blob: 4e92dd78f269b6f901cac5fcf91ae189f0be5ee6 [file] [log] [blame]
/*
* linux/drivers/mmc/host/msm_sdcc.c - Qualcomm MSM 7X00A SDCC Driver
*
* Copyright (C) 2007 Google Inc,
* Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
* Copyright (c) 2009-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Based on mmci.c
*
* Author: San Mehat (san@android.com)
*
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/log2.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/clk.h>
#include <linux/scatterlist.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/io.h>
#include <linux/memory.h>
#include <linux/pm_runtime.h>
#include <linux/wakelock.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/pm_qos.h>
#include <asm/cacheflush.h>
#include <asm/div64.h>
#include <asm/sizes.h>
#include <asm/mach/mmc.h>
#include <mach/msm_iomap.h>
#include <mach/clk.h>
#include <mach/dma.h>
#include <mach/sdio_al.h>
#include <mach/mpm.h>
#include <mach/msm_bus.h>
#include "msm_sdcc.h"
#include "msm_sdcc_dml.h"
#define DRIVER_NAME "msm-sdcc"
#define DBG(host, fmt, args...) \
pr_debug("%s: %s: " fmt "\n", mmc_hostname(host->mmc), __func__ , args)
#define IRQ_DEBUG 0
#define SPS_SDCC_PRODUCER_PIPE_INDEX 1
#define SPS_SDCC_CONSUMER_PIPE_INDEX 2
#define SPS_CONS_PERIPHERAL 0
#define SPS_PROD_PERIPHERAL 1
/* Use SPS only if transfer size is more than this macro */
#define SPS_MIN_XFER_SIZE MCI_FIFOSIZE
#define MSM_MMC_BUS_VOTING_DELAY 200 /* msecs */
#if defined(CONFIG_DEBUG_FS)
static void msmsdcc_dbg_createhost(struct msmsdcc_host *);
static struct dentry *debugfs_dir;
static int msmsdcc_dbg_init(void);
#endif
static int msmsdcc_prep_xfer(struct msmsdcc_host *host, struct mmc_data
*data);
static u64 dma_mask = DMA_BIT_MASK(32);
static unsigned int msmsdcc_pwrsave = 1;
static struct mmc_command dummy52cmd;
static struct mmc_request dummy52mrq = {
.cmd = &dummy52cmd,
.data = NULL,
.stop = NULL,
};
static struct mmc_command dummy52cmd = {
.opcode = SD_IO_RW_DIRECT,
.flags = MMC_RSP_PRESENT,
.data = NULL,
.mrq = &dummy52mrq,
};
/*
* An array holding the Tuning pattern to compare with when
* executing a tuning cycle.
*/
static const u32 tuning_block_64[] = {
0x00FF0FFF, 0xCCC3CCFF, 0xFFCC3CC3, 0xEFFEFFFE,
0xDDFFDFFF, 0xFBFFFBFF, 0xFF7FFFBF, 0xEFBDF777,
0xF0FFF0FF, 0x3CCCFC0F, 0xCFCC33CC, 0xEEFFEFFF,
0xFDFFFDFF, 0xFFBFFFDF, 0xFFF7FFBB, 0xDE7B7FF7
};
static const u32 tuning_block_128[] = {
0xFF00FFFF, 0x0000FFFF, 0xCCCCFFFF, 0xCCCC33CC,
0xCC3333CC, 0xFFFFCCCC, 0xFFFFEEFF, 0xFFEEEEFF,
0xFFDDFFFF, 0xDDDDFFFF, 0xBBFFFFFF, 0xBBFFFFFF,
0xFFFFFFBB, 0xFFFFFF77, 0x77FF7777, 0xFFEEDDBB,
0x00FFFFFF, 0x00FFFFFF, 0xCCFFFF00, 0xCC33CCCC,
0x3333CCCC, 0xFFCCCCCC, 0xFFEEFFFF, 0xEEEEFFFF,
0xDDFFFFFF, 0xDDFFFFFF, 0xFFFFFFDD, 0xFFFFFFBB,
0xFFFFBBBB, 0xFFFF77FF, 0xFF7777FF, 0xEEDDBB77
};
#if IRQ_DEBUG == 1
static char *irq_status_bits[] = { "cmdcrcfail", "datcrcfail", "cmdtimeout",
"dattimeout", "txunderrun", "rxoverrun",
"cmdrespend", "cmdsent", "dataend", NULL,
"datablkend", "cmdactive", "txactive",
"rxactive", "txhalfempty", "rxhalffull",
"txfifofull", "rxfifofull", "txfifoempty",
"rxfifoempty", "txdataavlbl", "rxdataavlbl",
"sdiointr", "progdone", "atacmdcompl",
"sdiointrope", "ccstimeout", NULL, NULL,
NULL, NULL, NULL };
static void
msmsdcc_print_status(struct msmsdcc_host *host, char *hdr, uint32_t status)
{
int i;
pr_debug("%s-%s ", mmc_hostname(host->mmc), hdr);
for (i = 0; i < 32; i++) {
if (status & (1 << i))
pr_debug("%s ", irq_status_bits[i]);
}
pr_debug("\n");
}
#endif
static void
msmsdcc_start_command(struct msmsdcc_host *host, struct mmc_command *cmd,
u32 c);
static inline void msmsdcc_sync_reg_wr(struct msmsdcc_host *host);
static inline void msmsdcc_delay(struct msmsdcc_host *host);
static void msmsdcc_dump_sdcc_state(struct msmsdcc_host *host);
static void msmsdcc_sg_start(struct msmsdcc_host *host);
static int msmsdcc_vreg_reset(struct msmsdcc_host *host);
static int msmsdcc_runtime_resume(struct device *dev);
static inline unsigned short msmsdcc_get_nr_sg(struct msmsdcc_host *host)
{
unsigned short ret = NR_SG;
if (is_sps_mode(host)) {
ret = SPS_MAX_DESCS;
} else { /* DMA or PIO mode */
if (NR_SG > MAX_NR_SG_DMA_PIO)
ret = MAX_NR_SG_DMA_PIO;
}
return ret;
}
/* Prevent idle power collapse(pc) while operating in peripheral mode */
static void msmsdcc_pm_qos_update_latency(struct msmsdcc_host *host, int vote)
{
if (!host->cpu_dma_latency)
return;
if (vote)
pm_qos_update_request(&host->pm_qos_req_dma,
host->cpu_dma_latency);
else
pm_qos_update_request(&host->pm_qos_req_dma,
PM_QOS_DEFAULT_VALUE);
}
#ifdef CONFIG_MMC_MSM_SPS_SUPPORT
static int msmsdcc_sps_reset_ep(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep);
static int msmsdcc_sps_restore_ep(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep);
#else
static inline int msmsdcc_sps_init_ep_conn(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep,
bool is_producer) { return 0; }
static inline void msmsdcc_sps_exit_ep_conn(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep) { }
static inline int msmsdcc_sps_reset_ep(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep)
{
return 0;
}
static inline int msmsdcc_sps_restore_ep(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep)
{
return 0;
}
static inline int msmsdcc_sps_init(struct msmsdcc_host *host) { return 0; }
static inline void msmsdcc_sps_exit(struct msmsdcc_host *host) {}
#endif /* CONFIG_MMC_MSM_SPS_SUPPORT */
/**
* Apply soft reset to all SDCC BAM pipes
*
* This function applies soft reset to SDCC BAM pipe.
*
* This function should be called to recover from error
* conditions encountered during CMD/DATA tranfsers with card.
*
* @host - Pointer to driver's host structure
*
*/
static void msmsdcc_sps_pipes_reset_and_restore(struct msmsdcc_host *host)
{
int rc;
/* Reset all SDCC BAM pipes */
rc = msmsdcc_sps_reset_ep(host, &host->sps.prod);
if (rc)
pr_err("%s:msmsdcc_sps_reset_ep(prod) error=%d\n",
mmc_hostname(host->mmc), rc);
rc = msmsdcc_sps_reset_ep(host, &host->sps.cons);
if (rc)
pr_err("%s:msmsdcc_sps_reset_ep(cons) error=%d\n",
mmc_hostname(host->mmc), rc);
if (host->sps.reset_device) {
rc = sps_device_reset(host->sps.bam_handle);
if (rc)
pr_err("%s: sps_device_reset error=%d\n",
mmc_hostname(host->mmc), rc);
host->sps.reset_device = false;
}
/* Restore all BAM pipes connections */
rc = msmsdcc_sps_restore_ep(host, &host->sps.prod);
if (rc)
pr_err("%s:msmsdcc_sps_restore_ep(prod) error=%d\n",
mmc_hostname(host->mmc), rc);
rc = msmsdcc_sps_restore_ep(host, &host->sps.cons);
if (rc)
pr_err("%s:msmsdcc_sps_restore_ep(cons) error=%d\n",
mmc_hostname(host->mmc), rc);
}
/**
* Apply soft reset
*
* This function applies soft reset to SDCC core and DML core.
*
* This function should be called to recover from error
* conditions encountered with CMD/DATA tranfsers with card.
*
* Soft reset should only be used with SDCC controller v4.
*
* @host - Pointer to driver's host structure
*
*/
static void msmsdcc_soft_reset(struct msmsdcc_host *host)
{
/*
* Reset controller state machines without resetting
* configuration registers (MCI_POWER, MCI_CLK, MCI_INT_MASKn).
