |
| err = sock_error(sk); |
| return err? err : -ECONNRESET; |
| } |
| |
| sock->state = SS_CONNECTED; |
| |
| /* At this point, IrLMP has assigned our source address */ |
| self->saddr = irttp_get_saddr(self->tsap); |
| |
| return 0; |
| } |
| |
| static struct proto irda_proto = { |
| .name = "IRDA", |
| .owner = THIS_MODULE, |
| .obj_size = sizeof(struct irda_sock), |
| }; |
| |
| /* |
| * Function irda_create (sock, protocol) |
| * |
| * Create IrDA socket |
| * |
| */ |
| static int irda_create(struct net *net, struct socket *sock, int protocol) |
| { |
| struct sock *sk; |
| struct irda_sock *self; |
| |
| IRDA_DEBUG(2, "%s()\n", __FUNCTION__); |
| |
| if (net != &init_net) |
| return -EAFNOSUPPORT; |
| |
| /* Check for valid socket type */ |
| switch (sock->type) { |
| case SOCK_STREAM: /* For TTP connections with SAR disabled */ |
| case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */ |
| case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */ |
| break; |
| default: |
| return -ESOCKTNOSUPPORT; |
| } |
| |
| /* Allocate networking socket */ |
| sk = sk_alloc(net, PF_IRDA, GFP_ATOMIC, &irda_proto); |
| if (sk == NULL) |
| return -ENOMEM; |
| |
| self = irda_sk(sk); |
| IRDA_DEBUG(2, "%s() : self is %p\n", __FUNCTION__, self); |
| |
| init_waitqueue_head(&self->query_wait); |
| |
| /* Initialise networking socket struct */ |
| sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */ |
| sk->sk_family = PF_IRDA; |
| sk->sk_protocol = protocol; |
| |
| switch (sock->type) { |
| case SOCK_STREAM: |
| sock->ops = &irda_stream_ops; |
| self->max_sdu_size_rx = TTP_SAR_DISABLE; |
| break; |
| case SOCK_SEQPACKET: |
| sock->ops = &irda_seqpacket_ops; |
| self->max_sdu_size_rx = TTP_SAR_UNBOUND; |
| break; |
| case SOCK_DGRAM: |
| switch (protocol) { |
| #ifdef CONFIG_IRDA_ULTRA |
| case IRDAPROTO_ULTRA: |
| sock->ops = &irda_ultra_ops; |
| /* Initialise now, because we may send on unbound |
| * sockets. Jean II */ |
| self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER; |
| self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER; |
| break; |
| #endif /* CONFIG_IRDA_ULTRA */ |
| case IRDAPROTO_UNITDATA: |
| sock->ops = &irda_dgram_ops; |
| /* We let Unitdata conn. be like seqpack conn. */ |
| self->max_sdu_size_rx = TTP_SAR_UNBOUND; |
| break; |
| default: |
| return -ESOCKTNOSUPPORT; |
| } |
| break; |
| default: |
| return -ESOCKTNOSUPPORT; |
| } |
| |
| /* Register as a client with IrLMP */ |
| self->ckey = irlmp_register_client(0, NULL, NULL, NULL); |
| self->mask.word = 0xffff; |
| self->rx_flow = self->tx_flow = FLOW_START; |
| self->nslots = DISCOVERY_DEFAULT_SLOTS; |
| self->daddr = DEV_ADDR_ANY; /* Until we get connected */ |
| self->saddr = 0x0; /* so IrLMP assign us any link */ |
| return 0; |
| } |
| |
| /* |
| * Function irda_destroy_socket (self) |
| * |
| * Destroy socket |
| * |
| */ |
| static void irda_destroy_socket(struct irda_sock *self) |
| { |
| IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); |
| |
| /* Unregister with IrLMP */ |
| irlmp_unregister_client(self->ckey); |
| irlmp_unregister_service(self->skey); |
| |
| /* Unregister with LM-IAS */ |
| if (self->ias_obj) { |
| irias_delete_object(self->ias_obj); |
| self->ias_obj = NULL; |
| } |
| |
| if (self->iriap) { |
| iriap_close(self->iriap); |
| self->iriap = NULL; |
| } |
| |
| if (self->tsap) { |
| irttp_disconnect_request(self->tsap, NULL, P_NORMAL); |
| irttp_close_tsap(self->tsap); |
| self->tsap = NULL; |
| } |
| #ifdef CONFIG_IRDA_ULTRA |
| if (self->lsap) { |
| irlmp_close_lsap(self->lsap); |
| self->lsap = NULL; |
| } |
| #endif /* CONFIG_IRDA_ULTRA */ |
| } |
| |
| /* |
| * Function irda_release (sock) |
| */ |
| static int irda_release(struct socket *sock) |
| { |
| struct sock *sk = sock->sk; |
| |
| IRDA_DEBUG(2, "%s()\n", __FUNCTION__); |
| |
| if (sk == NULL) |
| return 0; |
| |
| lock_sock(sk); |
| sk->sk_state = TCP_CLOSE; |
| sk->sk_shutdown |= SEND_SHUTDOWN; |
| sk->sk_state_change(sk); |
| |
| /* Destroy IrDA socket */ |
| irda_destroy_socket(irda_sk(sk)); |
| |
| sock_orphan(sk); |
| sock->sk = NULL; |
| release_sock(sk); |
| |
| /* Purge queues (see sock_init_data()) */ |
| skb_queue_purge(&sk->sk_receive_queue); |
| |
| /* Destroy networking socket if we are the last reference on it, |
| * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */ |
| sock_put(sk); |
| |
| /* Notes on socket locking and deallocation... - Jean II |
| * In theory we should put pairs of sock_hold() / sock_put() to |
| * prevent the socket to be destroyed whenever there is an |
| * outstanding request or outstanding incoming packet or event. |
| * |
| * 1) This may include IAS request, both in connect and getsockopt. |
| * Unfortunately, the situation is a bit more messy than it looks, |
| * because we close iriap and kfree(self) above. |
| * |
| * 2) This may include selective discovery in getsockopt. |
| * Same stuff as above, irlmp registration and self are gone. |
| * |
| * Probably 1 and 2 may not matter, because it's all triggered |
| * by a process and the socket layer already prevent the |
| * socket to go away while a process is holding it, through |
| * sockfd_put() and fput()... |
| * |
| * 3) This may include deferred TSAP closure. In particular, |
| * we may receive a late irda_disconnect_indication() |
| * Fortunately, (tsap_cb *)->close_pend should protect us |
