blob: f2f4fad08a30e96bb9b3cdb1d9a60ad828e07981 [file] [log] [blame]
/*
* drivers/gpu/ion/ion_cp_heap.c
*
* Copyright (C) 2011 Google, Inc.
* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/genalloc.h>
#include <linux/io.h>
#include <linux/msm_ion.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/memory_alloc.h>
#include <linux/seq_file.h>
#include <linux/iommu.h>
#include <linux/dma-mapping.h>
#include <trace/events/kmem.h>
#include <asm/mach/map.h>
#include <mach/msm_memtypes.h>
#include <mach/scm.h>
#include <mach/iommu_domains.h>
#include "ion_priv.h"
#include <asm/mach/map.h>
#include <asm/cacheflush.h>
#include "msm/ion_cp_common.h"
/**
* struct ion_cp_heap - container for the heap and shared heap data
* @heap: the heap information structure
* @pool: memory pool to allocate from.
* @base: the base address of the memory pool.
* @permission_type: Identifier for the memory used by SCM for protecting
* and unprotecting memory.
* @secure_base: Base address used when securing a heap that is shared.
* @secure_size: Size used when securing a heap that is shared.
* @lock: mutex to protect shared access.
* @heap_protected: Indicates whether heap has been protected or not.
* @allocated_bytes: the total number of allocated bytes from the pool.
* @total_size: the total size of the memory pool.
* @request_region: function pointer to call when first mapping of memory
* occurs.
* @release_region: function pointer to call when last mapping of memory
* unmapped.
* @bus_id: token used with request/release region.
* @kmap_cached_count: the total number of times this heap has been mapped in
* kernel space (cached).
* @kmap_uncached_count:the total number of times this heap has been mapped in
* kernel space (un-cached).
* @umap_count: the total number of times this heap has been mapped in
* user space.
* @has_outer_cache: set to 1 if outer cache is used, 0 otherwise.
*/
struct ion_cp_heap {
struct ion_heap heap;
struct gen_pool *pool;
ion_phys_addr_t base;
unsigned int permission_type;
ion_phys_addr_t secure_base;
size_t secure_size;
struct mutex lock;
unsigned int heap_protected;
unsigned long allocated_bytes;
unsigned long total_size;
int (*heap_request_region)(void *);
int (*heap_release_region)(void *);
void *bus_id;
unsigned long kmap_cached_count;
unsigned long kmap_uncached_count;
unsigned long umap_count;
unsigned int has_outer_cache;
atomic_t protect_cnt;
void *cpu_addr;
size_t heap_size;
dma_addr_t handle;
int cma;
int allow_non_secure_allocation;
};
enum {
HEAP_NOT_PROTECTED = 0,
HEAP_PROTECTED = 1,
};
#define DMA_ALLOC_TRIES 5
static int allocate_heap_memory(struct ion_heap *heap)
{
struct device *dev = heap->priv;
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
int ret;
int tries = 0;
DEFINE_DMA_ATTRS(attrs);
dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &attrs);
if (cp_heap->cpu_addr)
return 0;
while (!cp_heap->cpu_addr && (++tries < DMA_ALLOC_TRIES)) {
cp_heap->cpu_addr = dma_alloc_attrs(dev,
cp_heap->heap_size,
&(cp_heap->handle),
0,
&attrs);
if (!cp_heap->cpu_addr) {
trace_ion_cp_alloc_retry(tries);
msleep(20);
}
}
if (!cp_heap->cpu_addr)
goto out;
cp_heap->base = cp_heap->handle;
cp_heap->pool = gen_pool_create(12, -1);
if (!cp_heap->pool)
goto out_free;
ret = gen_pool_add(cp_heap->pool, cp_heap->base,
cp_heap->heap_size, -1);
if (ret < 0)
goto out_pool;
return 0;
out_pool:
gen_pool_destroy(cp_heap->pool);
out_free:
dma_free_coherent(dev, cp_heap->heap_size, cp_heap->cpu_addr,
cp_heap->handle);
out:
return ION_CP_ALLOCATE_FAIL;
}
static void free_heap_memory(struct ion_heap *heap)
{
struct device *dev = heap->priv;
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
/* release memory */
dma_free_coherent(dev, cp_heap->heap_size, cp_heap->cpu_addr,
cp_heap->handle);
gen_pool_destroy(cp_heap->pool);
cp_heap->pool = NULL;
cp_heap->cpu_addr = 0;
}
/**
* Get the total number of kernel mappings.