*/
if (is_sw_reset_save_config(host)) {
ktime_t start;
writel_relaxed(readl_relaxed(host->base + MMCIPOWER)
| MCI_SW_RST_CFG, host->base + MMCIPOWER);
msmsdcc_sync_reg_wr(host);
start = ktime_get();
while (readl_relaxed(host->base + MMCIPOWER) & MCI_SW_RST_CFG) {
/*
* SW reset can take upto 10HCLK + 15MCLK cycles.
* Calculating based on min clk rates (hclk = 27MHz,
* mclk = 400KHz) it comes to ~40us. Let's poll for
* max. 1ms for reset completion.
*/
if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1000) {
pr_err("%s: %s failed\n",
mmc_hostname(host->mmc), __func__);
BUG();
}
}
} else {
writel_relaxed(0, host->base + MMCICOMMAND);
msmsdcc_sync_reg_wr(host);
writel_relaxed(0, host->base + MMCIDATACTRL);
msmsdcc_sync_reg_wr(host);
}
}
static void msmsdcc_hard_reset(struct msmsdcc_host *host)
{
int ret;
/*
* Reset SDCC controller to power on default state.
* Don't issue a reset request to clock control block if
* SDCC controller itself can support hard reset.
*/
if (is_sw_hard_reset(host)) {
ktime_t start;
writel_relaxed(readl_relaxed(host->base + MMCIPOWER)
| MCI_SW_RST, host->base + MMCIPOWER);
msmsdcc_sync_reg_wr(host);
start = ktime_get();
while (readl_relaxed(host->base + MMCIPOWER) & MCI_SW_RST) {
/*
* See comment in msmsdcc_soft_reset() on choosing 1ms
* poll timeout.
*/
if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1000) {
pr_err("%s: %s failed\n",
mmc_hostname(host->mmc), __func__);
BUG();
}
}
} else {
ret = clk_reset(host->clk, CLK_RESET_ASSERT);
if (ret)
pr_err("%s: Clock assert failed at %u Hz" \
" with err %d\n", mmc_hostname(host->mmc),
host->clk_rate, ret);
ret = clk_reset(host->clk, CLK_RESET_DEASSERT);
if (ret)
pr_err("%s: Clock deassert failed at %u Hz" \
" with err %d\n", mmc_hostname(host->mmc),
host->clk_rate, ret);
mb();
/* Give some delay for clock reset to propogate to controller */
msmsdcc_delay(host);
}
}
static void msmsdcc_reset_and_restore(struct msmsdcc_host *host)
{
if (is_soft_reset(host)) {
if (is_sps_mode(host)) {
/* Reset DML first */
msmsdcc_dml_reset(host);
/*
* delay the SPS pipe reset in thread context as
* sps_connect/sps_disconnect APIs can be called
* only from non-atomic context.
*/
host->sps.pipe_reset_pending = true;
}
mb();
msmsdcc_soft_reset(host);
pr_debug("%s: Applied soft reset to Controller\n",
mmc_hostname(host->mmc));
if (is_sps_mode(host))
msmsdcc_dml_init(host);
} else {
/* Give Clock reset (hard reset) to controller */
u32 mci_clk = 0;
u32 mci_mask0 = 0;
/* Save the controller state */
mci_clk = readl_relaxed(host->base + MMCICLOCK);
mci_mask0 = readl_relaxed(host->base + MMCIMASK0);
host->pwr = readl_relaxed(host->base + MMCIPOWER);
mb();
msmsdcc_hard_reset(host);
pr_debug("%s: Controller has been reinitialized\n",
mmc_hostname(host->mmc));
/* Restore the contoller state */
writel_relaxed(host->pwr, host->base + MMCIPOWER);
msmsdcc_sync_reg_wr(host);
writel_relaxed(mci_clk, host->base + MMCICLOCK);
msmsdcc_sync_reg_wr(host);
writel_relaxed(mci_mask0, host->base + MMCIMASK0);
mb(); /* no delay required after writing to MASK0 register */
}
if (host->dummy_52_needed)
host->dummy_52_needed = 0;
}
static void msmsdcc_reset_dpsm(struct msmsdcc_host *host)
{
struct mmc_request *mrq = host->curr.mrq;
if (!mrq || !mrq->cmd || (!mrq->data && !host->pending_dpsm_reset))
goto out;
/*
* For CMD24, if auto prog done is not supported defer
* dpsm reset until prog done is received. Otherwise,
* we poll here unnecessarily as TXACTIVE will not be
* deasserted until DAT0 goes high.
*/
if ((mrq->cmd->opcode == MMC_WRITE_BLOCK) && !is_auto_prog_done(host)) {
host->pending_dpsm_reset = true;
goto out;
}
/* Make sure h/w (TX/RX) is inactive before resetting DPSM */
if (is_wait_for_tx_rx_active(host)) {
ktime_t start = ktime_get();
while (readl_relaxed(host->base + MMCISTATUS) &
(MCI_TXACTIVE | MCI_RXACTIVE)) {
/*
* TX/RX active bits may be asserted for 4HCLK + 4MCLK
* cycles (~11us) after data transfer due to clock mux
* switching delays. Let's poll for 1ms and panic if
* still active.
*/
if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1000) {
pr_err("%s: %s still active\n",
mmc_hostname(host->mmc),
readl_relaxed(host->base + MMCISTATUS)
& MCI_TXACTIVE ? "TX" : "RX");
msmsdcc_dump_sdcc_state(host);
BUG();
}
}
}
writel_relaxed(0, host->base + MMCIDATACTRL);
msmsdcc_sync_reg_wr(host); /* Allow the DPSM to be reset */
host->pending_dpsm_reset = false;
out:
return;
}
static int
msmsdcc_request_end(struct msmsdcc_host *host, struct mmc_request *mrq)
{
int retval = 0;
BUG_ON(host->curr.data);
del_timer(&host->req_tout_timer);
if (mrq->data)
mrq->data->bytes_xfered = host->curr.data_xfered;
if (mrq->cmd->error == -ETIMEDOUT)
mdelay(5);
msmsdcc_reset_dpsm(host);
/* Clear current request information as current request has ended */
memset(&host->curr, 0, sizeof(struct msmsdcc_curr_req));
/*
* Need to drop the host lock here; mmc_request_done may call
* back into the driver...
*/
spin_unlock(&host->lock);
mmc_request_done(host->mmc, mrq);
spin_lock(&host->lock);
return retval;
}
static void
msmsdcc_stop_data(struct msmsdcc_host *host)
{
host->curr.data = NULL;
host->curr.got_dataend = 0;
host->curr.wait_for_auto_prog_done = false;
host->curr.got_auto_prog_done = false;
}
static inline uint32_t msmsdcc_fifo_addr(struct msmsdcc_host *host)
{
return host->core_memres->start + MMCIFIFO;
}
static inline unsigned int msmsdcc_get_min_sup_clk_rate(
struct msmsdcc_host *host);
static inline void msmsdcc_sync_reg_wr(struct msmsdcc_host *host)
{
mb();
if (!is_wait_for_reg_write(host))
udelay(host->reg_write_delay);
else if (readl_relaxed(host->base + MCI_STATUS2) &
MCI_MCLK_REG_WR_ACTIVE) {
ktime_t start, diff;
start = ktime_get();
while (readl_relaxed(host->base + MCI_STATUS2) &
MCI_MCLK_REG_WR_ACTIVE) {
diff = ktime_sub(ktime_get(), start);
/* poll for max. 1 ms */
if (ktime_to_us(diff) > 1000) {
pr_warning("%s: previous reg. write is"
" still active\n",
mmc_hostname(host->mmc));
break;
}
}
}
}
static inline void msmsdcc_delay(struct msmsdcc_host *host)
{
udelay(host->reg_write_delay);
}
static inline void
msmsdcc_start_command_exec(struct msmsdcc_host *host, u32 arg, u32 c)
{
writel_relaxed(arg, host->base + MMCIARGUMENT);
writel_relaxed(c, host->base + MMCICOMMAND);
/*
* As after sending the command, we don't write any of the
* controller registers and just wait for the
* CMD_RESPOND_END/CMD_SENT/Command failure notication
* from Controller.
