| |
| #ifdef __KERNEL__ |
| # include <linux/string.h> |
| # include <linux/slab.h> |
| # include <linux/bug.h> |
| # include <linux/kernel.h> |
| # ifndef dprintk |
| # define dprintk(args...) |
| # endif |
| #else |
| # include <string.h> |
| # include <stdio.h> |
| # include <stdlib.h> |
| # include <assert.h> |
| # define BUG_ON(x) assert(!(x)) |
| # define dprintk(args...) /* printf(args) */ |
| # define kmalloc(x, f) malloc(x) |
| # define kfree(x) free(x) |
| #endif |
| |
| #include "crush.h" |
| #include "hash.h" |
| |
| /* |
| * Implement the core CRUSH mapping algorithm. |
| */ |
| |
| /** |
| * crush_find_rule - find a crush_rule id for a given ruleset, type, and size. |
| * @map: the crush_map |
| * @ruleset: the storage ruleset id (user defined) |
| * @type: storage ruleset type (user defined) |
| * @size: output set size |
| */ |
| int crush_find_rule(struct crush_map *map, int ruleset, int type, int size) |
| { |
| int i; |
| |
| for (i = 0; i < map->max_rules; i++) { |
| if (map->rules[i] && |
| map->rules[i]->mask.ruleset == ruleset && |
| map->rules[i]->mask.type == type && |
| map->rules[i]->mask.min_size <= size && |
| map->rules[i]->mask.max_size >= size) |
| return i; |
| } |
| return -1; |
| } |
| |
| |
| /* |
| * bucket choose methods |
| * |
| * For each bucket algorithm, we have a "choose" method that, given a |
| * crush input @x and replica position (usually, position in output set) @r, |
| * will produce an item in the bucket. |
| */ |
| |
| /* |
| * Choose based on a random permutation of the bucket. |
| * |
| * We used to use some prime number arithmetic to do this, but it |
| * wasn't very random, and had some other bad behaviors. Instead, we |
| * calculate an actual random permutation of the bucket members. |
| * Since this is expensive, we optimize for the r=0 case, which |
| * captures the vast majority of calls. |
| */ |
| static int bucket_perm_choose(struct crush_bucket *bucket, |
| int x, int r) |
| { |
| unsigned pr = r % bucket->size; |
| unsigned i, s; |
| |
| /* start a new permutation if @x has changed */ |
| if (bucket->perm_x != x || bucket->perm_n == 0) { |
| dprintk("bucket %d new x=%d\n", bucket->id, x); |
| bucket->perm_x = x; |
| |
| /* optimize common r=0 case */ |
| if (pr == 0) { |
| s = crush_hash32_3(x, bucket->id, 0) % |
| bucket->size; |
| bucket->perm[0] = s; |
| bucket->perm_n = 0xffff; /* magic value, see below */ |
| goto out; |
| } |
| |
| for (i = 0; i < bucket->size; i++) |
| bucket->perm[i] = i; |
| bucket->perm_n = 0; |
| } else if (bucket->perm_n == 0xffff) { |
| /* clean up after the r=0 case above */ |
| for (i = 1; i < bucket->size; i++) |
| bucket->perm[i] = i; |
| bucket->perm[bucket->perm[0]] = 0; |
| bucket->perm_n = 1; |
| } |
| |
| /* calculate permutation up to pr */ |
| for (i = 0; i < bucket->perm_n; i++) |
| dprintk(" perm_choose have %d: %d\n", i, bucket->perm[i]); |
| while (bucket->perm_n <= pr) { |
| unsigned p = bucket->perm_n; |
| /* no point in swapping the final entry */ |
| if (p < bucket->size - 1) { |
| i = crush_hash32_3(x, bucket->id, p) % |
| (bucket->size - p); |
| if (i) { |
| unsigned t = bucket->perm[p + i]; |
| bucket->perm[p + i] = bucket->perm[p]; |
| bucket->perm[p] = t; |
| } |
| dprintk(" perm_choose swap %d with %d\n", p, p+i); |
| } |
| bucket->perm_n++; |
| } |
| for (i = 0; i < bucket->size; i++) |
| dprintk(" perm_choose %d: %d\n", i, bucket->perm[i]); |
| |
| s = bucket->perm[pr]; |
| out: |
| dprintk(" perm_choose %d sz=%d x=%d r=%d (%d) s=%d\n", bucket->id, |
| bucket->size, x, r, pr, s); |