* Must be called with heap->lock locked.
*/
static unsigned long ion_cp_get_total_kmap_count(
const struct ion_cp_heap *cp_heap)
{
return cp_heap->kmap_cached_count + cp_heap->kmap_uncached_count;
}
static int ion_on_first_alloc(struct ion_heap *heap)
{
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
int ret_value;
if (cp_heap->cma) {
ret_value = allocate_heap_memory(heap);
if (ret_value)
return 1;
}
return 0;
}
static void ion_on_last_free(struct ion_heap *heap)
{
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
if (cp_heap->cma)
free_heap_memory(heap);
}
/**
* Protects memory if heap is unsecured heap.
* Must be called with heap->lock locked.
*/
static int ion_cp_protect(struct ion_heap *heap, int version, void *data)
{
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
int ret_value = 0;
if (atomic_inc_return(&cp_heap->protect_cnt) == 1) {
/* Make sure we are in C state when the heap is protected. */
if (!cp_heap->allocated_bytes)
if (ion_on_first_alloc(heap))
goto out;
ret_value = ion_cp_protect_mem(cp_heap->secure_base,
cp_heap->secure_size, cp_heap->permission_type,
version, data);
if (ret_value) {
pr_err("Failed to protect memory for heap %s - "
"error code: %d\n", heap->name, ret_value);
if (!cp_heap->allocated_bytes)
ion_on_last_free(heap);
atomic_dec(&cp_heap->protect_cnt);
} else {
cp_heap->heap_protected = HEAP_PROTECTED;
pr_debug("Protected heap %s @ 0x%pa\n",
heap->name, &cp_heap->base);
}
}
out:
pr_debug("%s: protect count is %d\n", __func__,
atomic_read(&cp_heap->protect_cnt));
BUG_ON(atomic_read(&cp_heap->protect_cnt) < 0);
return ret_value;
}
/**
* Unprotects memory if heap is secure heap.
* Must be called with heap->lock locked.
*/
static void ion_cp_unprotect(struct ion_heap *heap, int version, void *data)
{
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
if (atomic_dec_and_test(&cp_heap->protect_cnt)) {
int error_code = ion_cp_unprotect_mem(
cp_heap->secure_base, cp_heap->secure_size,
cp_heap->permission_type, version, data);
if (error_code) {
pr_err("Failed to un-protect memory for heap %s - "
"error code: %d\n", heap->name, error_code);
} else {
cp_heap->heap_protected = HEAP_NOT_PROTECTED;
pr_debug("Un-protected heap %s @ 0x%x\n", heap->name,
(unsigned int) cp_heap->base);
if (!cp_heap->allocated_bytes)
ion_on_last_free(heap);
}
}
pr_debug("%s: protect count is %d\n", __func__,
atomic_read(&cp_heap->protect_cnt));
BUG_ON(atomic_read(&cp_heap->protect_cnt) < 0);
}
ion_phys_addr_t ion_cp_allocate(struct ion_heap *heap,
unsigned long size,
unsigned long align,
unsigned long flags)
{
unsigned long offset;
unsigned long secure_allocation = flags & ION_FLAG_SECURE;
unsigned long force_contig = flags & ION_FLAG_FORCE_CONTIGUOUS;
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
mutex_lock(&cp_heap->lock);
if (!secure_allocation && cp_heap->heap_protected == HEAP_PROTECTED) {
mutex_unlock(&cp_heap->lock);
pr_err("ION cannot allocate un-secure memory from protected"
" heap %s\n", heap->name);
return ION_CP_ALLOCATE_FAIL;
}
if (!force_contig && !secure_allocation &&
!cp_heap->allow_non_secure_allocation) {
mutex_unlock(&cp_heap->lock);
pr_debug("%s: non-secure allocation disallowed from this heap\n",
__func__);
return ION_CP_ALLOCATE_FAIL;
}
/*
* The check above already checked for non-secure allocations when the
* heap is protected. HEAP_PROTECTED implies that this must be a secure
* allocation. If the heap is protected and there are userspace or
* cached kernel mappings, something has gone wrong in the security
* model.
