blob: a46e3b5c1d5c2ddd2437aa5aa7a67abf5eefb4d7 [file] [log] [blame]
/* Copyright (c) 2013, The Linux Foundation. All rights reserved.
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/input/matrix_keypad.h>
#include <linux/spmi.h>
#define QPNP_MAX_ROWS 10
#define QPNP_MAX_COLS 8
#define QPNP_MIN_ROWS 2
#define QPNP_MIN_COLS 1
#define QPNP_ROW_SHIFT 3
#define QPNP_MATRIX_MAX_SIZE (QPNP_MAX_ROWS * QPNP_MAX_COLS)
/* in ms */
#define MAX_SCAN_DELAY 128
#define MIN_SCAN_DELAY 1
#define KEYP_DEFAULT_SCAN_DELAY 32
/* in ns */
#define MAX_ROW_HOLD_DELAY 250000
#define MIN_ROW_HOLD_DELAY 31250
/* in ms */
#define MAX_DEBOUNCE_TIME 20
#define MIN_DEBOUNCE_TIME 5
#define KEYP_DEFAULT_DEBOUNCE 15
/* register offsets */
#define KEYP_STATUS(base) (base + 0x08)
#define KEYP_SIZE_CTRL(base) (base + 0x40)
#define KEYP_SCAN_CTRL(base) (base + 0x42)
#define KEYP_FSM_CNTL(base) (base + 0x44)
#define KEYP_EN_CTRL(base) (base + 0x46)
#define KEYP_CTRL_KEYP_EN BIT(7)
#define KEYP_CTRL_EVNTS BIT(0)
#define KEYP_CTRL_EVNTS_MASK 0x3
#define KEYP_SIZE_COLS_SHIFT 4
#define KEYP_SIZE_COLS_MASK 0x70
#define KEYP_SIZE_ROWS_MASK 0x0F
#define KEYP_SCAN_DBC_MASK 0x03
#define KEYP_SCAN_SCNP_MASK 0x38
#define KEYP_SCAN_ROWP_MASK 0xC0
#define KEYP_SCAN_SCNP_SHIFT 3
#define KEYP_SCAN_ROWP_SHIFT 6
#define KEYP_CTRL_SCAN_ROWS_BITS 0x7
#define KEYP_SCAN_DBOUNCE_SHIFT 1
#define KEYP_SCAN_PAUSE_SHIFT 3
#define KEYP_SCAN_ROW_HOLD_SHIFT 6
#define KEYP_FSM_READ_EN BIT(0)
/* bits of these registers represent
* '0' for key press
* '1' for key release
*/
#define KEYP_RECENT_DATA(base) (base + 0x7C)
#define KEYP_OLD_DATA(base) (base + 0x5C)
#define KEYP_CLOCK_FREQ 32768
struct qpnp_kp {
const struct matrix_keymap_data *keymap_data;
struct input_dev *input;
struct spmi_device *spmi;
int key_sense_irq;
int key_stuck_irq;
u16 base;
u32 num_rows;
u32 num_cols;
u32 debounce_ms;
u32 row_hold_ns;
u32 scan_delay_ms;
bool wakeup;
bool rep;
unsigned short keycodes[QPNP_MATRIX_MAX_SIZE];
u16 keystate[QPNP_MAX_ROWS];
u16 stuckstate[QPNP_MAX_ROWS];
};
static int qpnp_kp_write_u8(struct qpnp_kp *kp, u8 data, u16 reg)
{
int rc;
rc = spmi_ext_register_writel(kp->spmi->ctrl, kp->spmi->sid,
reg, &data, 1);
if (rc < 0)
dev_err(&kp->spmi->dev,
"Error writing to address: %X - ret %d\n", reg, rc);
return rc;
}
static int qpnp_kp_read(struct qpnp_kp *kp,
u8 *data, u16 reg, unsigned num_bytes)
{
int rc;
rc = spmi_ext_register_readl(kp->spmi->ctrl, kp->spmi->sid,
reg, data, num_bytes);
if (rc < 0)
dev_err(&kp->spmi->dev,
"Error reading from address : %X - ret %d\n", reg, rc);
return rc;
}
static int qpnp_kp_read_u8(struct qpnp_kp *kp, u8 *data, u16 reg)
{
int rc;
rc = qpnp_kp_read(kp, data, reg, 1);
if (rc < 0)
dev_err(&kp->spmi->dev, "Error reading qpnp: %X - ret %d\n",
reg, rc);
return rc;
}
static u8 qpnp_col_state(struct qpnp_kp *kp, u8 col)
{
/* all keys pressed on that particular row? */
if (col == 0x00)
return 1 << kp->num_cols;
else
return col & ((1 << kp->num_cols) - 1);
}
/*
* Synchronous read protocol
*
* 1. Write '1' to ReadState bit in KEYP_FSM_CNTL register
* 2. Wait 2*32KHz clocks, so that HW can successfully enter read mode
* synchronously
* 3. Read rows in old array first if events are more than one
* 4. Read rows in recent array
* 5. Wait 4*32KHz clocks
* 6. Write '0' to ReadState bit of KEYP_FSM_CNTL register so that hw can
* synchronously exit read mode.