*/
mb();
}
static void
msmsdcc_dma_exec_func(struct msm_dmov_cmd *cmd)
{
struct msmsdcc_host *host = (struct msmsdcc_host *)cmd->user;
writel_relaxed(host->cmd_timeout, host->base + MMCIDATATIMER);
writel_relaxed((unsigned int)host->curr.xfer_size,
host->base + MMCIDATALENGTH);
writel_relaxed(host->cmd_datactrl, host->base + MMCIDATACTRL);
msmsdcc_sync_reg_wr(host); /* Force delay prior to ADM or command */
if (host->cmd_cmd) {
msmsdcc_start_command_exec(host,
(u32)host->cmd_cmd->arg, (u32)host->cmd_c);
}
}
static void
msmsdcc_dma_complete_tlet(unsigned long data)
{
struct msmsdcc_host *host = (struct msmsdcc_host *)data;
unsigned long flags;
struct mmc_request *mrq;
spin_lock_irqsave(&host->lock, flags);
mrq = host->curr.mrq;
BUG_ON(!mrq);
if (!(host->dma.result & DMOV_RSLT_VALID)) {
pr_err("msmsdcc: Invalid DataMover result\n");
goto out;
}
if (host->dma.result & DMOV_RSLT_DONE) {
host->curr.data_xfered = host->curr.xfer_size;
host->curr.xfer_remain -= host->curr.xfer_size;
} else {
/* Error or flush */
if (host->dma.result & DMOV_RSLT_ERROR)
pr_err("%s: DMA error (0x%.8x)\n",
mmc_hostname(host->mmc), host->dma.result);
if (host->dma.result & DMOV_RSLT_FLUSH)
pr_err("%s: DMA channel flushed (0x%.8x)\n",
mmc_hostname(host->mmc), host->dma.result);
pr_err("Flush data: %.8x %.8x %.8x %.8x %.8x %.8x\n",
host->dma.err.flush[0], host->dma.err.flush[1],
host->dma.err.flush[2], host->dma.err.flush[3],
host->dma.err.flush[4],
host->dma.err.flush[5]);
msmsdcc_reset_and_restore(host);
if (!mrq->data->error)
mrq->data->error = -EIO;
}
if (!mrq->data->host_cookie)
dma_unmap_sg(mmc_dev(host->mmc), host->dma.sg,
host->dma.num_ents, host->dma.dir);
if (host->curr.user_pages) {
struct scatterlist *sg = host->dma.sg;
int i;
for (i = 0; i < host->dma.num_ents; i++, sg++)
flush_dcache_page(sg_page(sg));
}
host->dma.sg = NULL;
host->dma.busy = 0;
if ((host->curr.got_dataend && (!host->curr.wait_for_auto_prog_done ||
(host->curr.wait_for_auto_prog_done &&
host->curr.got_auto_prog_done))) || mrq->data->error) {
/*
* If we've already gotten our DATAEND / DATABLKEND
* for this request, then complete it through here.
*/
if (!mrq->data->error) {
host->curr.data_xfered = host->curr.xfer_size;
host->curr.xfer_remain -= host->curr.xfer_size;
}
if (host->dummy_52_needed) {
mrq->data->bytes_xfered = host->curr.data_xfered;
host->dummy_52_sent = 1;
msmsdcc_start_command(host, &dummy52cmd,
MCI_CPSM_PROGENA);
goto out;
}
msmsdcc_stop_data(host);
if (!mrq->data->stop || mrq->cmd->error ||
(mrq->sbc && !mrq->data->error)) {
mrq->data->bytes_xfered = host->curr.data_xfered;
msmsdcc_reset_dpsm(host);
del_timer(&host->req_tout_timer);
/*
* Clear current request information as current
* request has ended
*/
memset(&host->curr, 0, sizeof(struct msmsdcc_curr_req));
spin_unlock_irqrestore(&host->lock, flags);
mmc_request_done(host->mmc, mrq);
return;
} else if (mrq->data->stop && ((mrq->sbc && mrq->data->error)
|| !mrq->sbc)) {
msmsdcc_start_command(host, mrq->data->stop, 0);
}
}
out:
spin_unlock_irqrestore(&host->lock, flags);
return;
}
#ifdef CONFIG_MMC_MSM_SPS_SUPPORT
/**
* Callback notification from SPS driver
*
* This callback function gets triggered called from
* SPS driver when requested SPS data transfer is
* completed.
*
* SPS driver invokes this callback in BAM irq context so
* SDCC driver schedule a tasklet for further processing
* this callback notification at later point of time in
* tasklet context and immediately returns control back
* to SPS driver.
*
* @nofity - Pointer to sps event notify sturcture
*
*/
static void
msmsdcc_sps_complete_cb(struct sps_event_notify *notify)
{
struct msmsdcc_host *host =
(struct msmsdcc_host *)
((struct sps_event_notify *)notify)->user;
host->sps.notify = *notify;
pr_debug("%s: %s: sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
mmc_hostname(host->mmc), __func__, notify->event_id,
notify->data.transfer.iovec.addr,
notify->data.transfer.iovec.size,
notify->data.transfer.iovec.flags);
/* Schedule a tasklet for completing data transfer */
tasklet_schedule(&host->sps.tlet);
}
/**
* Tasklet handler for processing SPS callback event
*
* This function processing SPS event notification and
* checks if the SPS transfer is completed or not and
* then accordingly notifies status to MMC core layer.
*
* This function is called in tasklet context.
*
* @data - Pointer to sdcc driver data
*
*/
static void msmsdcc_sps_complete_tlet(unsigned long data)
{
unsigned long flags;
int i, rc;
u32 data_xfered = 0;
struct mmc_request *mrq;
struct sps_iovec iovec;
struct sps_pipe *sps_pipe_handle;
struct msmsdcc_host *host = (struct msmsdcc_host *)data;
struct sps_event_notify *notify = &host->sps.notify;
spin_lock_irqsave(&host->lock, flags);
if (host->sps.dir == DMA_FROM_DEVICE)
sps_pipe_handle = host->sps.prod.pipe_handle;
else
sps_pipe_handle = host->sps.cons.pipe_handle;
mrq = host->curr.mrq;
if (!mrq) {
spin_unlock_irqrestore(&host->lock, flags);
return;
}
pr_debug("%s: %s: sps event_id=%d\n",
mmc_hostname(host->mmc), __func__,
notify->event_id);
/*
* Got End of transfer event!!! Check if all of the data
* has been transferred?
*/
for (i = 0; i < host->sps.xfer_req_cnt; i++) {
rc = sps_get_iovec(sps_pipe_handle, &iovec);
if (rc) {
pr_err("%s: %s: sps_get_iovec() failed rc=%d, i=%d",
mmc_hostname(host->mmc), __func__, rc, i);
break;
}
data_xfered += iovec.size;
}
if (data_xfered == host->curr.xfer_size) {
host->curr.data_xfered = host->curr.xfer_size;
host->curr.xfer_remain -= host->curr.xfer_size;
pr_debug("%s: Data xfer success. data_xfered=0x%x",
mmc_hostname(host->mmc),
host->curr.xfer_size);
} else {
pr_err("%s: Data xfer failed. data_xfered=0x%x,"
" xfer_size=%d", mmc_hostname(host->mmc),
data_xfered, host->curr.xfer_size);
msmsdcc_reset_and_restore(host);
if (!mrq->data->error)
mrq->data->error = -EIO;
}
/* Unmap sg buffers */
if (!mrq->data->host_cookie)
dma_unmap_sg(mmc_dev(host->mmc), host->sps.sg,
host->sps.num_ents, host->sps.dir);
host->sps.sg = NULL;
host->sps.busy = 0;
if ((host->curr.got_dataend && (!host->curr.wait_for_auto_prog_done ||
(host->curr.wait_for_auto_prog_done &&
host->curr.got_auto_prog_done))) || mrq->data->error) {
/*
* If we've already gotten our DATAEND / DATABLKEND
* for this request, then complete it through here.
*/
if (!mrq->data->error) {
host->curr.data_xfered = host->curr.xfer_size;
host->curr.xfer_remain -= host->curr.xfer_size;
}
if (host->dummy_52_needed) {
mrq->data->bytes_xfered = host->curr.data_xfered;
host->dummy_52_sent = 1;
msmsdcc_start_command(host, &dummy52cmd,
MCI_CPSM_PROGENA);
spin_unlock_irqrestore(&host->lock, flags);
return;
}
msmsdcc_stop_data(host);
if (!mrq->data->stop || mrq->cmd->error ||
(mrq->sbc && !mrq->data->error)) {
mrq->data->bytes_xfered = host->curr.data_xfered;
msmsdcc_reset_dpsm(host);
del_timer(&host->req_tout_timer);
/*
* Clear current request information as current
* request has ended
*/
memset(&host->curr, 0, sizeof(struct msmsdcc_curr_req));
spin_unlock_irqrestore(&host->lock, flags);
mmc_request_done(host->mmc, mrq);
return;
} else if (mrq->data->stop && ((mrq->sbc && mrq->data->error)
|| !mrq->sbc)) {
msmsdcc_start_command(host, mrq->data->stop, 0);
}
}
spin_unlock_irqrestore(&host->lock, flags);
}
/**
* Exit from current SPS data transfer
*
* This function exits from current SPS data transfer.
*
* This function should be called when error condition
* is encountered during data transfer.
*
* @host - Pointer to sdcc host structure
*
*/
static void msmsdcc_sps_exit_curr_xfer(struct msmsdcc_host *host)
{
struct mmc_request *mrq;
mrq = host->curr.mrq;
BUG_ON(!mrq);
msmsdcc_reset_and_restore(host);
if (!mrq->data->error)
mrq->data->error = -EIO;
/* Unmap sg buffers */
if (!mrq->data->host_cookie)
dma_unmap_sg(mmc_dev(host->mmc), host->sps.sg,
host->sps.num_ents, host->sps.dir);
host->sps.sg = NULL;
host->sps.busy = 0;
if (host->curr.data)
msmsdcc_stop_data(host);
if (!mrq->data->stop || mrq->cmd->error ||
(mrq->sbc && !mrq->data->error))
msmsdcc_request_end(host, mrq);
else if (mrq->data->stop && ((mrq->sbc && mrq->data->error)
|| !mrq->sbc))
msmsdcc_start_command(host, mrq->data->stop, 0);
}
#else
static inline void msmsdcc_sps_complete_cb(struct sps_event_notify *notify) { }
static inline void msmsdcc_sps_complete_tlet(unsigned long data) { }
static inline void msmsdcc_sps_exit_curr_xfer(struct msmsdcc_host *host) { }
#endif /* CONFIG_MMC_MSM_SPS_SUPPORT */
static int msmsdcc_enable_cdr_cm_sdc4_dll(struct msmsdcc_host *host);
static void
msmsdcc_dma_complete_func(struct msm_dmov_cmd *cmd,
unsigned int result,
struct msm_dmov_errdata *err)
{
struct msmsdcc_dma_data *dma_data =
container_of(cmd, struct msmsdcc_dma_data, hdr);
struct msmsdcc_host *host = dma_data->host;
dma_data->result = result;
if (err)
memcpy(&dma_data->err, err, sizeof(struct msm_dmov_errdata));
tasklet_schedule(&host->dma_tlet);
}
static bool msmsdcc_is_dma_possible(struct msmsdcc_host *host,
struct mmc_data *data)
{
bool ret = true;
u32 xfer_size = data->blksz * data->blocks;
if (host->enforce_pio_mode) {
ret = false;
goto out;
}
if (is_sps_mode(host)) {
/*
* BAM Mode: Fall back on PIO if size is less
* than or equal to SPS_MIN_XFER_SIZE bytes.