| * from that. |
| * |
| * I did some testing on SMP, and it looks solid. And the socket |
| * memory leak is now gone... - Jean II |
| */ |
| |
| return 0; |
| } |
| |
| /* |
| * Function irda_sendmsg (iocb, sock, msg, len) |
| * |
| * Send message down to TinyTP. This function is used for both STREAM and |
| * SEQPACK services. This is possible since it forces the client to |
| * fragment the message if necessary |
| */ |
| static int irda_sendmsg(struct kiocb *iocb, struct socket *sock, |
| struct msghdr *msg, size_t len) |
| { |
| struct sock *sk = sock->sk; |
| struct irda_sock *self; |
| struct sk_buff *skb; |
| int err = -EPIPE; |
| |
| IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len); |
| |
| /* Note : socket.c set MSG_EOR on SEQPACKET sockets */ |
| if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_EOR | MSG_CMSG_COMPAT | |
| MSG_NOSIGNAL)) |
| return -EINVAL; |
| |
| if (sk->sk_shutdown & SEND_SHUTDOWN) |
| goto out_err; |
| |
| if (sk->sk_state != TCP_ESTABLISHED) |
| return -ENOTCONN; |
| |
| self = irda_sk(sk); |
| |
| /* Check if IrTTP is wants us to slow down */ |
| |
| if (wait_event_interruptible(*(sk->sk_sleep), |
| (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED))) |
| return -ERESTARTSYS; |
| |
| /* Check if we are still connected */ |
| if (sk->sk_state != TCP_ESTABLISHED) |
| return -ENOTCONN; |
| |
| /* Check that we don't send out too big frames */ |
| if (len > self->max_data_size) { |
| IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n", |
| __FUNCTION__, len, self->max_data_size); |
| len = self->max_data_size; |
| } |
| |
| skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16, |
| msg->msg_flags & MSG_DONTWAIT, &err); |
| if (!skb) |
| goto out_err; |
| |
| skb_reserve(skb, self->max_header_size + 16); |
| skb_reset_transport_header(skb); |
| skb_put(skb, len); |
| err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len); |
| if (err) { |
| kfree_skb(skb); |
| goto out_err; |
| } |
| |
| /* |
| * Just send the message to TinyTP, and let it deal with possible |
| * errors. No need to duplicate all that here |
| */ |
| err = irttp_data_request(self->tsap, skb); |
| if (err) { |
| IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err); |
| goto out_err; |
| } |
| /* Tell client how much data we actually sent */ |
| return len; |
| |
| out_err: |
| return sk_stream_error(sk, msg->msg_flags, err); |
| |
| } |
| |
| /* |
| * Function irda_recvmsg_dgram (iocb, sock, msg, size, flags) |
| * |
| * Try to receive message and copy it to user. The frame is discarded |
| * after being read, regardless of how much the user actually read |
| */ |
| static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock, |
| struct msghdr *msg, size_t size, int flags) |
| { |
| struct sock *sk = sock->sk; |
| struct irda_sock *self = irda_sk(sk); |
| struct sk_buff *skb; |
| size_t copied; |
| int err; |
| |
| IRDA_DEBUG(4, "%s()\n", __FUNCTION__); |
| |
| if ((err = sock_error(sk)) < 0) |
| return err; |
| |
| skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, |
| flags & MSG_DONTWAIT, &err); |
| if (!skb) |
| return err; |
| |
| skb_reset_transport_header(skb); |
| copied = skb->len; |
| |
| if (copied > size) { |
| IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n", |
| __FUNCTION__, copied, size); |
| copied = size; |
| msg->msg_flags |= MSG_TRUNC; |
| } |
| skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); |
| |
| skb_free_datagram(sk, skb); |
| |
| /* |
| * Check if we have previously stopped IrTTP and we know |
| * have more free space in our rx_queue. If so tell IrTTP |
| * to start delivering frames again before our rx_queue gets |
| * empty |
| */ |
| if (self->rx_flow == FLOW_STOP) { |
| if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) { |
| IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__); |
| self->rx_flow = FLOW_START; |
| irttp_flow_request(self->tsap, FLOW_START); |
| } |
| } |
| |
| return copied; |
| } |
| |
| /* |
| * Function irda_recvmsg_stream (iocb, sock, msg, size, flags) |
| */ |
| static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock, |
| struct msghdr *msg, size_t size, int flags) |
| { |
| struct sock *sk = sock->sk; |
| struct irda_sock *self = irda_sk(sk); |
| int noblock = flags & MSG_DONTWAIT; |
| size_t copied = 0; |
| int target, err; |
| long timeo; |
| |
| IRDA_DEBUG(3, "%s()\n", __FUNCTION__); |
| |
| if ((err = sock_error(sk)) < 0) |
| return err; |
| |
| if (sock->flags & __SO_ACCEPTCON) |
| return(-EINVAL); |
| |
| if (flags & MSG_OOB) |
| return -EOPNOTSUPP; |
| |
| target = sock_rcvlowat(sk, flags & MSG_WAITALL, size); |
| timeo = sock_rcvtimeo(sk, noblock); |
| |
| msg->msg_namelen = 0; |
| |
| do { |
| int chunk; |
| struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue); |
| |
| if (skb == NULL) { |
| DEFINE_WAIT(wait); |
| int ret = 0; |
| |
| if (copied >= target) |
| break; |
| |
| prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); |
| |
| /* |
| * POSIX 1003.1g mandates this order. |
| */ |
| ret = sock_error(sk); |
| if (ret) |
| ; |
| else if (sk->sk_shutdown & RCV_SHUTDOWN) |
| ; |
| else if (noblock) |
| ret = -EAGAIN; |
| else if (signal_pending(current)) |
| ret = sock_intr_errno(timeo); |
| else if (sk->sk_state != TCP_ESTABLISHED) |
| ret = -ENOTCONN; |
| else if (skb_peek(&sk->sk_receive_queue) == NULL) |