*/
static int qpnp_sync_read(struct qpnp_kp *kp, bool enable)
{
int rc;
u8 fsm_ctl;
rc = qpnp_kp_read_u8(kp, &fsm_ctl, KEYP_FSM_CNTL(kp->base));
if (rc < 0) {
dev_err(&kp->spmi->dev,
"Error reading KEYP_FSM_CNTL reg, rc=%d\n", rc);
return rc;
}
if (enable)
fsm_ctl |= KEYP_FSM_READ_EN;
else
fsm_ctl &= ~KEYP_FSM_READ_EN;
rc = qpnp_kp_write_u8(kp, fsm_ctl, KEYP_FSM_CNTL(kp->base));
if (rc < 0) {
dev_err(&kp->spmi->dev,
"Error writing KEYP_FSM_CNTL reg, rc=%d\n", rc);
return rc;
}
/* 2 * 32KHz clocks */
udelay((2 * DIV_ROUND_UP(USEC_PER_SEC, KEYP_CLOCK_FREQ)) + 1);
return rc;
}
static int qpnp_kp_read_data(struct qpnp_kp *kp, u16 *state,
u16 data_reg, int read_rows)
{
int rc, row;
u8 new_data[QPNP_MAX_ROWS];
/*
* Check if last row will be scanned. If not, scan to clear key event
* counter
*/
if (kp->num_rows < QPNP_MAX_ROWS) {
rc = qpnp_kp_read_u8(kp, &new_data[QPNP_MAX_ROWS - 1],
data_reg + (QPNP_MAX_ROWS - 1) * 2);
if (rc)
return rc;
}
for (row = 0; row < kp->num_rows; row++) {
rc = qpnp_kp_read_u8(kp, &new_data[row], data_reg + row * 2);
if (rc)
return rc;
dev_dbg(&kp->spmi->dev, "new_data[%d] = %d\n", row,
new_data[row]);
state[row] = qpnp_col_state(kp, new_data[row]);
}
return 0;
}
static int qpnp_kp_read_matrix(struct qpnp_kp *kp, u16 *new_state,
u16 *old_state)
{
int rc, read_rows;
read_rows = kp->num_rows;
rc = qpnp_sync_read(kp, true);
if (rc < 0) {
dev_err(&kp->spmi->dev,
"Error setting the FSM read enable bit rc=%d\n", rc);
return rc;
}
if (old_state) {
rc = qpnp_kp_read_data(kp, old_state, KEYP_OLD_DATA(kp->base),
read_rows);
if (rc < 0) {
dev_err(&kp->spmi->dev,
"Error reading KEYP_OLD_DATA, rc=%d\n", rc);
return rc;
}
}
rc = qpnp_kp_read_data(kp, new_state, KEYP_RECENT_DATA(kp->base),
read_rows);
if (rc < 0) {
dev_err(&kp->spmi->dev,
"Error reading KEYP_RECENT_DATA, rc=%d\n", rc);
return rc;
}
/* 4 * 32KHz clocks */
udelay((4 * DIV_ROUND_UP(USEC_PER_SEC, KEYP_CLOCK_FREQ)) + 1);
rc = qpnp_sync_read(kp, false);
if (rc < 0) {
dev_err(&kp->spmi->dev,
"Error resetting the FSM read enable bit rc=%d\n", rc);
return rc;
}
return rc;
}
static void __qpnp_kp_scan_matrix(struct qpnp_kp *kp, u16 *new_state,
u16 *old_state)
{
int row, col, code;
for (row = 0; row < kp->num_rows; row++) {
int bits_changed = new_state[row] ^ old_state[row];
if (!bits_changed)
continue;
for (col = 0; col < kp->num_cols; col++) {
if (!(bits_changed & (1 << col)))
continue;
dev_dbg(&kp->spmi->dev, "key [%d:%d] %s\n", row, col,
!(new_state[row] & (1 << col)) ?