| return bucket->items[s]; |
| } |
| |
| /* uniform */ |
| static int bucket_uniform_choose(struct crush_bucket_uniform *bucket, |
| int x, int r) |
| { |
| return bucket_perm_choose(&bucket->h, x, r); |
| } |
| |
| /* list */ |
| static int bucket_list_choose(struct crush_bucket_list *bucket, |
| int x, int r) |
| { |
| int i; |
| |
| for (i = bucket->h.size-1; i >= 0; i--) { |
| __u64 w = crush_hash32_4(x, bucket->h.items[i], r, |
| bucket->h.id); |
| w &= 0xffff; |
| dprintk("list_choose i=%d x=%d r=%d item %d weight %x " |
| "sw %x rand %llx", |
| i, x, r, bucket->h.items[i], bucket->item_weights[i], |
| bucket->sum_weights[i], w); |
| w *= bucket->sum_weights[i]; |
| w = w >> 16; |
| /*dprintk(" scaled %llx\n", w);*/ |
| if (w < bucket->item_weights[i]) |
| return bucket->h.items[i]; |
| } |
| |
| BUG_ON(1); |
| return 0; |
| } |
| |
| |
| /* (binary) tree */ |
| static int height(int n) |
| { |
| int h = 0; |
| while ((n & 1) == 0) { |
| h++; |
| n = n >> 1; |
| } |
| return h; |
| } |
| |
| static int left(int x) |
| { |
| int h = height(x); |
| return x - (1 << (h-1)); |
| } |
| |
| static int right(int x) |
| { |
| int h = height(x); |
| return x + (1 << (h-1)); |
| } |
| |
| static int terminal(int x) |
| { |
| return x & 1; |
| } |
| |
| static int bucket_tree_choose(struct crush_bucket_tree *bucket, |
| int x, int r) |
| { |
| int n, l; |
| __u32 w; |
| __u64 t; |
| |
| /* start at root */ |
| n = bucket->num_nodes >> 1; |
| |
| while (!terminal(n)) { |
| /* pick point in [0, w) */ |
| w = bucket->node_weights[n]; |
| t = (__u64)crush_hash32_4(x, n, r, bucket->h.id) * (__u64)w; |
| t = t >> 32; |
| |
| /* descend to the left or right? */ |
| l = left(n); |
| if (t < bucket->node_weights[l]) |
| n = l; |
| else |
| n = right(n); |
| } |
| |
| return bucket->h.items[n >> 1]; |
| } |
| |
| |
| /* straw */ |
| |
| static int bucket_straw_choose(struct crush_bucket_straw *bucket, |
| int x, int r) |
| { |
| int i; |
| int high = 0; |
| __u64 high_draw = 0; |
| __u64 draw; |
| |
| for (i = 0; i < bucket->h.size; i++) { |
| draw = crush_hash32_3(x, bucket->h.items[i], r); |
| draw &= 0xffff; |
| draw *= bucket->straws[i]; |
| if (i == 0 || draw > high_draw) { |
| high = i; |
| high_draw = draw; |
| } |
| } |
| return bucket->h.items[high]; |
| } |
| |
| static int crush_bucket_choose(struct crush_bucket *in, int x, int r) |
| { |
| dprintk("choose %d x=%d r=%d\n", in->id, x, r); |
| switch (in->alg) { |
| case CRUSH_BUCKET_UNIFORM: |
| return bucket_uniform_choose((struct crush_bucket_uniform *)in, |
| x, r); |
| case CRUSH_BUCKET_LIST: |
| return bucket_list_choose((struct crush_bucket_list *)in, |
| x, r); |
| case CRUSH_BUCKET_TREE: |
| return bucket_tree_choose((struct crush_bucket_tree *)in, |
| x, r); |
| case CRUSH_BUCKET_STRAW: |
| return bucket_straw_choose((struct crush_bucket_straw *)in, |
| x, r); |
| default: |
| BUG_ON(1); |
| return in->items[0]; |
| } |
| } |
| |
| /* |
| * true if device is marked "out" (failed, fully offloaded) |
| * of the cluster |
| */ |
| static int is_out(struct crush_map *map, __u32 *weight, int item, int x) |
| { |
| if (weight[item] >= 0x1000) |
| return 0; |
| if (weight[item] == 0) |
| return 1; |
| if ((crush_hash32_2(x, item) & 0xffff) < weight[item]) |
| return 0; |
| return 1; |
| } |
| |
| /** |
| * crush_choose - choose numrep distinct items of given type |
| * @map: the crush_map |
| * @bucket: the bucket we are choose an item from |
| * @x: crush input value |
| * @numrep: the number of items to choose |
| * @type: the type of item to choose |