*/
if (xfer_size <= SPS_MIN_XFER_SIZE)
ret = false;
} else if (is_dma_mode(host)) {
/*
* ADM Mode: Fall back on PIO if size is less than FIFO size
* or not integer multiple of FIFO size
*/
if (xfer_size % MCI_FIFOSIZE)
ret = false;
} else {
/* PIO Mode */
ret = false;
}
out:
return ret;
}
static int msmsdcc_config_dma(struct msmsdcc_host *host, struct mmc_data *data)
{
struct msmsdcc_nc_dmadata *nc;
dmov_box *box;
uint32_t rows;
unsigned int n;
int i, err = 0, box_cmd_cnt = 0;
struct scatterlist *sg = data->sg;
unsigned int len, offset;
if ((host->dma.channel == -1) || (host->dma.crci == -1))
return -ENOENT;
BUG_ON((host->pdev_id < 1) || (host->pdev_id > 5));
host->dma.sg = data->sg;
host->dma.num_ents = data->sg_len;
/* Prevent memory corruption */
BUG_ON(host->dma.num_ents > msmsdcc_get_nr_sg(host));
nc = host->dma.nc;
if (data->flags & MMC_DATA_READ)
host->dma.dir = DMA_FROM_DEVICE;
else
host->dma.dir = DMA_TO_DEVICE;
if (!data->host_cookie) {
n = msmsdcc_prep_xfer(host, data);
if (unlikely(n < 0)) {
host->dma.sg = NULL;
host->dma.num_ents = 0;
return -ENOMEM;
}
}
/* host->curr.user_pages = (data->flags & MMC_DATA_USERPAGE); */
host->curr.user_pages = 0;
box = &nc->cmd[0];
for (i = 0; i < host->dma.num_ents; i++) {
len = sg_dma_len(sg);
offset = 0;
do {
/* Check if we can do DMA */
if (!len || (box_cmd_cnt >= MMC_MAX_DMA_CMDS)) {
err = -ENOTSUPP;
goto unmap;
}
box->cmd = CMD_MODE_BOX;
if (len >= MMC_MAX_DMA_BOX_LENGTH) {
len = MMC_MAX_DMA_BOX_LENGTH;
len -= len % data->blksz;
}
rows = (len % MCI_FIFOSIZE) ?
(len / MCI_FIFOSIZE) + 1 :
(len / MCI_FIFOSIZE);
if (data->flags & MMC_DATA_READ) {
box->src_row_addr = msmsdcc_fifo_addr(host);
box->dst_row_addr = sg_dma_address(sg) + offset;
box->src_dst_len = (MCI_FIFOSIZE << 16) |
(MCI_FIFOSIZE);
box->row_offset = MCI_FIFOSIZE;
box->num_rows = rows * ((1 << 16) + 1);
box->cmd |= CMD_SRC_CRCI(host->dma.crci);
} else {
box->src_row_addr = sg_dma_address(sg) + offset;
box->dst_row_addr = msmsdcc_fifo_addr(host);
box->src_dst_len = (MCI_FIFOSIZE << 16) |
(MCI_FIFOSIZE);
box->row_offset = (MCI_FIFOSIZE << 16);
box->num_rows = rows * ((1 << 16) + 1);
box->cmd |= CMD_DST_CRCI(host->dma.crci);
}
offset += len;
len = sg_dma_len(sg) - offset;
box++;
box_cmd_cnt++;
} while (len);
sg++;
}
/* Mark last command */
box--;
box->cmd |= CMD_LC;
/* location of command block must be 64 bit aligned */
BUG_ON(host->dma.cmd_busaddr & 0x07);
nc->cmdptr = (host->dma.cmd_busaddr >> 3) | CMD_PTR_LP;
host->dma.hdr.cmdptr = DMOV_CMD_PTR_LIST |
DMOV_CMD_ADDR(host->dma.cmdptr_busaddr);
host->dma.hdr.complete_func = msmsdcc_dma_complete_func;
/* Flush all data to memory before starting dma */
mb();
unmap:
if (err) {
if (!data->host_cookie)
dma_unmap_sg(mmc_dev(host->mmc), host->dma.sg,
host->dma.num_ents, host->dma.dir);
pr_err("%s: cannot do DMA, fall back to PIO mode err=%d\n",
mmc_hostname(host->mmc), err);
}
return err;
}
static int msmsdcc_prep_xfer(struct msmsdcc_host *host,
struct mmc_data *data)
{
int rc = 0;
unsigned int dir;
/* Prevent memory corruption */
BUG_ON(data->sg_len > msmsdcc_get_nr_sg(host));
if (data->flags & MMC_DATA_READ)
dir = DMA_FROM_DEVICE;
else
dir = DMA_TO_DEVICE;
/* Make sg buffers DMA ready */
rc = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
dir);
if (unlikely(rc != data->sg_len)) {
pr_err("%s: Unable to map in all sg elements, rc=%d\n",
mmc_hostname(host->mmc), rc);
rc = -ENOMEM;
goto dma_map_err;
}
pr_debug("%s: %s: %s: sg_len=%d\n",
mmc_hostname(host->mmc), __func__,
dir == DMA_FROM_DEVICE ? "READ" : "WRITE",
data->sg_len);
goto out;
dma_map_err:
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
data->flags);
out:
return rc;
}
#ifdef CONFIG_MMC_MSM_SPS_SUPPORT
/**
* Submits data transfer request to SPS driver
*
* This function make sg (scatter gather) data buffers
* DMA ready and then submits them to SPS driver for
* transfer.
*
* @host - Pointer to sdcc host structure
* @data - Pointer to mmc_data structure
*
* @return 0 if success else negative value
*/
static int msmsdcc_sps_start_xfer(struct msmsdcc_host *host,
struct mmc_data *data)
{
int rc = 0;
u32 flags;
int i;
u32 addr, len, data_cnt;
struct scatterlist *sg = data->sg;
struct sps_pipe *sps_pipe_handle;
host->sps.sg = data->sg;
host->sps.num_ents = data->sg_len;
host->sps.xfer_req_cnt = 0;
if (data->flags & MMC_DATA_READ) {
host->sps.dir = DMA_FROM_DEVICE;
sps_pipe_handle = host->sps.prod.pipe_handle;
} else {
host->sps.dir = DMA_TO_DEVICE;
sps_pipe_handle = host->sps.cons.pipe_handle;
}
if (!data->host_cookie) {
rc = msmsdcc_prep_xfer(host, data);
if (unlikely(rc < 0)) {
host->dma.sg = NULL;
host->dma.num_ents = 0;
goto out;
}
}
for (i = 0; i < data->sg_len; i++) {
/*
* Check if this is the last buffer to transfer?
* If yes then set the INT and EOT flags.
*/
len = sg_dma_len(sg);
addr = sg_dma_address(sg);
flags = 0;
while (len > 0) {
if (len > SPS_MAX_DESC_SIZE) {
data_cnt = SPS_MAX_DESC_SIZE;
} else {
data_cnt = len;
if (i == data->sg_len - 1)
flags = SPS_IOVEC_FLAG_INT |
SPS_IOVEC_FLAG_EOT;
}
rc = sps_transfer_one(sps_pipe_handle, addr,
data_cnt, host, flags);
if (rc) {
pr_err("%s: sps_transfer_one() error! rc=%d,"
" pipe=0x%x, sg=0x%x, sg_buf_no=%d\n",
mmc_hostname(host->mmc), rc,
(u32)sps_pipe_handle, (u32)sg, i);
goto dma_map_err;
}
addr += data_cnt;
len -= data_cnt;
host->sps.xfer_req_cnt++;
}
sg++;
}
goto out;
dma_map_err:
/* unmap sg buffers */
if (!data->host_cookie)
dma_unmap_sg(mmc_dev(host->mmc), host->sps.sg,
host->sps.num_ents, host->sps.dir);
out:
return rc;
}
#else
static int msmsdcc_sps_start_xfer(struct msmsdcc_host *host,
struct mmc_data *data) { return 0; }
#endif /* CONFIG_MMC_MSM_SPS_SUPPORT */
static void
msmsdcc_start_command_deferred(struct msmsdcc_host *host,
struct mmc_command *cmd, u32 *c)
{
DBG(host, "op %02x arg %08x flags %08x\n",
cmd->opcode, cmd->arg, cmd->flags);
*c |= (cmd->opcode | MCI_CPSM_ENABLE);
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136)
*c |= MCI_CPSM_LONGRSP;
*c |= MCI_CPSM_RESPONSE;
}
if (/*interrupt*/0)
*c |= MCI_CPSM_INTERRUPT;
/* DAT_CMD bit should be set for all ADTC */
if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
*c |= MCI_CSPM_DATCMD;
/* Check if AUTO CMD19/CMD21 is required or not? */
if (host->tuning_needed &&
(host->en_auto_cmd19 || host->en_auto_cmd21)) {
/*
* For open ended block read operation (without CMD23),
* AUTO_CMD19/AUTO_CMD21 bit should be set while sending
* the READ command.