"pressed" : "released");
code = MATRIX_SCAN_CODE(row, col, QPNP_ROW_SHIFT);
input_event(kp->input, EV_MSC, MSC_SCAN, code);
input_report_key(kp->input,
kp->keycodes[code],
!(new_state[row] & (1 << col)));
input_sync(kp->input);
}
}
}
static bool qpnp_detect_ghost_keys(struct qpnp_kp *kp, u16 *new_state)
{
int row, found_first = -1;
u16 check, row_state;
check = 0;
for (row = 0; row < kp->num_rows; row++) {
row_state = (~new_state[row]) &
((1 << kp->num_cols) - 1);
if (hweight16(row_state) > 1) {
if (found_first == -1)
found_first = row;
if (check & row_state) {
dev_dbg(&kp->spmi->dev,
"detected ghost key row[%d],row[%d]\n",
found_first, row);
return true;
}
}
check |= row_state;
}
return false;
}
static int qpnp_kp_scan_matrix(struct qpnp_kp *kp, unsigned int events)
{
u16 new_state[QPNP_MAX_ROWS];
u16 old_state[QPNP_MAX_ROWS];
int rc;
switch (events) {
case 0x1:
rc = qpnp_kp_read_matrix(kp, new_state, NULL);
if (rc < 0)
return rc;
/* detecting ghost key is not an error */
if (qpnp_detect_ghost_keys(kp, new_state))
return 0;
__qpnp_kp_scan_matrix(kp, new_state, kp->keystate);
memcpy(kp->keystate, new_state, sizeof(new_state));
break;
case 0x3: /* two events - eventcounter is gray-coded */
rc = qpnp_kp_read_matrix(kp, new_state, old_state);
if (rc < 0)
return rc;
__qpnp_kp_scan_matrix(kp, old_state, kp->keystate);
__qpnp_kp_scan_matrix(kp, new_state, old_state);
memcpy(kp->keystate, new_state, sizeof(new_state));
break;
case 0x2:
dev_dbg(&kp->spmi->dev, "Some key events were lost\n");
rc = qpnp_kp_read_matrix(kp, new_state, old_state);
if (rc < 0)
return rc;
__qpnp_kp_scan_matrix(kp, old_state, kp->keystate);
__qpnp_kp_scan_matrix(kp, new_state, old_state);
memcpy(kp->keystate, new_state, sizeof(new_state));
break;
default:
rc = -EINVAL;
}
return rc;
}
/*
* NOTE: We are reading recent and old data registers blindly
* whenever key-stuck interrupt happens, because events counter doesn't
* get updated when this interrupt happens due to key stuck doesn't get
* considered as key state change.
*
* We are not using old data register contents after they are being read
* because it might report the key which was pressed before the key being stuck
* as stuck key because it's pressed status is stored in the old data
* register.