| /* Wait process until data arrives */ |
| schedule(); |
| |
| finish_wait(sk->sk_sleep, &wait); |
| |
| if (ret) |
| return ret; |
| if (sk->sk_shutdown & RCV_SHUTDOWN) |
| break; |
| |
| continue; |
| } |
| |
| chunk = min_t(unsigned int, skb->len, size); |
| if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) { |
| skb_queue_head(&sk->sk_receive_queue, skb); |
| if (copied == 0) |
| copied = -EFAULT; |
| break; |
| } |
| copied += chunk; |
| size -= chunk; |
| |
| /* Mark read part of skb as used */ |
| if (!(flags & MSG_PEEK)) { |
| skb_pull(skb, chunk); |
| |
| /* put the skb back if we didn't use it up.. */ |
| if (skb->len) { |
| IRDA_DEBUG(1, "%s(), back on q!\n", |
| __FUNCTION__); |
| skb_queue_head(&sk->sk_receive_queue, skb); |
| break; |
| } |
| |
| kfree_skb(skb); |
| } else { |
| IRDA_DEBUG(0, "%s() questionable!?\n", __FUNCTION__); |
| |
| /* put message back and return */ |
| skb_queue_head(&sk->sk_receive_queue, skb); |
| break; |
| } |
| } while (size); |
| |
| /* |
| * Check if we have previously stopped IrTTP and we know |
| * have more free space in our rx_queue. If so tell IrTTP |
| * to start delivering frames again before our rx_queue gets |
| * empty |
| */ |
| if (self->rx_flow == FLOW_STOP) { |
| if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) { |
| IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__); |
| self->rx_flow = FLOW_START; |
| irttp_flow_request(self->tsap, FLOW_START); |
| } |
| } |
| |
| return copied; |
| } |
| |
| /* |
| * Function irda_sendmsg_dgram (iocb, sock, msg, len) |
| * |
| * Send message down to TinyTP for the unreliable sequenced |
| * packet service... |
| * |
| */ |
| static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock, |
| struct msghdr *msg, size_t len) |
| { |
| struct sock *sk = sock->sk; |
| struct irda_sock *self; |
| struct sk_buff *skb; |
| int err; |
| |
| IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len); |
| |
| if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT)) |
| return -EINVAL; |
| |
| if (sk->sk_shutdown & SEND_SHUTDOWN) { |
| send_sig(SIGPIPE, current, 0); |
| return -EPIPE; |
| } |
| |
| if (sk->sk_state != TCP_ESTABLISHED) |
| return -ENOTCONN; |
| |
| self = irda_sk(sk); |
| |
| /* |
| * Check that we don't send out too big frames. This is an unreliable |
| * service, so we have no fragmentation and no coalescence |
| */ |
| if (len > self->max_data_size) { |
| IRDA_DEBUG(0, "%s(), Warning to much data! " |
| "Chopping frame from %zd to %d bytes!\n", |
| __FUNCTION__, len, self->max_data_size); |
| len = self->max_data_size; |
| } |
| |
| skb = sock_alloc_send_skb(sk, len + self->max_header_size, |
| msg->msg_flags & MSG_DONTWAIT, &err); |
| if (!skb) |
| return -ENOBUFS; |
| |
| skb_reserve(skb, self->max_header_size); |
| skb_reset_transport_header(skb); |
| |
| IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__); |
| skb_put(skb, len); |
| err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len); |
| if (err) { |
| kfree_skb(skb); |
| return err; |
| } |
| |
| /* |
| * Just send the message to TinyTP, and let it deal with possible |
| * errors. No need to duplicate all that here |
| */ |
| err = irttp_udata_request(self->tsap, skb); |
| if (err) { |
| IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err); |
| return err; |
| } |
| return len; |
| } |
| |
| /* |
| * Function irda_sendmsg_ultra (iocb, sock, msg, len) |
| * |
| * Send message down to IrLMP for the unreliable Ultra |
| * packet service... |
| */ |
| #ifdef CONFIG_IRDA_ULTRA |
| static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock, |
| struct msghdr *msg, size_t len) |
| { |
| struct sock *sk = sock->sk; |
| struct irda_sock *self; |
| __u8 pid = 0; |
| int bound = 0; |
| struct sk_buff *skb; |
| int err; |
| |
| IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len); |
| |
| if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT)) |
| return -EINVAL; |
| |
| if (sk->sk_shutdown & SEND_SHUTDOWN) { |
| send_sig(SIGPIPE, current, 0); |
| return -EPIPE; |
| } |
| |
| self = irda_sk(sk); |
| |
| /* Check if an address was specified with sendto. Jean II */ |
| if (msg->msg_name) { |
| struct sockaddr_irda *addr = (struct sockaddr_irda *) msg->msg_name; |
| /* Check address, extract pid. Jean II */ |
| if (msg->msg_namelen < sizeof(*addr)) |
| return -EINVAL; |
| if (addr->sir_family != AF_IRDA) |
| return -EINVAL; |
| |
| pid = addr->sir_lsap_sel; |
| if (pid & 0x80) { |
| IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__); |
| return -EOPNOTSUPP; |
| } |
| } else { |
| /* Check that the socket is properly bound to an Ultra |
| * port. Jean II */ |
| if ((self->lsap == NULL) || |
| (sk->sk_state != TCP_ESTABLISHED)) { |
| IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n", |
| __FUNCTION__); |
| return -ENOTCONN; |
| } |
| /* Use PID from socket */ |
| bound = 1; |
| } |
| |
| /* |
| * Check that we don't send out too big frames. This is an unreliable |
| * service, so we have no fragmentation and no coalescence |
| */ |
| if (len > self->max_data_size) { |
| IRDA_DEBUG(0, "%s(), Warning to much data! " |
| "Chopping frame from %zd to %d bytes!\n", |
| __FUNCTION__, len, self->max_data_size); |
| len = self->max_data_size; |
| } |
| |
| skb = sock_alloc_send_skb(sk, len + self->max_header_size, |
| msg->msg_flags & MSG_DONTWAIT, &err); |
| if (!skb) |
| return -ENOBUFS; |