* For close ended block read operation (with CMD23),
* AUTO_CMD19/AUTO_CMD21 bit should be set while sending
* CMD23.
*/
if ((cmd->opcode == MMC_SET_BLOCK_COUNT &&
host->curr.mrq->cmd->opcode ==
MMC_READ_MULTIPLE_BLOCK) ||
(!host->curr.mrq->sbc &&
(cmd->opcode == MMC_READ_SINGLE_BLOCK ||
cmd->opcode == MMC_READ_MULTIPLE_BLOCK))) {
msmsdcc_enable_cdr_cm_sdc4_dll(host);
if (host->en_auto_cmd19 &&
host->mmc->ios.timing == MMC_TIMING_UHS_SDR104)
*c |= MCI_CSPM_AUTO_CMD19;
else if (host->en_auto_cmd21 &&
host->mmc->ios.timing == MMC_TIMING_MMC_HS200)
*c |= MCI_CSPM_AUTO_CMD21;
}
}
if (cmd->mrq->data && (cmd->mrq->data->flags & MMC_DATA_READ))
writel_relaxed((readl_relaxed(host->base +
MCI_DLL_CONFIG) | MCI_CDR_EN),
host->base + MCI_DLL_CONFIG);
else
/* Clear CDR_EN bit for non read operations */
writel_relaxed((readl_relaxed(host->base +
MCI_DLL_CONFIG) & ~MCI_CDR_EN),
host->base + MCI_DLL_CONFIG);
if (((cmd->flags & MMC_RSP_R1B) == MMC_RSP_R1B) ||
(cmd->opcode == MMC_SEND_STATUS &&
!(cmd->flags & MMC_CMD_ADTC))) {
*c |= MCI_CPSM_PROGENA;
host->prog_enable = 1;
}
if (cmd == cmd->mrq->stop)
*c |= MCI_CSPM_MCIABORT;
if (host->curr.cmd != NULL) {
pr_err("%s: Overlapping command requests\n",
mmc_hostname(host->mmc));
}
host->curr.cmd = cmd;
}
static void
msmsdcc_start_data(struct msmsdcc_host *host, struct mmc_data *data,
struct mmc_command *cmd, u32 c)
{
unsigned int datactrl = 0, timeout;
unsigned long long clks;
void __iomem *base = host->base;
unsigned int pio_irqmask = 0;
BUG_ON(!data->sg);
BUG_ON(!data->sg_len);
host->curr.data = data;
host->curr.xfer_size = data->blksz * data->blocks;
host->curr.xfer_remain = host->curr.xfer_size;
host->curr.data_xfered = 0;
host->curr.got_dataend = 0;
host->curr.got_auto_prog_done = false;
datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
if (host->curr.wait_for_auto_prog_done)
datactrl |= MCI_AUTO_PROG_DONE;
if (msmsdcc_is_dma_possible(host, data)) {
if (is_dma_mode(host) && !msmsdcc_config_dma(host, data)) {
datactrl |= MCI_DPSM_DMAENABLE;
} else if (is_sps_mode(host)) {
if (!msmsdcc_sps_start_xfer(host, data)) {
/* Now kick start DML transfer */
mb();
msmsdcc_dml_start_xfer(host, data);
datactrl |= MCI_DPSM_DMAENABLE;
host->sps.busy = 1;
}
}
}
/* Is data transfer in PIO mode required? */
if (!(datactrl & MCI_DPSM_DMAENABLE)) {
if (data->flags & MMC_DATA_READ) {
pio_irqmask = MCI_RXFIFOHALFFULLMASK;
if (host->curr.xfer_remain < MCI_FIFOSIZE)
pio_irqmask |= MCI_RXDATAAVLBLMASK;
} else
pio_irqmask = MCI_TXFIFOHALFEMPTYMASK |
MCI_TXFIFOEMPTYMASK;
msmsdcc_sg_start(host);
}
if (data->flags & MMC_DATA_READ)
datactrl |= (MCI_DPSM_DIRECTION | MCI_RX_DATA_PEND);
else if (host->curr.use_wr_data_pend)
datactrl |= MCI_DATA_PEND;
clks = (unsigned long long)data->timeout_ns * host->clk_rate;
do_div(clks, 1000000000UL);
timeout = data->timeout_clks + (unsigned int)clks*2 ;
WARN(!timeout,
"%s: data timeout is zero. timeout_ns=0x%x, timeout_clks=0x%x\n",
mmc_hostname(host->mmc), data->timeout_ns, data->timeout_clks);
if (is_dma_mode(host) && (datactrl & MCI_DPSM_DMAENABLE)) {
/* Use ADM (Application Data Mover) HW for Data transfer */
/* Save parameters for the dma exec function */
host->cmd_timeout = timeout;
host->cmd_pio_irqmask = pio_irqmask;
host->cmd_datactrl = datactrl;
host->cmd_cmd = cmd;
host->dma.hdr.exec_func = msmsdcc_dma_exec_func;
host->dma.hdr.user = (void *)host;
host->dma.busy = 1;
if (cmd) {
msmsdcc_start_command_deferred(host, cmd, &c);
host->cmd_c = c;
}
writel_relaxed((readl_relaxed(host->base + MMCIMASK0) &
(~(MCI_IRQ_PIO))) | host->cmd_pio_irqmask,
host->base + MMCIMASK0);
mb();
msm_dmov_enqueue_cmd_ext(host->dma.channel, &host->dma.hdr);
} else {
/* SPS-BAM mode or PIO mode */
writel_relaxed(timeout, base + MMCIDATATIMER);
writel_relaxed(host->curr.xfer_size, base + MMCIDATALENGTH);
writel_relaxed((readl_relaxed(host->base + MMCIMASK0) &
(~(MCI_IRQ_PIO))) | pio_irqmask,
host->base + MMCIMASK0);
writel_relaxed(datactrl, base + MMCIDATACTRL);
if (cmd) {
/* Delay between data/command */
msmsdcc_sync_reg_wr(host);
/* Daisy-chain the command if requested */
msmsdcc_start_command(host, cmd, c);
} else {
/*
* We don't need delay after writing to DATA_CTRL
* register if we are not writing to CMD register
* immediately after this. As we already have delay
* before sending the command, we just need mb() here.
*/
mb();
}
}
}
static void
msmsdcc_start_command(struct msmsdcc_host *host, struct mmc_command *cmd, u32 c)
{
msmsdcc_start_command_deferred(host, cmd, &c);
msmsdcc_start_command_exec(host, cmd->arg, c);
}
static void
msmsdcc_data_err(struct msmsdcc_host *host, struct mmc_data *data,
unsigned int status)
{
if ((status & MCI_DATACRCFAIL) || (status & MCI_DATATIMEOUT)) {
u32 opcode = data->mrq->cmd->opcode;
if (!((!host->tuning_in_progress && opcode == MMC_BUS_TEST_W)
|| (opcode == MMC_BUS_TEST_R) ||
(host->tuning_in_progress &&
(opcode == MMC_SEND_TUNING_BLOCK_HS200 ||
opcode == MMC_SEND_TUNING_BLOCK)))) {
if (status & MCI_DATACRCFAIL) {
pr_err("%s: Data CRC error\n",
mmc_hostname(host->mmc));
pr_err("%s: opcode 0x%.8x\n", __func__, opcode);
pr_err("%s: blksz %d, blocks %d\n", __func__,
data->blksz, data->blocks);
} else {
pr_err("%s: CMD%d: Data timeout. DAT0 => %d\n",
mmc_hostname(host->mmc), opcode,
(readl_relaxed(host->base
+ MCI_TEST_INPUT) & 0x2) ? 1 : 0);
msmsdcc_dump_sdcc_state(host);
}
}
/*
* CRC is optional for the bus test commands, not all
* cards respond back with CRC. However controller
* waits for the CRC and times out. Hence ignore the
* data timeouts during the Bustest.