*/
if (cp_heap->heap_protected == HEAP_PROTECTED) {
BUG_ON(cp_heap->umap_count != 0);
BUG_ON(cp_heap->kmap_cached_count != 0);
}
/*
* if this is the first reusable allocation, transition
* the heap
*/
if (!cp_heap->allocated_bytes)
if (ion_on_first_alloc(heap)) {
mutex_unlock(&cp_heap->lock);
return ION_RESERVED_ALLOCATE_FAIL;
}
cp_heap->allocated_bytes += size;
mutex_unlock(&cp_heap->lock);
offset = gen_pool_alloc_aligned(cp_heap->pool,
size, ilog2(align));
if (!offset) {
mutex_lock(&cp_heap->lock);
cp_heap->allocated_bytes -= size;
if ((cp_heap->total_size -
cp_heap->allocated_bytes) >= size)
pr_debug("%s: heap %s has enough memory (%lx) but"
" the allocation of size %lx still failed."
" Memory is probably fragmented.\n",
__func__, heap->name,
cp_heap->total_size -
cp_heap->allocated_bytes, size);
if (!cp_heap->allocated_bytes &&
cp_heap->heap_protected == HEAP_NOT_PROTECTED)
ion_on_last_free(heap);
mutex_unlock(&cp_heap->lock);
return ION_CP_ALLOCATE_FAIL;
}
return offset;
}
void ion_cp_free(struct ion_heap *heap, ion_phys_addr_t addr,
unsigned long size)
{
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
if (addr == ION_CP_ALLOCATE_FAIL)
return;
gen_pool_free(cp_heap->pool, addr, size);
mutex_lock(&cp_heap->lock);
cp_heap->allocated_bytes -= size;
if (!cp_heap->allocated_bytes &&
cp_heap->heap_protected == HEAP_NOT_PROTECTED)
ion_on_last_free(heap);
mutex_unlock(&cp_heap->lock);
}
static int ion_cp_heap_phys(struct ion_heap *heap,
struct ion_buffer *buffer,
ion_phys_addr_t *addr, size_t *len)
{
struct ion_cp_buffer *buf = buffer->priv_virt;
*addr = buf->buffer;
*len = buffer->size;
return 0;
}
static int ion_cp_heap_allocate(struct ion_heap *heap,
struct ion_buffer *buffer,
unsigned long size, unsigned long align,
unsigned long flags)
{
struct ion_cp_buffer *buf;
phys_addr_t addr;
/*
* we never want Ion to fault pages in for us with this
* heap. We want to set up the mappings ourselves in .map_user
*/
flags |= ION_FLAG_CACHED_NEEDS_SYNC;
buf = kzalloc(sizeof(*buf), GFP_KERNEL);
if (!buf)
return ION_CP_ALLOCATE_FAIL;
addr = ion_cp_allocate(heap, size, align, flags);
if (addr == ION_CP_ALLOCATE_FAIL)
return -ENOMEM;
buf->buffer = addr;
buf->want_delayed_unsecure = 0;
atomic_set(&buf->secure_cnt, 0);
mutex_init(&buf->lock);
buf->is_secure = flags & ION_FLAG_SECURE ? 1 : 0;
buffer->priv_virt = buf;
return 0;
}
static void ion_cp_heap_free(struct ion_buffer *buffer)
{
struct ion_heap *heap = buffer->heap;
struct ion_cp_buffer *buf = buffer->priv_virt;
ion_cp_free(heap, buf->buffer, buffer->size);
WARN_ON(atomic_read(&buf->secure_cnt));
WARN_ON(atomic_read(&buf->map_cnt));
kfree(buf);
buffer->priv_virt = NULL;
}
struct sg_table *ion_cp_heap_create_sg_table(struct ion_buffer *buffer)
{
size_t chunk_size = buffer->size;
struct ion_cp_buffer *buf = buffer->priv_virt;
if (ION_IS_CACHED(buffer->flags))
chunk_size = PAGE_SIZE;
else if (buf->is_secure && IS_ALIGNED(buffer->size, SZ_1M))
chunk_size = SZ_1M;
return ion_create_chunked_sg_table(buf->buffer, chunk_size,
buffer->size);
}
struct sg_table *ion_cp_heap_map_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
return ion_cp_heap_create_sg_table(buffer);
}
void ion_cp_heap_unmap_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
if (buffer->sg_table)
sg_free_table(buffer->sg_table);
kfree(buffer->sg_table);
buffer->sg_table = 0;
}
/**
* Call request region for SMI memory of this is the first mapping.