| |
| skb_reserve(skb, self->max_header_size); |
| skb_reset_transport_header(skb); |
| |
| IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__); |
| skb_put(skb, len); |
| err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len); |
| if (err) { |
| kfree_skb(skb); |
| return err; |
| } |
| |
| err = irlmp_connless_data_request((bound ? self->lsap : NULL), |
| skb, pid); |
| if (err) { |
| IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err); |
| return err; |
| } |
| return len; |
| } |
| #endif /* CONFIG_IRDA_ULTRA */ |
| |
| /* |
| * Function irda_shutdown (sk, how) |
| */ |
| static int irda_shutdown(struct socket *sock, int how) |
| { |
| struct sock *sk = sock->sk; |
| struct irda_sock *self = irda_sk(sk); |
| |
| IRDA_DEBUG(1, "%s(%p)\n", __FUNCTION__, self); |
| |
| sk->sk_state = TCP_CLOSE; |
| sk->sk_shutdown |= SEND_SHUTDOWN; |
| sk->sk_state_change(sk); |
| |
| if (self->iriap) { |
| iriap_close(self->iriap); |
| self->iriap = NULL; |
| } |
| |
| if (self->tsap) { |
| irttp_disconnect_request(self->tsap, NULL, P_NORMAL); |
| irttp_close_tsap(self->tsap); |
| self->tsap = NULL; |
| } |
| |
| /* A few cleanup so the socket look as good as new... */ |
| self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */ |
| self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */ |
| self->saddr = 0x0; /* so IrLMP assign us any link */ |
| |
| return 0; |
| } |
| |
| /* |
| * Function irda_poll (file, sock, wait) |
| */ |
| static unsigned int irda_poll(struct file * file, struct socket *sock, |
| poll_table *wait) |
| { |
| struct sock *sk = sock->sk; |
| struct irda_sock *self = irda_sk(sk); |
| unsigned int mask; |
| |
| IRDA_DEBUG(4, "%s()\n", __FUNCTION__); |
| |
| poll_wait(file, sk->sk_sleep, wait); |
| mask = 0; |
| |
| /* Exceptional events? */ |
| if (sk->sk_err) |
| mask |= POLLERR; |
| if (sk->sk_shutdown & RCV_SHUTDOWN) { |
| IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__); |
| mask |= POLLHUP; |
| } |
| |
| /* Readable? */ |
| if (!skb_queue_empty(&sk->sk_receive_queue)) { |
| IRDA_DEBUG(4, "Socket is readable\n"); |
| mask |= POLLIN | POLLRDNORM; |
| } |
| |
| /* Connection-based need to check for termination and startup */ |
| switch (sk->sk_type) { |
| case SOCK_STREAM: |
| if (sk->sk_state == TCP_CLOSE) { |
| IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__); |
| mask |= POLLHUP; |
| } |
| |
| if (sk->sk_state == TCP_ESTABLISHED) { |
| if ((self->tx_flow == FLOW_START) && |
| sock_writeable(sk)) |
| { |
| mask |= POLLOUT | POLLWRNORM | POLLWRBAND; |
| } |
| } |
| break; |
| case SOCK_SEQPACKET: |
| if ((self->tx_flow == FLOW_START) && |
| sock_writeable(sk)) |
| { |
| mask |= POLLOUT | POLLWRNORM | POLLWRBAND; |
| } |
| break; |
| case SOCK_DGRAM: |
| if (sock_writeable(sk)) |
| mask |= POLLOUT | POLLWRNORM | POLLWRBAND; |
| break; |
| default: |
| break; |
| } |
| return mask; |
| } |
| |
| /* |
| * Function irda_ioctl (sock, cmd, arg) |
| */ |
| static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) |
| { |
| struct sock *sk = sock->sk; |
| |
| IRDA_DEBUG(4, "%s(), cmd=%#x\n", __FUNCTION__, cmd); |
| |
| switch (cmd) { |
| case TIOCOUTQ: { |
| long amount; |
| amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); |
| if (amount < 0) |
| amount = 0; |
| if (put_user(amount, (unsigned int __user *)arg)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| case TIOCINQ: { |
| struct sk_buff *skb; |
| long amount = 0L; |
| /* These two are safe on a single CPU system as only user tasks fiddle here */ |
| if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) |
| amount = skb->len; |
| if (put_user(amount, (unsigned int __user *)arg)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| case SIOCGSTAMP: |
| if (sk != NULL) |
| return sock_get_timestamp(sk, (struct timeval __user *)arg); |
| return -EINVAL; |
| |
| case SIOCGIFADDR: |
| case SIOCSIFADDR: |
| case SIOCGIFDSTADDR: |
| case SIOCSIFDSTADDR: |
| case SIOCGIFBRDADDR: |
| case SIOCSIFBRDADDR: |
| case SIOCGIFNETMASK: |
| case SIOCSIFNETMASK: |
| case SIOCGIFMETRIC: |
| case SIOCSIFMETRIC: |
| return -EINVAL; |
| default: |
| IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __FUNCTION__); |
| return -ENOIOCTLCMD; |
| } |
| |
| /*NOTREACHED*/ |
| return 0; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| /* |
| * Function irda_ioctl (sock, cmd, arg) |
| */ |
| static int irda_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) |
| { |
| /* |
| * All IRDA's ioctl are standard ones. |
| */ |
| return -ENOIOCTLCMD; |
| } |
| #endif |
| |
| /* |
| * Function irda_setsockopt (sock, level, optname, optval, optlen) |
| * |
| * Set some options for the socket |
| * |
| */ |
| static int irda_setsockopt(struct socket *sock, int level, int optname, |
| char __user *optval, int optlen) |
| { |
| struct sock *sk = sock->sk; |
| struct irda_sock *self = irda_sk(sk); |
| struct irda_ias_set *ias_opt; |
| struct ias_object *ias_obj; |
| struct ias_attrib * ias_attr; /* Attribute in IAS object */ |
| int opt; |
| |
| IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); |
| |
| if (level != SOL_IRLMP) |
| return -ENOPROTOOPT; |
| |
| switch (optname) { |
| case IRLMP_IAS_SET: |
| /* The user want to add an attribute to an existing IAS object |
| * (in the IAS database) or to create a new object with this |
| * attribute. |
| * We first query IAS to know if the object exist, and then |