*/
if (!((!host->tuning_in_progress && opcode == MMC_BUS_TEST_W)
|| (opcode == MMC_BUS_TEST_R))) {
if (status & MCI_DATACRCFAIL)
data->error = -EILSEQ;
else
data->error = -ETIMEDOUT;
}
} else if (status & MCI_RXOVERRUN) {
pr_err("%s: RX overrun\n", mmc_hostname(host->mmc));
data->error = -EIO;
} else if (status & MCI_TXUNDERRUN) {
pr_err("%s: TX underrun\n", mmc_hostname(host->mmc));
data->error = -EIO;
} else {
pr_err("%s: Unknown error (0x%.8x)\n",
mmc_hostname(host->mmc), status);
data->error = -EIO;
}
/* Dummy CMD52 is not needed when CMD53 has errors */
if (host->dummy_52_needed)
host->dummy_52_needed = 0;
}
static int
msmsdcc_pio_read(struct msmsdcc_host *host, char *buffer, unsigned int remain)
{
void __iomem *base = host->base;
uint32_t *ptr = (uint32_t *) buffer;
int count = 0;
if (remain % 4)
remain = ((remain >> 2) + 1) << 2;
while (readl_relaxed(base + MMCISTATUS) & MCI_RXDATAAVLBL) {
*ptr = readl_relaxed(base + MMCIFIFO + (count % MCI_FIFOSIZE));
ptr++;
count += sizeof(uint32_t);
remain -= sizeof(uint32_t);
if (remain == 0)
break;
}
return count;
}
static int
msmsdcc_pio_write(struct msmsdcc_host *host, char *buffer,
unsigned int remain)
{
void __iomem *base = host->base;
char *ptr = buffer;
unsigned int maxcnt = MCI_FIFOHALFSIZE;
while (readl_relaxed(base + MMCISTATUS) &
(MCI_TXFIFOEMPTY | MCI_TXFIFOHALFEMPTY)) {
unsigned int count, sz;
count = min(remain, maxcnt);
sz = count % 4 ? (count >> 2) + 1 : (count >> 2);
writesl(base + MMCIFIFO, ptr, sz);
ptr += count;
remain -= count;
if (remain == 0)
break;
}
mb();
return ptr - buffer;
}
/*
* Copy up to a word (4 bytes) between a scatterlist
* and a temporary bounce buffer when the word lies across
* two pages. The temporary buffer can then be read to/
* written from the FIFO once.
*/
static void _msmsdcc_sg_consume_word(struct msmsdcc_host *host)
{
struct msmsdcc_pio_data *pio = &host->pio;
unsigned int bytes_avail;
if (host->curr.data->flags & MMC_DATA_READ)
memcpy(pio->sg_miter.addr, pio->bounce_buf,
pio->bounce_buf_len);
else
memcpy(pio->bounce_buf, pio->sg_miter.addr,
pio->bounce_buf_len);
while (pio->bounce_buf_len != 4) {
if (!sg_miter_next(&pio->sg_miter))
break;
bytes_avail = min_t(unsigned int, pio->sg_miter.length,
4 - pio->bounce_buf_len);
if (host->curr.data->flags & MMC_DATA_READ)
memcpy(pio->sg_miter.addr,
&pio->bounce_buf[pio->bounce_buf_len],
bytes_avail);
else
memcpy(&pio->bounce_buf[pio->bounce_buf_len],
pio->sg_miter.addr, bytes_avail);
pio->sg_miter.consumed = bytes_avail;
pio->bounce_buf_len += bytes_avail;
}
}
/*
* Use sg_miter_next to return as many 4-byte aligned
* chunks as possible, using a temporary 4 byte buffer
* for alignment if necessary
*/
static int msmsdcc_sg_next(struct msmsdcc_host *host, char **buf, int *len)
{
struct msmsdcc_pio_data *pio = &host->pio;
unsigned int length, rlength;
char *buffer;
if (!sg_miter_next(&pio->sg_miter))
return 0;
buffer = pio->sg_miter.addr;
length = pio->sg_miter.length;
if (length < host->curr.xfer_remain) {
rlength = round_down(length, 4);
if (rlength) {
/*
* We have a 4-byte aligned chunk.
* The rounding will be reflected by
* a call to msmsdcc_sg_consumed
*/
length = rlength;
goto sg_next_end;
}
/*
* We have a length less than 4 bytes. Check to
* see if more buffer is available, and combine
* to make 4 bytes if possible.
*/
pio->bounce_buf_len = length;
memset(pio->bounce_buf, 0, 4);
/*
* On a read, get 4 bytes from FIFO, and distribute
* (4-bouce_buf_len) bytes into consecutive
* sgl buffers when msmsdcc_sg_consumed is called
*/
if (host->curr.data->flags & MMC_DATA_READ) {
buffer = pio->bounce_buf;
length = 4;
goto sg_next_end;
} else {
_msmsdcc_sg_consume_word(host);
buffer = pio->bounce_buf;
length = pio->bounce_buf_len;
}
}
sg_next_end:
*buf = buffer;
*len = length;
return 1;
}
/*
* Update sg_miter.consumed based on how many bytes were
* consumed. If the bounce buffer was used to read from FIFO,
* redistribute into sgls.
*/
static void msmsdcc_sg_consumed(struct msmsdcc_host *host,
unsigned int length)
{
struct msmsdcc_pio_data *pio = &host->pio;
if (host->curr.data->flags & MMC_DATA_READ) {
if (length > pio->sg_miter.consumed)
/*
* consumed 4 bytes, but sgl
* describes < 4 bytes
*/
_msmsdcc_sg_consume_word(host);
else
pio->sg_miter.consumed = length;
} else
if (length < pio->sg_miter.consumed)
pio->sg_miter.consumed = length;
}
static void msmsdcc_sg_start(struct msmsdcc_host *host)
{
unsigned int sg_miter_flags = SG_MITER_ATOMIC;
host->pio.bounce_buf_len = 0;
if (host->curr.data->flags & MMC_DATA_READ)
sg_miter_flags |= SG_MITER_TO_SG;
else
sg_miter_flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->pio.sg_miter, host->curr.data->sg,
host->curr.data->sg_len, sg_miter_flags);
}
static void msmsdcc_sg_stop(struct msmsdcc_host *host)
{
sg_miter_stop(&host->pio.sg_miter);
}
static irqreturn_t
msmsdcc_pio_irq(int irq, void *dev_id)
{
struct msmsdcc_host *host = dev_id;
void __iomem *base = host->base;
uint32_t status;
unsigned long flags;
unsigned int remain;
char *buffer;
spin_lock(&host->lock);
status = readl_relaxed(base + MMCISTATUS);
if (((readl_relaxed(host->base + MMCIMASK0) & status) &
(MCI_IRQ_PIO)) == 0) {
spin_unlock(&host->lock);
return IRQ_NONE;
}
#if IRQ_DEBUG
msmsdcc_print_status(host, "irq1-r", status);
#endif
local_irq_save(flags);
do {
unsigned int len;
if (!(status & (MCI_TXFIFOHALFEMPTY | MCI_TXFIFOEMPTY
| MCI_RXDATAAVLBL)))
break;
if (!msmsdcc_sg_next(host, &buffer, &remain))
break;
len = 0;
if (status & MCI_RXACTIVE)
len = msmsdcc_pio_read(host, buffer, remain);
if (status & MCI_TXACTIVE)
len = msmsdcc_pio_write(host, buffer, remain);
/* len might have aligned to 32bits above */
if (len > remain)
len = remain;
host->curr.xfer_remain -= len;
host->curr.data_xfered += len;
remain -= len;
msmsdcc_sg_consumed(host, len);
if (remain) /* Done with this page? */
break; /* Nope */
status = readl_relaxed(base + MMCISTATUS);
} while (1);
msmsdcc_sg_stop(host);
local_irq_restore(flags);
if (status & MCI_RXACTIVE && host->curr.xfer_remain < MCI_FIFOSIZE) {
writel_relaxed((readl_relaxed(host->base + MMCIMASK0) &
(~(MCI_IRQ_PIO))) | MCI_RXDATAAVLBLMASK,
host->base + MMCIMASK0);
if (!host->curr.xfer_remain) {
/*
* back to back write to MASK0 register don't need
* synchronization delay.
*/
writel_relaxed((readl_relaxed(host->base + MMCIMASK0) &
(~(MCI_IRQ_PIO))) | 0, host->base + MMCIMASK0);
}
mb();
} else if (!host->curr.xfer_remain) {
writel_relaxed((readl_relaxed(host->base + MMCIMASK0) &
(~(MCI_IRQ_PIO))) | 0, host->base + MMCIMASK0);
mb();
}
spin_unlock(&host->lock);
return IRQ_HANDLED;
}
static void
msmsdcc_request_start(struct msmsdcc_host *host, struct mmc_request *mrq);
static void msmsdcc_wait_for_rxdata(struct msmsdcc_host *host,
struct mmc_data *data)
{
u32 loop_cnt = 0;
/*
* For read commands with data less than fifo size, it is possible to
* get DATAEND first and RXDATA_AVAIL might be set later because of
* synchronization delay through the asynchronous RX FIFO. Thus, for
* such cases, even after DATAEND interrupt is received software
* should poll for RXDATA_AVAIL until the requested data is read out
* of FIFO. This change is needed to get around this abnormal but
* sometimes expected behavior of SDCC3 controller.
*
* We can expect RXDATAAVAIL bit to be set after 6HCLK clock cycles
* after the data is loaded into RX FIFO. This would amount to less
* than a microsecond and thus looping for 1000 times is good enough
* for that delay.