*/
static int ion_cp_request_region(struct ion_cp_heap *cp_heap)
{
int ret_value = 0;
if ((cp_heap->umap_count + ion_cp_get_total_kmap_count(cp_heap)) == 0)
if (cp_heap->heap_request_region)
ret_value = cp_heap->heap_request_region(
cp_heap->bus_id);
return ret_value;
}
/**
* Call release region for SMI memory of this is the last un-mapping.
*/
static int ion_cp_release_region(struct ion_cp_heap *cp_heap)
{
int ret_value = 0;
if ((cp_heap->umap_count + ion_cp_get_total_kmap_count(cp_heap)) == 0)
if (cp_heap->heap_release_region)
ret_value = cp_heap->heap_release_region(
cp_heap->bus_id);
return ret_value;
}
void *ion_cp_heap_map_kernel(struct ion_heap *heap, struct ion_buffer *buffer)
{
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
void *ret_value = NULL;
struct ion_cp_buffer *buf = buffer->priv_virt;
mutex_lock(&cp_heap->lock);
if ((cp_heap->heap_protected == HEAP_NOT_PROTECTED) ||
((cp_heap->heap_protected == HEAP_PROTECTED) &&
!ION_IS_CACHED(buffer->flags))) {
if (ion_cp_request_region(cp_heap)) {
mutex_unlock(&cp_heap->lock);
return NULL;
}
if (cp_heap->cma) {
int npages = PAGE_ALIGN(buffer->size) / PAGE_SIZE;
struct page **pages = vmalloc(
sizeof(struct page *) * npages);
int i;
pgprot_t pgprot;
if (!pages) {
mutex_unlock(&cp_heap->lock);
return ERR_PTR(-ENOMEM);
}
if (ION_IS_CACHED(buffer->flags))
pgprot = PAGE_KERNEL;
else
pgprot = pgprot_writecombine(PAGE_KERNEL);
for (i = 0; i < npages; i++) {
pages[i] = phys_to_page(buf->buffer +
i * PAGE_SIZE);
}
ret_value = vmap(pages, npages, VM_IOREMAP, pgprot);
vfree(pages);
} else {
if (ION_IS_CACHED(buffer->flags))
ret_value = ioremap_cached(buf->buffer,
buffer->size);
else
ret_value = ioremap(buf->buffer,
buffer->size);
}
if (!ret_value) {
ion_cp_release_region(cp_heap);
} else {
if (ION_IS_CACHED(buffer->flags))
++cp_heap->kmap_cached_count;
else
++cp_heap->kmap_uncached_count;
atomic_inc(&buf->map_cnt);
}
}
mutex_unlock(&cp_heap->lock);
return ret_value;
}
void ion_cp_heap_unmap_kernel(struct ion_heap *heap,
struct ion_buffer *buffer)
{
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
struct ion_cp_buffer *buf = buffer->priv_virt;
if (cp_heap->cma)
vunmap(buffer->vaddr);
else
__arm_iounmap(buffer->vaddr);
buffer->vaddr = NULL;
mutex_lock(&cp_heap->lock);
if (ION_IS_CACHED(buffer->flags))
--cp_heap->kmap_cached_count;
else
--cp_heap->kmap_uncached_count;
atomic_dec(&buf->map_cnt);
ion_cp_release_region(cp_heap);
mutex_unlock(&cp_heap->lock);
return;
}
int ion_cp_heap_map_user(struct ion_heap *heap, struct ion_buffer *buffer,
struct vm_area_struct *vma)
{
int ret_value = -EAGAIN;
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
struct ion_cp_buffer *buf = buffer->priv_virt;
mutex_lock(&cp_heap->lock);
if (cp_heap->heap_protected == HEAP_NOT_PROTECTED && !buf->is_secure) {
if (ion_cp_request_region(cp_heap)) {
mutex_unlock(&cp_heap->lock);
return -EINVAL;
}
if (!ION_IS_CACHED(buffer->flags))
vma->vm_page_prot = pgprot_writecombine(
vma->vm_page_prot);
ret_value = remap_pfn_range(vma, vma->vm_start,