| * create the right attribute... |
| */ |
| |
| if (optlen != sizeof(struct irda_ias_set)) |
| return -EINVAL; |
| |
| ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); |
| if (ias_opt == NULL) |
| return -ENOMEM; |
| |
| /* Copy query to the driver. */ |
| if (copy_from_user(ias_opt, optval, optlen)) { |
| kfree(ias_opt); |
| return -EFAULT; |
| } |
| |
| /* Find the object we target. |
| * If the user gives us an empty string, we use the object |
| * associated with this socket. This will workaround |
| * duplicated class name - Jean II */ |
| if(ias_opt->irda_class_name[0] == '\0') { |
| if(self->ias_obj == NULL) { |
| kfree(ias_opt); |
| return -EINVAL; |
| } |
| ias_obj = self->ias_obj; |
| } else |
| ias_obj = irias_find_object(ias_opt->irda_class_name); |
| |
| /* Only ROOT can mess with the global IAS database. |
| * Users can only add attributes to the object associated |
| * with the socket they own - Jean II */ |
| if((!capable(CAP_NET_ADMIN)) && |
| ((ias_obj == NULL) || (ias_obj != self->ias_obj))) { |
| kfree(ias_opt); |
| return -EPERM; |
| } |
| |
| /* If the object doesn't exist, create it */ |
| if(ias_obj == (struct ias_object *) NULL) { |
| /* Create a new object */ |
| ias_obj = irias_new_object(ias_opt->irda_class_name, |
| jiffies); |
| } |
| |
| /* Do we have the attribute already ? */ |
| if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) { |
| kfree(ias_opt); |
| return -EINVAL; |
| } |
| |
| /* Look at the type */ |
| switch(ias_opt->irda_attrib_type) { |
| case IAS_INTEGER: |
| /* Add an integer attribute */ |
| irias_add_integer_attrib( |
| ias_obj, |
| ias_opt->irda_attrib_name, |
| ias_opt->attribute.irda_attrib_int, |
| IAS_USER_ATTR); |
| break; |
| case IAS_OCT_SEQ: |
| /* Check length */ |
| if(ias_opt->attribute.irda_attrib_octet_seq.len > |
| IAS_MAX_OCTET_STRING) { |
| kfree(ias_opt); |
| return -EINVAL; |
| } |
| /* Add an octet sequence attribute */ |
| irias_add_octseq_attrib( |
| ias_obj, |
| ias_opt->irda_attrib_name, |
| ias_opt->attribute.irda_attrib_octet_seq.octet_seq, |
| ias_opt->attribute.irda_attrib_octet_seq.len, |
| IAS_USER_ATTR); |
| break; |
| case IAS_STRING: |
| /* Should check charset & co */ |
| /* Check length */ |
| /* The length is encoded in a __u8, and |
| * IAS_MAX_STRING == 256, so there is no way |
| * userspace can pass us a string too large. |
| * Jean II */ |
| /* NULL terminate the string (avoid troubles) */ |
| ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0'; |
| /* Add a string attribute */ |
| irias_add_string_attrib( |
| ias_obj, |
| ias_opt->irda_attrib_name, |
| ias_opt->attribute.irda_attrib_string.string, |
| IAS_USER_ATTR); |
| break; |
| default : |
| kfree(ias_opt); |
| return -EINVAL; |
| } |
| irias_insert_object(ias_obj); |
| kfree(ias_opt); |
| break; |
| case IRLMP_IAS_DEL: |
| /* The user want to delete an object from our local IAS |
| * database. We just need to query the IAS, check is the |
| * object is not owned by the kernel and delete it. |
| */ |
| |
| if (optlen != sizeof(struct irda_ias_set)) |
| return -EINVAL; |
| |
| ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); |
| if (ias_opt == NULL) |
| return -ENOMEM; |
| |
| /* Copy query to the driver. */ |
| if (copy_from_user(ias_opt, optval, optlen)) { |
| kfree(ias_opt); |
| return -EFAULT; |
| } |
| |
| /* Find the object we target. |
| * If the user gives us an empty string, we use the object |
| * associated with this socket. This will workaround |
| * duplicated class name - Jean II */ |
| if(ias_opt->irda_class_name[0] == '\0') |
| ias_obj = self->ias_obj; |
| else |
| ias_obj = irias_find_object(ias_opt->irda_class_name); |
| if(ias_obj == (struct ias_object *) NULL) { |
| kfree(ias_opt); |
| return -EINVAL; |
| } |
| |
| /* Only ROOT can mess with the global IAS database. |
| * Users can only del attributes from the object associated |
| * with the socket they own - Jean II */ |
| if((!capable(CAP_NET_ADMIN)) && |
| ((ias_obj == NULL) || (ias_obj != self->ias_obj))) { |
| kfree(ias_opt); |
| return -EPERM; |
| } |
| |
| /* Find the attribute (in the object) we target */ |
| ias_attr = irias_find_attrib(ias_obj, |
| ias_opt->irda_attrib_name); |
| if(ias_attr == (struct ias_attrib *) NULL) { |
| kfree(ias_opt); |
| return -EINVAL; |
| } |
| |
| /* Check is the user space own the object */ |
| if(ias_attr->value->owner != IAS_USER_ATTR) { |
| IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __FUNCTION__); |
| kfree(ias_opt); |
| return -EPERM; |
| } |
| |
| /* Remove the attribute (and maybe the object) */ |
| irias_delete_attrib(ias_obj, ias_attr, 1); |
| kfree(ias_opt); |
| break; |
| case IRLMP_MAX_SDU_SIZE: |
| if (optlen < sizeof(int)) |
| return -EINVAL; |
| |
| if (get_user(opt, (int __user *)optval)) |
| return -EFAULT; |
| |
| /* Only possible for a seqpacket service (TTP with SAR) */ |
| if (sk->sk_type != SOCK_SEQPACKET) { |
| IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n", |
| __FUNCTION__, opt); |
| self->max_sdu_size_rx = opt; |
| } else { |
| IRDA_WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n", |
| __FUNCTION__); |
| return -ENOPROTOOPT; |
| } |
| break; |
| case IRLMP_HINTS_SET: |
| if (optlen < sizeof(int)) |
| return -EINVAL; |
| |
| /* The input is really a (__u8 hints[2]), easier as an int */ |
| if (get_user(opt, (int __user *)optval)) |