| * @out: pointer to output vector |
| * @outpos: our position in that vector |
| * @firstn: true if choosing "first n" items, false if choosing "indep" |
| * @recurse_to_leaf: true if we want one device under each item of given type |
| * @out2: second output vector for leaf items (if @recurse_to_leaf) |
| */ |
| static int crush_choose(struct crush_map *map, |
| struct crush_bucket *bucket, |
| __u32 *weight, |
| int x, int numrep, int type, |
| int *out, int outpos, |
| int firstn, int recurse_to_leaf, |
| int *out2) |
| { |
| int rep; |
| int ftotal, flocal; |
| int retry_descent, retry_bucket, skip_rep; |
| struct crush_bucket *in = bucket; |
| int r; |
| int i; |
| int item = 0; |
| int itemtype; |
| int collide, reject; |
| const int orig_tries = 5; /* attempts before we fall back to search */ |
| dprintk("choose bucket %d x %d outpos %d\n", bucket->id, x, outpos); |
| |
| for (rep = outpos; rep < numrep; rep++) { |
| /* keep trying until we get a non-out, non-colliding item */ |
| ftotal = 0; |
| skip_rep = 0; |
| do { |
| retry_descent = 0; |
| in = bucket; /* initial bucket */ |
| |
| /* choose through intervening buckets */ |
| flocal = 0; |
| do { |
| collide = 0; |
| retry_bucket = 0; |
| r = rep; |
| if (in->alg == CRUSH_BUCKET_UNIFORM) { |
| /* be careful */ |
| if (firstn || numrep >= in->size) |
| /* r' = r + f_total */ |
| r += ftotal; |
| else if (in->size % numrep == 0) |
| /* r'=r+(n+1)*f_local */ |
| r += (numrep+1) * |
| (flocal+ftotal); |
| else |
| /* r' = r + n*f_local */ |
| r += numrep * (flocal+ftotal); |
| } else { |
| if (firstn) |
| /* r' = r + f_total */ |
| r += ftotal; |
| else |
| /* r' = r + n*f_local */ |
| r += numrep * (flocal+ftotal); |
| } |
| |
| /* bucket choose */ |
| if (in->size == 0) { |
| reject = 1; |
| goto reject; |
| } |
| if (flocal >= (in->size>>1) && |
| flocal > orig_tries) |
| item = bucket_perm_choose(in, x, r); |
| else |
| item = crush_bucket_choose(in, x, r); |
| BUG_ON(item >= map->max_devices); |
| |
| /* desired type? */ |
| if (item < 0) |
| itemtype = map->buckets[-1-item]->type; |
| else |
| itemtype = 0; |
| dprintk(" item %d type %d\n", item, itemtype); |
| |
| /* keep going? */ |
| if (itemtype != type) { |
| BUG_ON(item >= 0 || |
| (-1-item) >= map->max_buckets); |
| in = map->buckets[-1-item]; |
| continue; |
| } |
| |
| /* collision? */ |
| for (i = 0; i < outpos; i++) { |
| if (out[i] == item) { |
| collide = 1; |
| break; |
| } |
| } |
| |
| if (recurse_to_leaf && |
| item < 0 && |
| crush_choose(map, map->buckets[-1-item], |
| weight, |
| x, outpos+1, 0, |
| out2, outpos, |
| firstn, 0, NULL) <= outpos) { |
| reject = 1; |
| } else { |
| /* out? */ |
| if (itemtype == 0) |
| reject = is_out(map, weight, |
| item, x); |
| else |
| reject = 0; |
| } |
| |
| reject: |
| if (reject || collide) { |
| ftotal++; |
| flocal++; |
| |
| if (collide && flocal < 3) |
| /* retry locally a few times */ |
| retry_bucket = 1; |
| else if (flocal < in->size + orig_tries) |
| /* exhaustive bucket search */ |
| retry_bucket = 1; |
| else if (ftotal < 20) |
| /* then retry descent */ |
| retry_descent = 1; |
| else |
| /* else give up */ |
| skip_rep = 1; |
| dprintk(" reject %d collide %d " |
| "ftotal %d flocal %d\n", |
| reject, collide, ftotal, |
| flocal); |
| } |
| } while (retry_bucket); |
| } while (retry_descent); |
| |
| if (skip_rep) { |
| dprintk("skip rep\n"); |
| continue; |
| } |
| |
| dprintk("choose got %d\n", item); |
| out[outpos] = item; |
| outpos++; |
| } |
| |
| dprintk("choose returns %d\n", outpos); |
| return outpos; |
| } |
| |
| |
| /** |
