| /* Copyright (c) 2012, Code Aurora Forum. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/errno.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/jiffies.h> |
| #include <linux/smp.h> |
| #include <linux/io.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/hardware/gic.h> |
| #include <asm/hardware/cache-l2x0.h> |
| #include <asm/smp_scu.h> |
| #include <asm/unified.h> |
| #include <mach/msm_iomap.h> |
| #include "pm.h" |
| |
| #define CORE_RESET_BASE 0xA8600590 |
| #define MSM_CORE_STATUS_MSK 0x02800000 |
| |
| /* |
| * control for which core is the next to come out of the secondary |
| * boot "holding pen" |
| */ |
| volatile int pen_release = -1; |
| |
| static DEFINE_PER_CPU(bool, cold_boot_done); |
| |
| struct per_cpu_data { |
| unsigned int reset_off; |
| unsigned int offset; |
| unsigned int ipc_irq; |
| void __iomem *reset_core_base; |
| }; |
| |
| static uint32_t *msm8625_boot_vector; |
| |
| |
| static struct per_cpu_data cpu_data[CONFIG_NR_CPUS]; |
| |
| /* |
| * Write pen_release in a way that is guaranteed to be visible to all |
| * observers, irrespective of whether they're taking part in coherency |
| * or not. This is necessary for the hotplug code to work reliably. |
| */ |
| static void __cpuinit write_pen_release(int val) |
| { |
| pen_release = val; |
| smp_wmb(); |
| __cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release)); |
| outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1)); |
| } |
| |
| static void __iomem *scu_base_addr(void) |
| { |
| return MSM_SCU_BASE; |
| } |
| |
| static DEFINE_SPINLOCK(boot_lock); |
| |
| /* |
| * MP_CORE_IPC will be used to generate interrupt and can be used by either |
| * of core. |
| * To bring secondary cores out of GDFS we need to raise the SPI using the |
| * MP_CORE_IPC. |
| */ |
| static void raise_clear_spi(unsigned int cpu, bool set) |
| { |
| int value; |
| |
| value = __raw_readl(MSM_CSR_BASE + 0x54); |
| if (set) |
| __raw_writel(value | BIT(cpu), MSM_CSR_BASE + 0x54); |
| else |
| __raw_writel(value & ~BIT(cpu), MSM_CSR_BASE + 0x54); |
| mb(); |
| } |
| |
| static void clear_pending_spi(unsigned int irq) |
| { |
| struct irq_data *d = irq_get_irq_data(irq); |
| struct irq_chip *c = irq_data_get_irq_chip(d); |
| |
| c->irq_mask(d); |
| local_irq_disable(); |
| /* Clear the IRQ from the ENABLE_SET */ |
| gic_clear_irq_pending(irq); |
| local_irq_enable(); |
| } |
| |
| void __cpuinit platform_secondary_init(unsigned int cpu) |
| { |
| pr_debug("CPU%u: Booted secondary processor\n", cpu); |
| |
| WARN_ON(msm_platform_secondary_init(cpu)); |
| |
| /* |
| * if any interrupts are already enabled for the primary |
| * core (e.g. timer irq), then they will not have been enabled |
| * for us: do so |
| */ |
| gic_secondary_init(0); |
| |
| /* |
| * let the primary processor know we're out of the |
| * pen, then head off into the C entry point |
| */ |
| write_pen_release(-1); |
| |
| /* clear the IPC pending SPI */ |
| if (power_collapsed) { |
| raise_clear_spi(cpu, false); |
| clear_pending_spi(cpu_data[cpu].ipc_irq); |
| power_collapsed = 0; |
| } |
| |
| /* |
| * Synchronise with the boot thread. |
| */ |
| spin_lock(&boot_lock); |
| spin_unlock(&boot_lock); |
| } |
| |
| static int __cpuinit msm8625_release_secondary(unsigned int cpu) |
| { |
| void __iomem *base_ptr; |
| int value = 0; |
| unsigned long timeout; |
| |
| /* |
| * loop to ensure that the GHS_STATUS_CORE1 bit in the |
| * MPA5_STATUS_REG(0x3c) is set. The timeout for the while |
| * loop can be set as 20us as of now |
| */ |
| timeout = jiffies + usecs_to_jiffies(20); |
| while (time_before(jiffies, timeout)) { |
| value = __raw_readl(MSM_CFG_CTL_BASE + cpu_data[cpu].offset); |
| if ((value & MSM_CORE_STATUS_MSK) == |
| MSM_CORE_STATUS_MSK) |
| break; |
| udelay(1); |
| } |
| |
| if (!value) { |
| pr_err("Core %u cannot be brought out of Reset!!!\n", cpu); |
| return -ENODEV; |
| } |
| |
| base_ptr = ioremap_nocache(CORE_RESET_BASE + |
| cpu_data[cpu].reset_off, SZ_4); |
| if (!base_ptr) |
| return -ENODEV; |
| |
| /* Reset core out of reset */ |
| __raw_writel(0x0, base_ptr); |
| mb(); |
| |
| cpu_data[cpu].reset_core_base = base_ptr; |
| |
| return 0; |
| } |
| |
| void __iomem *core_reset_base(unsigned int cpu) |
| { |
| return cpu_data[cpu].reset_core_base; |
| } |
| |
| int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) |
| { |
| unsigned long timeout; |