| return -EFAULT; |
| |
| /* Unregister any old registration */ |
| if (self->skey) |
| irlmp_unregister_service(self->skey); |
| |
| self->skey = irlmp_register_service((__u16) opt); |
| break; |
| case IRLMP_HINT_MASK_SET: |
| /* As opposed to the previous case which set the hint bits |
| * that we advertise, this one set the filter we use when |
| * making a discovery (nodes which don't match any hint |
| * bit in the mask are not reported). |
| */ |
| if (optlen < sizeof(int)) |
| return -EINVAL; |
| |
| /* The input is really a (__u8 hints[2]), easier as an int */ |
| if (get_user(opt, (int __user *)optval)) |
| return -EFAULT; |
| |
| /* Set the new hint mask */ |
| self->mask.word = (__u16) opt; |
| /* Mask out extension bits */ |
| self->mask.word &= 0x7f7f; |
| /* Check if no bits */ |
| if(!self->mask.word) |
| self->mask.word = 0xFFFF; |
| |
| break; |
| default: |
| return -ENOPROTOOPT; |
| } |
| return 0; |
| } |
| |
| /* |
| * Function irda_extract_ias_value(ias_opt, ias_value) |
| * |
| * Translate internal IAS value structure to the user space representation |
| * |
| * The external representation of IAS values, as we exchange them with |
| * user space program is quite different from the internal representation, |
| * as stored in the IAS database (because we need a flat structure for |
| * crossing kernel boundary). |
| * This function transform the former in the latter. We also check |
| * that the value type is valid. |
| */ |
| static int irda_extract_ias_value(struct irda_ias_set *ias_opt, |
| struct ias_value *ias_value) |
| { |
| /* Look at the type */ |
| switch (ias_value->type) { |
| case IAS_INTEGER: |
| /* Copy the integer */ |
| ias_opt->attribute.irda_attrib_int = ias_value->t.integer; |
| break; |
| case IAS_OCT_SEQ: |
| /* Set length */ |
| ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len; |
| /* Copy over */ |
| memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq, |
| ias_value->t.oct_seq, ias_value->len); |
| break; |
| case IAS_STRING: |
| /* Set length */ |
| ias_opt->attribute.irda_attrib_string.len = ias_value->len; |
| ias_opt->attribute.irda_attrib_string.charset = ias_value->charset; |
| /* Copy over */ |
| memcpy(ias_opt->attribute.irda_attrib_string.string, |
| ias_value->t.string, ias_value->len); |
| /* NULL terminate the string (avoid troubles) */ |
| ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0'; |
| break; |
| case IAS_MISSING: |
| default : |
| return -EINVAL; |
| } |
| |
| /* Copy type over */ |
| ias_opt->irda_attrib_type = ias_value->type; |
| |
| return 0; |
| } |
| |
| /* |
| * Function irda_getsockopt (sock, level, optname, optval, optlen) |
| */ |
| static int irda_getsockopt(struct socket *sock, int level, int optname, |
| char __user *optval, int __user *optlen) |
| { |
| struct sock *sk = sock->sk; |
| struct irda_sock *self = irda_sk(sk); |
| struct irda_device_list list; |
| struct irda_device_info *discoveries; |
| struct irda_ias_set * ias_opt; /* IAS get/query params */ |
| struct ias_object * ias_obj; /* Object in IAS */ |
| struct ias_attrib * ias_attr; /* Attribute in IAS object */ |
| int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */ |
| int val = 0; |
| int len = 0; |
| int err; |
| int offset, total; |
| |
| IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); |
| |
| if (level != SOL_IRLMP) |
| return -ENOPROTOOPT; |
| |
| if (get_user(len, optlen)) |
| return -EFAULT; |
| |
| if(len < 0) |
| return -EINVAL; |
| |
| switch (optname) { |
| case IRLMP_ENUMDEVICES: |
| /* Ask lmp for the current discovery log */ |
| discoveries = irlmp_get_discoveries(&list.len, self->mask.word, |
| self->nslots); |
| /* Check if the we got some results */ |
| if (discoveries == NULL) |
| return -EAGAIN; /* Didn't find any devices */ |
| err = 0; |
| |
| /* Write total list length back to client */ |
| if (copy_to_user(optval, &list, |
| sizeof(struct irda_device_list) - |
| sizeof(struct irda_device_info))) |
| err = -EFAULT; |
| |
| /* Offset to first device entry */ |
| offset = sizeof(struct irda_device_list) - |
| sizeof(struct irda_device_info); |
| |
| /* Copy the list itself - watch for overflow */ |
| if(list.len > 2048) |
| { |
| err = -EINVAL; |
| goto bed; |
| } |
| total = offset + (list.len * sizeof(struct irda_device_info)); |
| if (total > len) |
| total = len; |
| if (copy_to_user(optval+offset, discoveries, total - offset)) |
| err = -EFAULT; |
| |
| /* Write total number of bytes used back to client */ |
| if (put_user(total, optlen)) |
| err = -EFAULT; |
| bed: |
| /* Free up our buffer */ |
| kfree(discoveries); |
| if (err) |
| return err; |
| break; |
| case IRLMP_MAX_SDU_SIZE: |
| val = self->max_data_size; |
| len = sizeof(int); |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| |
| if (copy_to_user(optval, &val, len)) |
| return -EFAULT; |
| break; |
| case IRLMP_IAS_GET: |
| /* The user want an object from our local IAS database. |
| * We just need to query the IAS and return the value |
| * that we found */ |
| |
| /* Check that the user has allocated the right space for us */ |
| if (len != sizeof(struct irda_ias_set)) |
| return -EINVAL; |
| |
| ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); |
| if (ias_opt == NULL) |
| return -ENOMEM; |
| |
| /* Copy query to the driver. */ |
| if (copy_from_user(ias_opt, optval, len)) { |
| kfree(ias_opt); |