| * crush_do_rule - calculate a mapping with the given input and rule |
| * @map: the crush_map |
| * @ruleno: the rule id |
| * @x: hash input |
| * @result: pointer to result vector |
| * @result_max: maximum result size |
| * @force: force initial replica choice; -1 for none |
| */ |
| int crush_do_rule(struct crush_map *map, |
| int ruleno, int x, int *result, int result_max, |
| int force, __u32 *weight) |
| { |
| int result_len; |
| int force_context[CRUSH_MAX_DEPTH]; |
| int force_pos = -1; |
| int a[CRUSH_MAX_SET]; |
| int b[CRUSH_MAX_SET]; |
| int c[CRUSH_MAX_SET]; |
| int recurse_to_leaf; |
| int *w; |
| int wsize = 0; |
| int *o; |
| int osize; |
| int *tmp; |
| struct crush_rule *rule; |
| int step; |
| int i, j; |
| int numrep; |
| int firstn; |
| int rc = -1; |
| |
| BUG_ON(ruleno >= map->max_rules); |
| |
| rule = map->rules[ruleno]; |
| result_len = 0; |
| w = a; |
| o = b; |
| |
| /* |
| * determine hierarchical context of force, if any. note |
| * that this may or may not correspond to the specific types |
| * referenced by the crush rule. |
| */ |
| if (force >= 0) { |
| if (force >= map->max_devices || |
| map->device_parents[force] == 0) { |
| /*dprintk("CRUSH: forcefed device dne\n");*/ |
| rc = -1; /* force fed device dne */ |
| goto out; |
| } |
| if (!is_out(map, weight, force, x)) { |
| while (1) { |
| force_context[++force_pos] = force; |
| if (force >= 0) |
| force = map->device_parents[force]; |
| else |
| force = map->bucket_parents[-1-force]; |
| if (force == 0) |
| break; |
| } |
| } |
| } |
| |
| for (step = 0; step < rule->len; step++) { |
| firstn = 0; |
| switch (rule->steps[step].op) { |
| case CRUSH_RULE_TAKE: |
| w[0] = rule->steps[step].arg1; |
| if (force_pos >= 0) { |
| BUG_ON(force_context[force_pos] != w[0]); |
| force_pos--; |
| } |
| wsize = 1; |
| break; |
| |
| case CRUSH_RULE_CHOOSE_LEAF_FIRSTN: |
| case CRUSH_RULE_CHOOSE_FIRSTN: |
| firstn = 1; |
| case CRUSH_RULE_CHOOSE_LEAF_INDEP: |
| case CRUSH_RULE_CHOOSE_INDEP: |
| BUG_ON(wsize == 0); |
| |
| recurse_to_leaf = |
| rule->steps[step].op == |
| CRUSH_RULE_CHOOSE_LEAF_FIRSTN || |
| rule->steps[step].op == |
| CRUSH_RULE_CHOOSE_LEAF_INDEP; |
| |
| /* reset output */ |
| osize = 0; |
| |
| for (i = 0; i < wsize; i++) { |
| /* |
| * see CRUSH_N, CRUSH_N_MINUS macros. |
| * basically, numrep <= 0 means relative to |
| * the provided result_max |
| */ |
| numrep = rule->steps[step].arg1; |
| if (numrep <= 0) { |
| numrep += result_max; |
| if (numrep <= 0) |
| continue; |
| } |
| j = 0; |
| if (osize == 0 && force_pos >= 0) { |
| /* skip any intermediate types */ |
| while (force_pos && |
| force_context[force_pos] < 0 && |
| rule->steps[step].arg2 != |
| map->buckets[-1 - |
| force_context[force_pos]]->type) |
| force_pos--; |
| o[osize] = force_context[force_pos]; |
| if (recurse_to_leaf) |
| c[osize] = force_context[0]; |
| j++; |
| force_pos--; |
| } |
| osize += crush_choose(map, |
| map->buckets[-1-w[i]], |
| weight, |
| x, numrep, |
| rule->steps[step].arg2, |
| o+osize, j, |
| firstn, |
| recurse_to_leaf, c+osize); |
| } |
| |
| if (recurse_to_leaf) |
| /* copy final _leaf_ values to output set */ |
| memcpy(o, c, osize*sizeof(*o)); |
| |
| /* swap t and w arrays */ |
| tmp = o; |
| o = w; |
| w = tmp; |
| wsize = osize; |
| break; |
| |
| |
| case CRUSH_RULE_EMIT: |
| for (i = 0; i < wsize && result_len < result_max; i++) { |
| result[result_len] = w[i]; |
| result_len++; |
| } |
| wsize = 0; |
| break; |
| |
| default: |
| BUG_ON(1); |
| } |
| } |
| rc = result_len; |
| |
| out: |
| return rc; |
| } |
| |
| |