*/
while (((int)host->curr.xfer_remain > 0) && (++loop_cnt < 1000)) {
if (readl_relaxed(host->base + MMCISTATUS) & MCI_RXDATAAVLBL) {
spin_unlock(&host->lock);
msmsdcc_pio_irq(1, host);
spin_lock(&host->lock);
}
}
if (loop_cnt == 1000) {
pr_info("%s: Timed out while polling for Rx Data\n",
mmc_hostname(host->mmc));
data->error = -ETIMEDOUT;
msmsdcc_reset_and_restore(host);
}
}
static void msmsdcc_do_cmdirq(struct msmsdcc_host *host, uint32_t status)
{
struct mmc_command *cmd = host->curr.cmd;
host->curr.cmd = NULL;
if (mmc_resp_type(cmd))
cmd->resp[0] = readl_relaxed(host->base + MMCIRESPONSE0);
/*
* Read rest of the response registers only if
* long response is expected for this command
*/
if (mmc_resp_type(cmd) & MMC_RSP_136) {
cmd->resp[1] = readl_relaxed(host->base + MMCIRESPONSE1);
cmd->resp[2] = readl_relaxed(host->base + MMCIRESPONSE2);
cmd->resp[3] = readl_relaxed(host->base + MMCIRESPONSE3);
}
if (status & (MCI_CMDTIMEOUT | MCI_AUTOCMD19TIMEOUT)) {
pr_debug("%s: CMD%d: Command timeout\n",
mmc_hostname(host->mmc), cmd->opcode);
cmd->error = -ETIMEDOUT;
} else if ((status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) &&
!host->tuning_in_progress) {
pr_err("%s: CMD%d: Command CRC error\n",
mmc_hostname(host->mmc), cmd->opcode);
msmsdcc_dump_sdcc_state(host);
cmd->error = -EILSEQ;
}
if (!cmd->error) {
if (cmd->cmd_timeout_ms > host->curr.req_tout_ms) {
host->curr.req_tout_ms = cmd->cmd_timeout_ms;
mod_timer(&host->req_tout_timer, (jiffies +
msecs_to_jiffies(host->curr.req_tout_ms)));
}
}
if (!cmd->data || cmd->error) {
if (host->curr.data && host->dma.sg &&
is_dma_mode(host))
msm_dmov_flush(host->dma.channel, 0);
else if (host->curr.data && host->sps.sg &&
is_sps_mode(host)) {
/* Stop current SPS transfer */
msmsdcc_sps_exit_curr_xfer(host);
}
else if (host->curr.data) { /* Non DMA */
msmsdcc_reset_and_restore(host);
msmsdcc_stop_data(host);
msmsdcc_request_end(host, cmd->mrq);
} else { /* host->data == NULL */
if (!cmd->error && host->prog_enable) {
if (status & MCI_PROGDONE) {
host->prog_enable = 0;
msmsdcc_request_end(host, cmd->mrq);
} else
host->curr.cmd = cmd;
} else {
host->prog_enable = 0;
host->curr.wait_for_auto_prog_done = false;
if (host->dummy_52_needed)
host->dummy_52_needed = 0;
if (cmd->data && cmd->error)
msmsdcc_reset_and_restore(host);
msmsdcc_request_end(host, cmd->mrq);
}
}
} else if (cmd->data) {
if (cmd == host->curr.mrq->sbc)
msmsdcc_start_command(host, host->curr.mrq->cmd, 0);
else if ((cmd->data->flags & MMC_DATA_WRITE) &&
!host->curr.use_wr_data_pend)
msmsdcc_start_data(host, cmd->data, NULL, 0);
}
}
static irqreturn_t
msmsdcc_irq(int irq, void *dev_id)
{
struct msmsdcc_host *host = dev_id;
struct mmc_host *mmc = host->mmc;
u32 status;
int ret = 0;
int timer = 0;
spin_lock(&host->lock);
do {
struct mmc_command *cmd;
struct mmc_data *data;
if (timer) {
timer = 0;
msmsdcc_delay(host);
}
if (!atomic_read(&host->clks_on)) {
pr_debug("%s: %s: SDIO async irq received\n",
mmc_hostname(host->mmc), __func__);
/*
* Only async interrupt can come when clocks are off,
* disable further interrupts and enable them when
* clocks are on.
*/
if (!host->sdcc_irq_disabled) {
disable_irq_nosync(irq);
host->sdcc_irq_disabled = 1;
}
/*
* If mmc_card_wake_sdio_irq() is set, mmc core layer
* will take care of signaling sdio irq during
* mmc_sdio_resume().
*/
if (host->sdcc_suspended) {
/*
* This is a wakeup interrupt so hold wakelock
* until SDCC resume is handled.
*/
wake_lock(&host->sdio_wlock);
} else {
if (!mmc->card || !mmc_card_sdio(mmc->card)) {
WARN(1, "%s: SDCC core interrupt received for non-SDIO cards when SDCC clocks are off\n",
mmc_hostname(mmc));
ret = 1;
break;
}
spin_unlock(&host->lock);
mmc_signal_sdio_irq(host->mmc);
spin_lock(&host->lock);
}
ret = 1;
break;
}
status = readl_relaxed(host->base + MMCISTATUS);
if (((readl_relaxed(host->base + MMCIMASK0) & status) &
(~(MCI_IRQ_PIO))) == 0)
break;
#if IRQ_DEBUG
msmsdcc_print_status(host, "irq0-r", status);
#endif
status &= readl_relaxed(host->base + MMCIMASK0);
writel_relaxed(status, host->base + MMCICLEAR);
/* Allow clear to take effect*/
if (host->clk_rate <=
msmsdcc_get_min_sup_clk_rate(host))
msmsdcc_sync_reg_wr(host);
#if IRQ_DEBUG
msmsdcc_print_status(host, "irq0-p", status);
#endif
if (status & MCI_SDIOINTROPE) {
if (!mmc->card || mmc_card_sdio(mmc->card)) {
WARN(1, "%s: SDIO interrupt received for non-SDIO card\n",
mmc_hostname(mmc));
ret = 1;
break;
}
if (host->sdcc_suspending)
wake_lock(&host->sdio_suspend_wlock);
spin_unlock(&host->lock);
mmc_signal_sdio_irq(host->mmc);
spin_lock(&host->lock);
}
data = host->curr.data;
if (host->dummy_52_sent) {
if (status & (MCI_PROGDONE | MCI_CMDCRCFAIL |
MCI_CMDTIMEOUT)) {
if (status & MCI_CMDTIMEOUT)
pr_debug("%s: dummy CMD52 timeout\n",
mmc_hostname(host->mmc));
if (status & MCI_CMDCRCFAIL)
pr_debug("%s: dummy CMD52 CRC failed\n",
mmc_hostname(host->mmc));
host->dummy_52_sent = 0;
host->dummy_52_needed = 0;
if (data) {
msmsdcc_stop_data(host);
msmsdcc_request_end(host, data->mrq);
}
WARN(!data, "No data cmd for dummy CMD52\n");
spin_unlock(&host->lock);
return IRQ_HANDLED;
}
break;
}
/*
* Check for proper command response
*/
cmd = host->curr.cmd;
if ((status & (MCI_CMDSENT | MCI_CMDRESPEND | MCI_CMDCRCFAIL |
MCI_CMDTIMEOUT | MCI_PROGDONE |
MCI_AUTOCMD19TIMEOUT)) && host->curr.cmd) {
msmsdcc_do_cmdirq(host, status);
}
if (host->curr.data) {
/* Check for data errors */
if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|
MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
msmsdcc_data_err(host, data, status);
host->curr.data_xfered = 0;
if (host->dma.sg && is_dma_mode(host))
msm_dmov_flush(host->dma.channel, 0);
else if (host->sps.sg && is_sps_mode(host)) {
/* Stop current SPS transfer */
msmsdcc_sps_exit_curr_xfer(host);
} else {
msmsdcc_reset_and_restore(host);
if (host->curr.data)
msmsdcc_stop_data(host);
if (!data->stop || (host->curr.mrq->sbc
&& !data->error))
timer |=
msmsdcc_request_end(host,
data->mrq);
else if ((host->curr.mrq->sbc
&& data->error) ||
!host->curr.mrq->sbc) {
msmsdcc_start_command(host,
data->stop,
0);
timer = 1;
}
}
}
/* Check for prog done */
if (host->curr.wait_for_auto_prog_done &&
(status & MCI_PROGDONE))
host->curr.got_auto_prog_done = true;
/* Check for data done */
if (!host->curr.got_dataend && (status & MCI_DATAEND))
host->curr.got_dataend = 1;
if (host->curr.got_dataend &&
(!host->curr.wait_for_auto_prog_done ||
(host->curr.wait_for_auto_prog_done &&
host->curr.got_auto_prog_done))) {
/*
* If DMA is still in progress, we complete
* via the completion handler
*/
if (!host->dma.busy && !host->sps.busy) {
/*
* There appears to be an issue in the
* controller where if you request a
* small block transfer (< fifo size),
* you may get your DATAEND/DATABLKEND
* irq without the PIO data irq.
*
* Check to see if theres still data
* to be read, and simulate a PIO irq.