| return -EFAULT; |
| } |
| |
| /* Find the object we target. |
| * If the user gives us an empty string, we use the object |
| * associated with this socket. This will workaround |
| * duplicated class name - Jean II */ |
| if(ias_opt->irda_class_name[0] == '\0') |
| ias_obj = self->ias_obj; |
| else |
| ias_obj = irias_find_object(ias_opt->irda_class_name); |
| if(ias_obj == (struct ias_object *) NULL) { |
| kfree(ias_opt); |
| return -EINVAL; |
| } |
| |
| /* Find the attribute (in the object) we target */ |
| ias_attr = irias_find_attrib(ias_obj, |
| ias_opt->irda_attrib_name); |
| if(ias_attr == (struct ias_attrib *) NULL) { |
| kfree(ias_opt); |
| return -EINVAL; |
| } |
| |
| /* Translate from internal to user structure */ |
| err = irda_extract_ias_value(ias_opt, ias_attr->value); |
| if(err) { |
| kfree(ias_opt); |
| return err; |
| } |
| |
| /* Copy reply to the user */ |
| if (copy_to_user(optval, ias_opt, |
| sizeof(struct irda_ias_set))) { |
| kfree(ias_opt); |
| return -EFAULT; |
| } |
| /* Note : don't need to put optlen, we checked it */ |
| kfree(ias_opt); |
| break; |
| case IRLMP_IAS_QUERY: |
| /* The user want an object from a remote IAS database. |
| * We need to use IAP to query the remote database and |
| * then wait for the answer to come back. */ |
| |
| /* Check that the user has allocated the right space for us */ |
| if (len != sizeof(struct irda_ias_set)) |
| return -EINVAL; |
| |
| ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); |
| if (ias_opt == NULL) |
| return -ENOMEM; |
| |
| /* Copy query to the driver. */ |
| if (copy_from_user(ias_opt, optval, len)) { |
| kfree(ias_opt); |
| return -EFAULT; |
| } |
| |
| /* At this point, there are two cases... |
| * 1) the socket is connected - that's the easy case, we |
| * just query the device we are connected to... |
| * 2) the socket is not connected - the user doesn't want |
| * to connect and/or may not have a valid service name |
| * (so can't create a fake connection). In this case, |
| * we assume that the user pass us a valid destination |
| * address in the requesting structure... |
| */ |
| if(self->daddr != DEV_ADDR_ANY) { |
| /* We are connected - reuse known daddr */ |
| daddr = self->daddr; |
| } else { |
| /* We are not connected, we must specify a valid |
| * destination address */ |
| daddr = ias_opt->daddr; |
| if((!daddr) || (daddr == DEV_ADDR_ANY)) { |
| kfree(ias_opt); |
| return -EINVAL; |
| } |
| } |
| |
| /* Check that we can proceed with IAP */ |
| if (self->iriap) { |
| IRDA_WARNING("%s: busy with a previous query\n", |
| __FUNCTION__); |
| kfree(ias_opt); |
| return -EBUSY; |
| } |
| |
| self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self, |
| irda_getvalue_confirm); |
| |
| if (self->iriap == NULL) { |
| kfree(ias_opt); |
| return -ENOMEM; |
| } |
| |
| /* Treat unexpected wakeup as disconnect */ |
| self->errno = -EHOSTUNREACH; |
| |
| /* Query remote LM-IAS */ |
| iriap_getvaluebyclass_request(self->iriap, |
| self->saddr, daddr, |
| ias_opt->irda_class_name, |
| ias_opt->irda_attrib_name); |
| |
| /* Wait for answer, if not yet finished (or failed) */ |
| if (wait_event_interruptible(self->query_wait, |
| (self->iriap == NULL))) { |
| /* pending request uses copy of ias_opt-content |
| * we can free it regardless! */ |
| kfree(ias_opt); |
| /* Treat signals as disconnect */ |
| return -EHOSTUNREACH; |
| } |
| |
| /* Check what happened */ |
| if (self->errno) |
| { |
| kfree(ias_opt); |
| /* Requested object/attribute doesn't exist */ |
| if((self->errno == IAS_CLASS_UNKNOWN) || |
| (self->errno == IAS_ATTRIB_UNKNOWN)) |
| return (-EADDRNOTAVAIL); |
| else |
| return (-EHOSTUNREACH); |
| } |
| |
| /* Translate from internal to user structure */ |
| err = irda_extract_ias_value(ias_opt, self->ias_result); |
| if (self->ias_result) |
| irias_delete_value(self->ias_result); |
| if (err) { |
| kfree(ias_opt); |
| return err; |
| } |
| |
| /* Copy reply to the user */ |
| if (copy_to_user(optval, ias_opt, |
| sizeof(struct irda_ias_set))) { |
| kfree(ias_opt); |
| return -EFAULT; |
| } |
| /* Note : don't need to put optlen, we checked it */ |
| kfree(ias_opt); |
| break; |
| case IRLMP_WAITDEVICE: |
| /* This function is just another way of seeing life ;-) |
| * IRLMP_ENUMDEVICES assumes that you have a static network, |
| * and that you just want to pick one of the devices present. |
| * On the other hand, in here we assume that no device is |
| * present and that at some point in the future a device will |
| * come into range. When this device arrive, we just wake |
| * up the caller, so that he has time to connect to it before |
| * the device goes away... |
| * Note : once the node has been discovered for more than a |
| * few second, it won't trigger this function, unless it |
| * goes away and come back changes its hint bits (so we |
| * might call it IRLMP_WAITNEWDEVICE). |
| */ |
| |
| /* Check that the user is passing us an int */ |
| if (len != sizeof(int)) |
| return -EINVAL; |
| /* Get timeout in ms (max time we block the caller) */ |
| if (get_user(val, (int __user *)optval)) |
| return -EFAULT; |
| |
| /* Tell IrLMP we want to be notified */ |
| irlmp_update_client(self->ckey, self->mask.word, |
| irda_selective_discovery_indication, |
| NULL, (void *) self); |
| |
| /* Do some discovery (and also return cached results) */ |
| irlmp_discovery_request(self->nslots); |