| |
| preset_lpj = loops_per_jiffy; |
| |
| if (per_cpu(cold_boot_done, cpu) == false) { |
| if (msm8625_release_secondary(cpu)) { |
| pr_err("Failed to release core %u\n", cpu); |
| return -ENODEV; |
| } |
| per_cpu(cold_boot_done, cpu) = true; |
| } |
| |
| /* |
| * Set synchronisation state between this boot processor |
| * and the secondary one |
| */ |
| spin_lock(&boot_lock); |
| |
| /* |
| * This is really belt and braces; we hold unintended secondary |
| * CPUs in the holding pen until we're ready for them. However, |
| * since we haven't sent them a soft interrupt, they shouldn't |
| * be there. |
| */ |
| write_pen_release(cpu); |
| |
| /* |
| * Send the secondary CPU a soft interrupt, thereby causing |
| * the boot monitor to read the system wide flags register, |
| * and branch to the address found there. |
| * |
| * power_collapsed is the flag which will be updated for Powercollapse. |
| * Once we are out of PC, as secondary cores will be in the state of |
| * GDFS which needs to be brought out by raising an SPI. |
| */ |
| |
| if (power_collapsed) { |
| gic_configure_and_raise(cpu_data[cpu].ipc_irq, cpu); |
| raise_clear_spi(cpu, true); |
| } else { |
| gic_raise_softirq(cpumask_of(cpu), 1); |
| } |
| |
| timeout = jiffies + (1 * HZ); |
| while (time_before(jiffies, timeout)) { |
| smp_rmb(); |
| if (pen_release == -1) |
| break; |
| |
| udelay(10); |
| } |
| |
| /* |
| * now the secondary core is starting up let it run its |
| * calibrations, then wait for it to finish |
| */ |
| spin_unlock(&boot_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * Initialise the CPU possible map early - this describes the CPUs |
| * which may be present or become present in the system. |
| */ |
| void __init smp_init_cpus(void) |
| { |
| void __iomem *scu_base = scu_base_addr(); |
| |
| unsigned int i, ncores; |
| |
| ncores = scu_base ? scu_get_core_count(scu_base) : 1; |
| |
| for (i = 0; i < ncores; i++) |
| set_cpu_possible(i, true); |
| |
| set_smp_cross_call(gic_raise_softirq); |
| } |
| |
| static void per_cpu_data(unsigned int cpu, unsigned int off, |
| unsigned int off1, unsigned int irq) |
| { |
| cpu_data[cpu].reset_off = off; |
| cpu_data[cpu].offset = off1; |
| cpu_data[cpu].ipc_irq = irq; |
| } |
| |
| static void enable_boot_remapper(unsigned long bit, unsigned int off) |
| { |
| int value; |
| |
| /* Enable boot remapper address */ |
| value = __raw_readl(MSM_CFG_CTL_BASE + off); |
| __raw_writel(value | bit, MSM_CFG_CTL_BASE + off) ; |
| mb(); |
| } |
| |
| static void remapper_address(unsigned long phys, unsigned int off) |
| { |
| /* |
| * Write the address of secondary startup into the |
| * boot remapper register. The secondary CPU branches to this address. |
| */ |
| __raw_writel(phys, (MSM_CFG_CTL_BASE + off)); |
| mb(); |
| } |
| |
| static void __init msm8625_boot_vector_init(uint32_t *boot_vector, |
| unsigned long entry) |
| { |
| if (!boot_vector) |
| return; |
| msm8625_boot_vector = boot_vector; |
| |
| msm8625_boot_vector[0] = 0xE51FF004; /* ldr pc, 4 */ |
| msm8625_boot_vector[1] = entry; |
| } |
| |
| void __init platform_smp_prepare_cpus(unsigned int max_cpus) |
| { |
| int i, cpu, value; |
| void __iomem *cpu_ptr; |
| |
| /* |
| * Initialise the present map, which describes the set of CPUs |
| * actually populated at the present time. |
| */ |
| for (i = 0; i < max_cpus; i++) |
| set_cpu_present(i, true); |
| |
| scu_enable(scu_base_addr()); |
| |
| cpu_ptr = ioremap_nocache(MSM8625_CPU_PHYS, SZ_8); |
| if (!cpu_ptr) { |
| pr_err("failed to ioremap for secondary cores\n"); |
| return; |
| } |
| |
| msm8625_boot_vector_init(cpu_ptr, |
| virt_to_phys(msm_secondary_startup)); |
| |
| iounmap(cpu_ptr); |
| |
| for_each_possible_cpu(cpu) { |
| switch (cpu) { |
| case 0: |
| break; |
| case 1: |
| remapper_address(MSM8625_CPU_PHYS, 0x34); |
| per_cpu_data(cpu, 0x0, 0x3c, |
| MSM8625_INT_ACSR_MP_CORE_IPC1); |
| enable_boot_remapper(BIT(26), 0x30); |
| break; |
| case 2: |
| remapper_address((MSM8625_CPU_PHYS >> 16), 0x4C); |
| per_cpu_data(cpu, 0x8, 0x50, |
| MSM8625_INT_ACSR_MP_CORE_IPC2); |
| enable_boot_remapper(BIT(25), 0x48); |
| break; |
| case 3: |
| value = __raw_readl(MSM_CFG_CTL_BASE + 0x4C); |
| remapper_address(value | MSM8625_CPU_PHYS, 0x4C); |
| per_cpu_data(cpu, 0xC, 0x50, |
| MSM8625_INT_ACSR_MP_CORE_IPC3); |
| enable_boot_remapper(BIT(26), 0x48); |
| break; |
| } |
| |
| } |
| } |