__phys_to_pfn(buf->buffer) + vma->vm_pgoff,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
if (ret_value) {
ion_cp_release_region(cp_heap);
} else {
atomic_inc(&buf->map_cnt);
++cp_heap->umap_count;
}
}
mutex_unlock(&cp_heap->lock);
return ret_value;
}
void ion_cp_heap_unmap_user(struct ion_heap *heap,
struct ion_buffer *buffer)
{
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
struct ion_cp_buffer *buf = buffer->priv_virt;
mutex_lock(&cp_heap->lock);
--cp_heap->umap_count;
atomic_dec(&buf->map_cnt);
ion_cp_release_region(cp_heap);
mutex_unlock(&cp_heap->lock);
}
static int ion_cp_print_debug(struct ion_heap *heap, struct seq_file *s,
const struct rb_root *mem_map)
{
unsigned long total_alloc;
unsigned long total_size;
unsigned long umap_count;
unsigned long kmap_count;
unsigned long heap_protected;
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
mutex_lock(&cp_heap->lock);
total_alloc = cp_heap->allocated_bytes;
total_size = cp_heap->total_size;
umap_count = cp_heap->umap_count;
kmap_count = ion_cp_get_total_kmap_count(cp_heap);
heap_protected = cp_heap->heap_protected == HEAP_PROTECTED;
mutex_unlock(&cp_heap->lock);
seq_printf(s, "total bytes currently allocated: %lx\n", total_alloc);
seq_printf(s, "total heap size: %lx\n", total_size);
seq_printf(s, "umapping count: %lx\n", umap_count);
seq_printf(s, "kmapping count: %lx\n", kmap_count);
seq_printf(s, "heap protected: %s\n", heap_protected ? "Yes" : "No");
if (mem_map) {
unsigned long base = cp_heap->base;
unsigned long size = cp_heap->total_size;
unsigned long end = base+size;
unsigned long last_end = base;
struct rb_node *n;
seq_printf(s, "\nMemory Map\n");
seq_printf(s, "%16.s %14.s %14.s %14.s\n",
"client", "start address", "end address",
"size (hex)");
for (n = rb_first(mem_map); n; n = rb_next(n)) {
struct mem_map_data *data =
rb_entry(n, struct mem_map_data, node);
const char *client_name = "(null)";
if (last_end < data->addr) {
phys_addr_t da;
da = data->addr-1;
seq_printf(s, "%16.s %14pa %14pa %14lu (%lx)\n",
"FREE", &last_end, &da,
data->addr-last_end,
data->addr-last_end);
}
if (data->client_name)
client_name = data->client_name;
seq_printf(s, "%16.s %14pa %14pa %14lu (%lx)\n",
client_name, &data->addr,
&data->addr_end,
data->size, data->size);
last_end = data->addr_end+1;
}
if (last_end < end) {
seq_printf(s, "%16.s %14lx %14lx %14lu (%lx)\n", "FREE",
last_end, end-1, end-last_end, end-last_end);
}
}
return 0;
}
int ion_cp_secure_heap(struct ion_heap *heap, int version, void *data)
{
int ret_value;
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
mutex_lock(&cp_heap->lock);
if (cp_heap->umap_count == 0 && cp_heap->kmap_cached_count == 0) {
ret_value = ion_cp_protect(heap, version, data);
} else {
pr_err("ION cannot secure heap with outstanding mappings: "
"User space: %lu, kernel space (cached): %lu\n",
cp_heap->umap_count, cp_heap->kmap_cached_count);
ret_value = -EINVAL;
}
mutex_unlock(&cp_heap->lock);
return ret_value;
}