*/
static irqreturn_t qpnp_kp_stuck_irq(int irq, void *data)
{
u16 new_state[QPNP_MAX_ROWS];
u16 old_state[QPNP_MAX_ROWS];
int rc;
struct qpnp_kp *kp = data;
rc = qpnp_kp_read_matrix(kp, new_state, old_state);
if (rc < 0) {
dev_err(&kp->spmi->dev, "failed to read keypad matrix\n");
return IRQ_HANDLED;
}
__qpnp_kp_scan_matrix(kp, new_state, kp->stuckstate);
return IRQ_HANDLED;
}
static irqreturn_t qpnp_kp_irq(int irq, void *data)
{
struct qpnp_kp *kp = data;
u8 ctrl_val, events;
int rc;
rc = qpnp_kp_read_u8(kp, &ctrl_val, KEYP_STATUS(kp->base));
if (rc < 0) {
dev_err(&kp->spmi->dev,
"Error reading KEYP_STATUS register\n");
return IRQ_HANDLED;
}
events = ctrl_val & KEYP_CTRL_EVNTS_MASK;
rc = qpnp_kp_scan_matrix(kp, events);
if (rc < 0)
dev_err(&kp->spmi->dev, "failed to scan matrix\n");
return IRQ_HANDLED;
}
static int __devinit qpnp_kpd_init(struct qpnp_kp *kp)
{
int bits, rc, cycles;
u8 kpd_scan_cntl, kpd_size_cntl;
/* Configure the SIZE register, #rows and #columns */
rc = qpnp_kp_read_u8(kp, &kpd_size_cntl, KEYP_SIZE_CTRL(kp->base));
if (rc < 0) {
dev_err(&kp->spmi->dev,
"Error reading KEYP_SIZE_CTRL reg, rc=%d\n", rc);
return rc;
}
kpd_size_cntl &= (~KEYP_SIZE_COLS_MASK | ~KEYP_SIZE_ROWS_MASK);
kpd_size_cntl |= (((kp->num_cols - 1) << KEYP_SIZE_COLS_SHIFT) &
KEYP_SIZE_COLS_MASK);
kpd_size_cntl |= ((kp->num_rows - 1) & KEYP_SIZE_ROWS_MASK);
rc = qpnp_kp_write_u8(kp, kpd_size_cntl, KEYP_SIZE_CTRL(kp->base));
if (rc < 0) {
dev_err(&kp->spmi->dev,
"Error writing to KEYP_SIZE_CTRL reg, rc=%d\n", rc);
return rc;
}
/* Configure the SCAN CTL register, debounce, row pause, scan delay */
rc = qpnp_kp_read_u8(kp, &kpd_scan_cntl, KEYP_SCAN_CTRL(kp->base));
if (rc < 0) {
dev_err(&kp->spmi->dev,
"Error reading KEYP_SCAN_CTRL reg, rc=%d\n", rc);
return rc;
}
kpd_scan_cntl &= (~KEYP_SCAN_DBC_MASK | ~KEYP_SCAN_SCNP_MASK |
~KEYP_SCAN_ROWP_MASK);
kpd_scan_cntl |= (((kp->debounce_ms / 5) - 1) & KEYP_SCAN_DBC_MASK);
bits = fls(kp->scan_delay_ms) - 1;
kpd_scan_cntl |= ((bits << KEYP_SCAN_SCNP_SHIFT) & KEYP_SCAN_SCNP_MASK);
/* Row hold time is a multiple of 32KHz cycles. */
cycles = (kp->row_hold_ns * KEYP_CLOCK_FREQ) / NSEC_PER_SEC;
if (cycles)
cycles = ilog2(cycles);
kpd_scan_cntl |= ((cycles << KEYP_SCAN_ROW_HOLD_SHIFT) &
KEYP_SCAN_ROWP_MASK);
rc = qpnp_kp_write_u8(kp, kpd_scan_cntl, KEYP_SCAN_CTRL(kp->base));
if (rc)
dev_err(&kp->spmi->dev,
"Error writing KEYP_SCAN reg, rc=%d\n", rc);
return rc;
}
static int qpnp_kp_enable(struct qpnp_kp *kp)
{
int rc;
u8 kpd_cntl;
rc = qpnp_kp_read_u8(kp, &kpd_cntl, KEYP_EN_CTRL(kp->base));
if (rc < 0) {
dev_err(&kp->spmi->dev,
"Error reading KEYP_EN_CTRL reg, rc=%d\n", rc);
return rc;
}
kpd_cntl |= KEYP_CTRL_KEYP_EN;
rc = qpnp_kp_write_u8(kp, kpd_cntl, KEYP_EN_CTRL(kp->base));