| |
| /* Wait until a node is discovered */ |
| if (!self->cachedaddr) { |
| int ret = 0; |
| |
| IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __FUNCTION__); |
| |
| /* Set watchdog timer to expire in <val> ms. */ |
| self->errno = 0; |
| init_timer(&self->watchdog); |
| self->watchdog.function = irda_discovery_timeout; |
| self->watchdog.data = (unsigned long) self; |
| self->watchdog.expires = jiffies + (val * HZ/1000); |
| add_timer(&(self->watchdog)); |
| |
| /* Wait for IR-LMP to call us back */ |
| __wait_event_interruptible(self->query_wait, |
| (self->cachedaddr != 0 || self->errno == -ETIME), |
| ret); |
| |
| /* If watchdog is still activated, kill it! */ |
| if(timer_pending(&(self->watchdog))) |
| del_timer(&(self->watchdog)); |
| |
| IRDA_DEBUG(1, "%s(), ...waking up !\n", __FUNCTION__); |
| |
| if (ret != 0) |
| return ret; |
| } |
| else |
| IRDA_DEBUG(1, "%s(), found immediately !\n", |
| __FUNCTION__); |
| |
| /* Tell IrLMP that we have been notified */ |
| irlmp_update_client(self->ckey, self->mask.word, |
| NULL, NULL, NULL); |
| |
| /* Check if the we got some results */ |
| if (!self->cachedaddr) |
| return -EAGAIN; /* Didn't find any devices */ |
| daddr = self->cachedaddr; |
| /* Cleanup */ |
| self->cachedaddr = 0; |
| |
| /* We return the daddr of the device that trigger the |
| * wakeup. As irlmp pass us only the new devices, we |
| * are sure that it's not an old device. |
| * If the user want more details, he should query |
| * the whole discovery log and pick one device... |
| */ |
| if (put_user(daddr, (int __user *)optval)) |
| return -EFAULT; |
| |
| break; |
| default: |
| return -ENOPROTOOPT; |
| } |
| |
| return 0; |
| } |
| |
| static struct net_proto_family irda_family_ops = { |
| .family = PF_IRDA, |
| .create = irda_create, |
| .owner = THIS_MODULE, |
| }; |
| |
| static const struct proto_ops SOCKOPS_WRAPPED(irda_stream_ops) = { |
| .family = PF_IRDA, |
| .owner = THIS_MODULE, |
| .release = irda_release, |
| .bind = irda_bind, |
| .connect = irda_connect, |
| .socketpair = sock_no_socketpair, |
| .accept = irda_accept, |
| .getname = irda_getname, |
| .poll = irda_poll, |
| .ioctl = irda_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = irda_compat_ioctl, |
| #endif |
| .listen = irda_listen, |
| .shutdown = irda_shutdown, |
| .setsockopt = irda_setsockopt, |
| .getsockopt = irda_getsockopt, |
| .sendmsg = irda_sendmsg, |
| .recvmsg = irda_recvmsg_stream, |
| .mmap = sock_no_mmap, |
| .sendpage = sock_no_sendpage, |
| }; |
| |
| static const struct proto_ops SOCKOPS_WRAPPED(irda_seqpacket_ops) = { |
| .family = PF_IRDA, |
| .owner = THIS_MODULE, |
| .release = irda_release, |
| .bind = irda_bind, |
| .connect = irda_connect, |
| .socketpair = sock_no_socketpair, |
| .accept = irda_accept, |
| .getname = irda_getname, |
| .poll = datagram_poll, |
| .ioctl = irda_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = irda_compat_ioctl, |
| #endif |
| .listen = irda_listen, |
| .shutdown = irda_shutdown, |
| .setsockopt = irda_setsockopt, |
| .getsockopt = irda_getsockopt, |
| .sendmsg = irda_sendmsg, |
| .recvmsg = irda_recvmsg_dgram, |
| .mmap = sock_no_mmap, |
| .sendpage = sock_no_sendpage, |
| }; |
| |
| static const struct proto_ops SOCKOPS_WRAPPED(irda_dgram_ops) = { |
| .family = PF_IRDA, |
| .owner = THIS_MODULE, |
| .release = irda_release, |
| .bind = irda_bind, |
| .connect = irda_connect, |
| .socketpair = sock_no_socketpair, |
| .accept = irda_accept, |
| .getname = irda_getname, |
| .poll = datagram_poll, |
| .ioctl = irda_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = irda_compat_ioctl, |
| #endif |
| .listen = irda_listen, |
| .shutdown = irda_shutdown, |
| .setsockopt = irda_setsockopt, |
| .getsockopt = irda_getsockopt, |
| .sendmsg = irda_sendmsg_dgram, |
| .recvmsg = irda_recvmsg_dgram, |
| .mmap = sock_no_mmap, |
| .sendpage = sock_no_sendpage, |
| }; |
| |
| #ifdef CONFIG_IRDA_ULTRA |
| static const struct proto_ops SOCKOPS_WRAPPED(irda_ultra_ops) = { |
| .family = PF_IRDA, |
| .owner = THIS_MODULE, |
| .release = irda_release, |
| .bind = irda_bind, |
| .connect = sock_no_connect, |
| .socketpair = sock_no_socketpair, |
| .accept = sock_no_accept, |
| .getname = irda_getname, |
| .poll = datagram_poll, |
| .ioctl = irda_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = irda_compat_ioctl, |
| #endif |
| .listen = sock_no_listen, |
| .shutdown = irda_shutdown, |
| .setsockopt = irda_setsockopt, |
| .getsockopt = irda_getsockopt, |
| .sendmsg = irda_sendmsg_ultra, |
| .recvmsg = irda_recvmsg_dgram, |
| .mmap = sock_no_mmap, |
| .sendpage = sock_no_sendpage, |
| }; |
| #endif /* CONFIG_IRDA_ULTRA */ |
| |
| SOCKOPS_WRAP(irda_stream, PF_IRDA); |
| SOCKOPS_WRAP(irda_seqpacket, PF_IRDA); |
| SOCKOPS_WRAP(irda_dgram, PF_IRDA); |
| #ifdef CONFIG_IRDA_ULTRA |
| SOCKOPS_WRAP(irda_ultra, PF_IRDA); |
| #endif /* CONFIG_IRDA_ULTRA */ |
| |
| /* |
| * Function irsock_init (pro) |
| * |
| * Initialize IrDA protocol |
| * |
| */ |
| int __init irsock_init(void) |
| { |
| int rc = proto_register(&irda_proto, 0); |
| |
| if (rc == 0) |
| rc = sock_register(&irda_family_ops); |
| |
| return rc; |
| } |
| |
| /* |
| * Function irsock_cleanup (void) |
| * |
| * Remove IrDA protocol |
| * |
| */ |
| void irsock_cleanup(void) |
| { |
| sock_unregister(PF_IRDA); |
| proto_unregister(&irda_proto); |
| } |