int ion_cp_unsecure_heap(struct ion_heap *heap, int version, void *data)
{
int ret_value = 0;
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
mutex_lock(&cp_heap->lock);
ion_cp_unprotect(heap, version, data);
mutex_unlock(&cp_heap->lock);
return ret_value;
}
static struct ion_heap_ops cp_heap_ops = {
.allocate = ion_cp_heap_allocate,
.free = ion_cp_heap_free,
.phys = ion_cp_heap_phys,
.map_user = ion_cp_heap_map_user,
.unmap_user = ion_cp_heap_unmap_user,
.map_kernel = ion_cp_heap_map_kernel,
.unmap_kernel = ion_cp_heap_unmap_kernel,
.map_dma = ion_cp_heap_map_dma,
.unmap_dma = ion_cp_heap_unmap_dma,
.print_debug = ion_cp_print_debug,
.secure_heap = ion_cp_secure_heap,
.unsecure_heap = ion_cp_unsecure_heap,
.secure_buffer = ion_cp_secure_buffer,
.unsecure_buffer = ion_cp_unsecure_buffer,
};
struct ion_heap *ion_cp_heap_create(struct ion_platform_heap *heap_data)
{
struct ion_cp_heap *cp_heap;
int ret;
cp_heap = kzalloc(sizeof(*cp_heap), GFP_KERNEL);
if (!cp_heap)
return ERR_PTR(-ENOMEM);
mutex_init(&cp_heap->lock);
cp_heap->allocated_bytes = 0;
cp_heap->umap_count = 0;
cp_heap->kmap_cached_count = 0;
cp_heap->kmap_uncached_count = 0;
cp_heap->total_size = heap_data->size;
cp_heap->heap.ops = &cp_heap_ops;
cp_heap->heap.type = (enum ion_heap_type) ION_HEAP_TYPE_CP;
cp_heap->heap_protected = HEAP_NOT_PROTECTED;
cp_heap->secure_base = heap_data->base;
cp_heap->secure_size = heap_data->size;
cp_heap->has_outer_cache = heap_data->has_outer_cache;
cp_heap->heap_size = heap_data->size;
atomic_set(&cp_heap->protect_cnt, 0);
if (heap_data->extra_data) {
struct ion_cp_heap_pdata *extra_data =
heap_data->extra_data;
cp_heap->permission_type = extra_data->permission_type;
if (extra_data->secure_size) {
cp_heap->secure_base = extra_data->secure_base;
cp_heap->secure_size = extra_data->secure_size;
}
if (extra_data->setup_region)
cp_heap->bus_id = extra_data->setup_region();
if (extra_data->request_region)
cp_heap->heap_request_region =
extra_data->request_region;
if (extra_data->release_region)
cp_heap->heap_release_region =
extra_data->release_region;
cp_heap->cma = extra_data->is_cma;
cp_heap->allow_non_secure_allocation =
extra_data->allow_nonsecure_alloc;
}
if (cp_heap->cma) {
cp_heap->pool = NULL;
cp_heap->cpu_addr = 0;
cp_heap->heap.priv = heap_data->priv;
} else {
cp_heap->pool = gen_pool_create(12, -1);
if (!cp_heap->pool)
goto free_heap;
cp_heap->base = heap_data->base;
ret = gen_pool_add(cp_heap->pool, cp_heap->base,
heap_data->size, -1);
if (ret < 0)
goto destroy_pool;
}
return &cp_heap->heap;
destroy_pool:
gen_pool_destroy(cp_heap->pool);
free_heap:
kfree(cp_heap);
return ERR_PTR(-ENOMEM);
}
void ion_cp_heap_destroy(struct ion_heap *heap)
{
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
gen_pool_destroy(cp_heap->pool);
kfree(cp_heap);
cp_heap = NULL;
}
void ion_cp_heap_get_base(struct ion_heap *heap, unsigned long *base,
unsigned long *size) \
{
struct ion_cp_heap *cp_heap =
container_of(heap, struct ion_cp_heap, heap);
*base = cp_heap->base;
*size = cp_heap->total_size;
}