if (rc < 0)
dev_err(&kp->spmi->dev,
"Error writing KEYP_CTRL reg, rc=%d\n", rc);
return rc;
}
static int qpnp_kp_disable(struct qpnp_kp *kp)
{
int rc;
u8 kpd_cntl;
rc = qpnp_kp_read_u8(kp, &kpd_cntl, KEYP_EN_CTRL(kp->base));
if (rc < 0) {
dev_err(&kp->spmi->dev,
"Error reading KEYP_EN_CTRL reg, rc=%d\n", rc);
return rc;
}
kpd_cntl &= ~KEYP_CTRL_KEYP_EN;
rc = qpnp_kp_write_u8(kp, kpd_cntl, KEYP_EN_CTRL(kp->base));
if (rc < 0)
dev_err(&kp->spmi->dev,
"Error writing KEYP_CTRL reg, rc=%d\n", rc);
return rc;
}
static int qpnp_kp_open(struct input_dev *dev)
{
struct qpnp_kp *kp = input_get_drvdata(dev);
return qpnp_kp_enable(kp);
}
static void qpnp_kp_close(struct input_dev *dev)
{
struct qpnp_kp *kp = input_get_drvdata(dev);
qpnp_kp_disable(kp);
}
static int __devinit qpnp_keypad_parse_dt(struct qpnp_kp *kp)
{
struct matrix_keymap_data *keymap_data;
int rc, keymap_len, i;
u32 *keymap;
const __be32 *map;
rc = of_property_read_u32(kp->spmi->dev.of_node,
"keypad,num-rows", &kp->num_rows);
if (rc) {
dev_err(&kp->spmi->dev, "Unable to parse 'num-rows'\n");
return rc;
}
rc = of_property_read_u32(kp->spmi->dev.of_node,
"keypad,num-cols", &kp->num_cols);
if (rc) {
dev_err(&kp->spmi->dev, "Unable to parse 'num-cols'\n");
return rc;
}
rc = of_property_read_u32(kp->spmi->dev.of_node,
"qcom,scan-delay-ms", &kp->scan_delay_ms);
if (rc && rc != -EINVAL) {
dev_err(&kp->spmi->dev, "Unable to parse 'scan-delay-ms'\n");
return rc;
}
rc = of_property_read_u32(kp->spmi->dev.of_node,
"qcom,row-hold-ns", &kp->row_hold_ns);
if (rc && rc != -EINVAL) {
dev_err(&kp->spmi->dev, "Unable to parse 'row-hold-ns'\n");
return rc;
}
rc = of_property_read_u32(kp->spmi->dev.of_node,
"qcom,debounce-ms", &kp->debounce_ms);
if (rc && rc != -EINVAL) {
dev_err(&kp->spmi->dev, "Unable to parse 'debounce-ms'\n");
return rc;
}
kp->wakeup = of_property_read_bool(kp->spmi->dev.of_node,
"qcom,wakeup");
kp->rep = !of_property_read_bool(kp->spmi->dev.of_node,
"linux,keypad-no-autorepeat");
map = of_get_property(kp->spmi->dev.of_node,
"linux,keymap", &keymap_len);
if (!map) {
dev_err(&kp->spmi->dev, "Keymap not specified\n");
return -EINVAL;
}
keymap_data = devm_kzalloc(&kp->spmi->dev,
sizeof(*keymap_data), GFP_KERNEL);
if (!keymap_data) {
dev_err(&kp->spmi->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
keymap_data->keymap_size = keymap_len / sizeof(u32);
keymap = devm_kzalloc(&kp->spmi->dev,
sizeof(uint32_t) * keymap_data->keymap_size, GFP_KERNEL);
if (!keymap) {
dev_err(&kp->spmi->dev, "could not allocate memory for keymap\n");
return -ENOMEM;
}
for (i = 0; i < keymap_data->keymap_size; i++) {
unsigned int key = be32_to_cpup(map + i);
int keycode, row, col;
row = (key >> 24) & 0xff;
col = (key >> 16) & 0xff;
keycode = key & 0xffff;
keymap[i] = KEY(row, col, keycode);
}
keymap_data->keymap = keymap;
kp->keymap_data = keymap_data;
return 0;
}
static int __devinit qpnp_kp_probe(struct spmi_device *spmi)
{
struct qpnp_kp *kp;
struct resource *keypad_base;
int rc = 0;
kp = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_kp), GFP_KERNEL);
if (!kp) {
dev_err(&spmi->dev, "%s: Can't allocate qpnp_kp\n",
__func__);
return -ENOMEM;
}
kp->spmi = spmi;
rc = qpnp_keypad_parse_dt(kp);
if (rc < 0) {
dev_err(&spmi->dev, "Error parsing device tree\n");
return rc;
}
/* the #rows and #columns are compulsary */
if (!kp->num_cols || !kp->num_rows ||
kp->num_cols > QPNP_MAX_COLS ||
kp->num_rows > QPNP_MAX_ROWS ||
kp->num_cols < QPNP_MIN_COLS ||
kp->num_rows < QPNP_MIN_ROWS) {
dev_err(&spmi->dev, "invalid rows/cols input data\n");
return -EINVAL;
}
if (!kp->keymap_data) {
dev_err(&spmi->dev, "keymap not specified\n");
return -EINVAL;
}
/* the below parameters are optional*/
if (!kp->scan_delay_ms) {
kp->scan_delay_ms = KEYP_DEFAULT_SCAN_DELAY;
} else {
if (kp->scan_delay_ms > MAX_SCAN_DELAY ||
kp->scan_delay_ms < MIN_SCAN_DELAY) {
dev_err(&spmi->dev,
"invalid keypad scan time supplied\n");
return -EINVAL;
}
}
if (!kp->row_hold_ns) {
kp->row_hold_ns = MIN_ROW_HOLD_DELAY;
} else {
if (kp->row_hold_ns > MAX_ROW_HOLD_DELAY ||
kp->row_hold_ns < MIN_ROW_HOLD_DELAY) {
dev_err(&spmi->dev,
"invalid keypad row hold time supplied\n");
return -EINVAL;
}
}
if (!kp->debounce_ms) {
kp->debounce_ms = KEYP_DEFAULT_DEBOUNCE;
} else {
if (kp->debounce_ms > MAX_DEBOUNCE_TIME ||
kp->debounce_ms < MIN_DEBOUNCE_TIME ||
(kp->debounce_ms % 5 != 0)) {
dev_err(&spmi->dev,
"invalid debounce time supplied\n");
return -EINVAL;
}
}
kp->input = input_allocate_device();
if (!kp->input) {
dev_err(&spmi->dev, "Can't allocate keypad input device\n");
return -ENOMEM;
}
kp->key_sense_irq = spmi_get_irq_byname(spmi, NULL, "kp-sense");
if (kp->key_sense_irq < 0) {
dev_err(&spmi->dev, "Unable to get keypad sense irq\n");
return kp->key_sense_irq;
}
kp->key_stuck_irq = spmi_get_irq_byname(spmi, NULL, "kp-stuck");
if (kp->key_stuck_irq < 0) {
dev_err(&spmi->dev, "Unable to get stuck irq\n");
return kp->key_stuck_irq;
}
keypad_base = spmi_get_resource(spmi, NULL, IORESOURCE_MEM, 0);
if (!keypad_base) {
dev_err(&spmi->dev, "Unable to get keypad base address\n");
return -ENXIO;
}
kp->base = keypad_base->start;
kp->input->name = "qpnp_keypad";
kp->input->phys = "qpnp_keypad/input0";
kp->input->id.version = 0x0001;
kp->input->id.product = 0x0001;
kp->input->id.vendor = 0x0001;
kp->input->evbit[0] = BIT_MASK(EV_KEY);
if (kp->rep)
set_bit(EV_REP, kp->input->evbit);
kp->input->keycode = kp->keycodes;
kp->input->keycodemax = QPNP_MATRIX_MAX_SIZE;
kp->input->keycodesize = sizeof(kp->keycodes);
kp->input->open = qpnp_kp_open;
kp->input->close = qpnp_kp_close;
matrix_keypad_build_keymap(kp->keymap_data, QPNP_ROW_SHIFT,
kp->keycodes, kp->input->keybit);
input_set_capability(kp->input, EV_MSC, MSC_SCAN);
input_set_drvdata(kp->input, kp);
/* initialize keypad state */
memset(kp->keystate, 0xff, sizeof(kp->keystate));
memset(kp->stuckstate, 0xff, sizeof(kp->stuckstate));
rc = qpnp_kpd_init(kp);
if (rc < 0) {
dev_err(&spmi->dev, "unable to initialize keypad controller\n");
return rc;
}
rc = input_register_device(kp->input);
if (rc < 0) {
dev_err(&spmi->dev, "unable to register keypad input device\n");
return rc;
}
rc = devm_request_irq(&spmi->dev, kp->key_sense_irq, qpnp_kp_irq,
IRQF_TRIGGER_RISING, "qpnp-keypad-sense", kp);
if (rc < 0) {
dev_err(&spmi->dev, "failed to request keypad sense irq\n");
return rc;
}
rc = devm_request_irq(&spmi->dev, kp->key_stuck_irq, qpnp_kp_stuck_irq,
IRQF_TRIGGER_RISING, "qpnp-keypad-stuck", kp);
if (rc < 0) {
dev_err(&spmi->dev, "failed to request keypad stuck irq\n");
return rc;
}
device_init_wakeup(&spmi->dev, kp->wakeup);
return rc;
}
static int qpnp_kp_remove(struct spmi_device *spmi)
{
struct qpnp_kp *kp = dev_get_drvdata(&spmi->dev);
device_init_wakeup(&spmi->dev, 0);
input_unregister_device(kp->input);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int qpnp_kp_suspend(struct device *dev)
{
struct qpnp_kp *kp = dev_get_drvdata(dev);
struct input_dev *input_dev = kp->input;
if (device_may_wakeup(dev)) {
enable_irq_wake(kp->key_sense_irq);
} else {
mutex_lock(&input_dev->mutex);
if (input_dev->users)
qpnp_kp_disable(kp);
mutex_unlock(&input_dev->mutex);
}
return 0;
}
static int qpnp_kp_resume(struct device *dev)
{
struct qpnp_kp *kp = dev_get_drvdata(dev);
struct input_dev *input_dev = kp->input;
if (device_may_wakeup(dev)) {
disable_irq_wake(kp->key_sense_irq);
} else {
mutex_lock(&input_dev->mutex);
if (input_dev->users)
qpnp_kp_enable(kp);
mutex_unlock(&input_dev->mutex);
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(qpnp_kp_pm_ops,
qpnp_kp_suspend, qpnp_kp_resume);
static struct of_device_id spmi_match_table[] = {
{ .compatible = "qcom,qpnp-keypad",
},
{}
};
static struct spmi_driver qpnp_kp_driver = {
.probe = qpnp_kp_probe,
.remove = __devexit_p(qpnp_kp_remove),
.driver = {
.name = "qcom,qpnp-keypad",
.of_match_table = spmi_match_table,
.owner = THIS_MODULE,
.pm = &qpnp_kp_pm_ops,
},
};
static int __init qpnp_kp_init(void)
{
return spmi_driver_register(&qpnp_kp_driver);
}
module_init(qpnp_kp_init);
static void __exit qpnp_kp_exit(void)
{
spmi_driver_unregister(&qpnp_kp_driver);
}
module_exit(qpnp_kp_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("QPNP keypad driver");