*/
if (data->flags & MMC_DATA_READ)
msmsdcc_wait_for_rxdata(host,
data);
if (!data->error) {
host->curr.data_xfered =
host->curr.xfer_size;
host->curr.xfer_remain -=
host->curr.xfer_size;
}
if (!host->dummy_52_needed) {
msmsdcc_stop_data(host);
if (!data->stop ||
(host->curr.mrq->sbc
&& !data->error))
msmsdcc_request_end(
host,
data->mrq);
else if ((host->curr.mrq->sbc
&& data->error) ||
!host->curr.mrq->sbc) {
msmsdcc_start_command(
host,
data->stop, 0);
timer = 1;
}
} else {
host->dummy_52_sent = 1;
msmsdcc_start_command(host,
&dummy52cmd,
MCI_CPSM_PROGENA);
}
}
}
}
ret = 1;
} while (status);
spin_unlock(&host->lock);
return IRQ_RETVAL(ret);
}
static void
msmsdcc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
bool is_first_request)
{
struct msmsdcc_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
int rc = 0;
if (unlikely(!data)) {
pr_err("%s: %s cannot prepare null data\n", mmc_hostname(mmc),
__func__);
return;
}
if (unlikely(data->host_cookie)) {
/* Very wrong */
data->host_cookie = 0;
pr_err("%s: %s Request reposted for prepare\n",
mmc_hostname(mmc), __func__);
return;
}
if (!msmsdcc_is_dma_possible(host, data))
return;
rc = msmsdcc_prep_xfer(host, data);
if (unlikely(rc < 0)) {
data->host_cookie = 0;
return;
}
data->host_cookie = 1;
}
static void
msmsdcc_post_req(struct mmc_host *mmc, struct mmc_request *mrq, int err)
{
struct msmsdcc_host *host = mmc_priv(mmc);
unsigned int dir;
struct mmc_data *data = mrq->data;
if (unlikely(!data)) {
pr_err("%s: %s cannot cleanup null data\n", mmc_hostname(mmc),
__func__);
return;
}
if (data->flags & MMC_DATA_READ)
dir = DMA_FROM_DEVICE;
else
dir = DMA_TO_DEVICE;
if (data->host_cookie)
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, dir);
data->host_cookie = 0;
}
static void
msmsdcc_request_start(struct msmsdcc_host *host, struct mmc_request *mrq)
{
if (mrq->data) {
/* Queue/read data, daisy-chain command when data starts */
if ((mrq->data->flags & MMC_DATA_READ) ||
host->curr.use_wr_data_pend)
msmsdcc_start_data(host, mrq->data,
mrq->sbc ? mrq->sbc : mrq->cmd,
0);
else
msmsdcc_start_command(host,
mrq->sbc ? mrq->sbc : mrq->cmd,
0);
} else {
msmsdcc_start_command(host, mrq->cmd, 0);
}
}
static void
msmsdcc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct msmsdcc_host *host = mmc_priv(mmc);
unsigned long flags;
/*
* Get the SDIO AL client out of LPM.
*/
WARN(host->dummy_52_sent, "Dummy CMD52 in progress\n");
if (host->plat->is_sdio_al_client)
msmsdcc_sdio_al_lpm(mmc, false);
/* check if sps pipe reset is pending? */
if (is_sps_mode(host) && host->sps.pipe_reset_pending) {
msmsdcc_sps_pipes_reset_and_restore(host);
host->sps.pipe_reset_pending = false;
}
spin_lock_irqsave(&host->lock, flags);
if (host->eject) {
if (mrq->data && !(mrq->data->flags & MMC_DATA_READ)) {
mrq->cmd->error = 0;
mrq->data->bytes_xfered = mrq->data->blksz *
mrq->data->blocks;
} else
mrq->cmd->error = -ENOMEDIUM;
spin_unlock_irqrestore(&host->lock, flags);
mmc_request_done(mmc, mrq);
return;
}
/*
* Don't start the request if SDCC is not in proper state to handle it
*/
if (!host->pwr || !atomic_read(&host->clks_on)
|| host->sdcc_irq_disabled) {
WARN(1, "%s: %s: SDCC is in bad state. don't process"
" new request (CMD%d)\n", mmc_hostname(host->mmc),
__func__, mrq->cmd->opcode);
msmsdcc_dump_sdcc_state(host);
mrq->cmd->error = -EIO;
if (mrq->data) {
mrq->data->error = -EIO;
mrq->data->bytes_xfered = 0;
}
spin_unlock_irqrestore(&host->lock, flags);
mmc_request_done(mmc, mrq);
return;
}
WARN(host->curr.mrq, "%s: %s: New request (CMD%d) received while"
" other request (CMD%d) is in progress\n",
mmc_hostname(host->mmc), __func__,
mrq->cmd->opcode, host->curr.mrq->cmd->opcode);
/*
* Set timeout value to 10 secs (or more in case of buggy cards)
*/
if ((mmc->card) && (mmc->card->quirks & MMC_QUIRK_INAND_DATA_TIMEOUT))
host->curr.req_tout_ms = 20000;
else
host->curr.req_tout_ms = MSM_MMC_REQ_TIMEOUT;
/*
* Kick the software request timeout timer here with the timeout
* value identified above
*/
mod_timer(&host->req_tout_timer,
(jiffies +
msecs_to_jiffies(host->curr.req_tout_ms)));
host->curr.mrq = mrq;
if (mrq->sbc) {
mrq->sbc->mrq = mrq;
mrq->sbc->data = mrq->data;
}
if (mrq->data && (mrq->data->flags & MMC_DATA_WRITE)) {
if (is_auto_prog_done(host)) {
/*
* Auto-prog done will be enabled for following cases:
* mrq->sbc | mrq->stop
* _____________|________________
* True | Don't care
* False | False (CMD24, ACMD25 use case)
*/
if (mrq->sbc || !mrq->stop)
host->curr.wait_for_auto_prog_done = true;
} else {
if ((mrq->cmd->opcode == SD_IO_RW_EXTENDED) ||
(mrq->cmd->opcode == 54))
host->dummy_52_needed = 1;
}
if ((mrq->cmd->opcode == MMC_WRITE_BLOCK) ||
(mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK))
host->curr.use_wr_data_pend = true;
}
msmsdcc_request_start(host, mrq);
spin_unlock_irqrestore(&host->lock, flags);
}
static inline int msmsdcc_vreg_set_voltage(struct msm_mmc_reg_data *vreg,
int min_uV, int max_uV)
{
int rc = 0;
if (vreg->set_voltage_sup) {
rc = regulator_set_voltage(vreg->reg, min_uV, max_uV);
if (rc) {
pr_err("%s: regulator_set_voltage(%s) failed."
" min_uV=%d, max_uV=%d, rc=%d\n",
__func__, vreg->name, min_uV, max_uV, rc);
}
}
return rc;
}
static inline int msmsdcc_vreg_get_voltage(struct msm_mmc_reg_data *vreg)
{
int rc = 0;
rc = regulator_get_voltage(vreg->reg);
if (rc < 0)
pr_err("%s: regulator_get_voltage(%s) failed. rc=%d\n",
__func__, vreg->name, rc);
return rc;
}
static inline int msmsdcc_vreg_set_optimum_mode(struct msm_mmc_reg_data *vreg,
int uA_load)
{
int rc = 0;
/* regulators that do not support regulator_set_voltage also
do not support regulator_set_optimum_mode */
if (vreg->set_voltage_sup) {
rc = regulator_set_optimum_mode(vreg->reg, uA_load);
if (rc < 0)
pr_err("%s: regulator_set_optimum_mode(reg=%s, "
"uA_load=%d) failed. rc=%d\n", __func__,
vreg->name, uA_load, rc);
else
/* regulator_set_optimum_mode() can return non zero
* value even for success case.
*/
rc = 0;
}
return rc;
}
static inline int msmsdcc_vreg_init_reg(struct msm_mmc_reg_data *vreg,
struct device *dev)
{
int rc = 0;
/* check if regulator is already initialized? */
if (vreg->reg)
goto out;
/* Get the regulator handle */
vreg->reg = regulator_get(dev, vreg->name);
if (IS_ERR(vreg->reg)) {
rc = PTR_ERR(vreg->reg);
pr_err("%s: regulator_get(%s) failed. rc=%d\n",
__func__, vreg->name, rc);
goto out;
}
if (regulator_count_voltages(vreg->reg) > 0) {
vreg->set_voltage_sup = 1;
/* sanity check */
if (!vreg->high_vol_level || !vreg->hpm_uA) {
pr_err("%s: %s invalid constraints specified\n",
__func__, vreg->name);
rc = -EINVAL;
}
}
out:
return rc;
}
static inline void msmsdcc_vreg_deinit_reg(struct msm_mmc_reg_data *vreg)
{
if (vreg->reg)
regulator_put(vreg->reg);
}
/* This init function should be called only once for each SDCC slot */
static int msmsdcc_vreg_init(struct msmsdcc_host *host, bool is_init)
{
int rc = 0;
struct msm_mmc_slot_reg_data *curr_slot;
struct msm_mmc_reg_data *curr_vdd_reg, *curr_vdd_io_reg;
struct device *dev = mmc_dev(host->mmc);
curr_slot = host->plat->vreg_data;
if (!curr_slot)
goto out;
curr_vdd_reg = curr_slot->vdd_data;
curr_vdd_io_reg = curr_slot->vdd_io_data;
if (is_init) {
/*
* Get the regulator handle from voltage regulator framework
* and then try to set the voltage level for the regulator
*/
if (curr_vdd_reg) {
rc = msmsdcc_vreg_init_reg(curr_vdd_reg, dev);
if (rc)
goto out;
}
if (curr_vdd_io_reg) {
rc = msmsdcc_vreg_init_reg(curr_vdd_io_reg, dev);
if (rc)
goto vdd_reg_deinit;
}
rc = msmsdcc_vreg_reset(host);
if (rc)
pr_err("msmsdcc.%d vreg reset failed (%d)\n",
host->pdev_id, rc);
goto out;
} else {
/* Deregister all regulators from regulator framework */
goto vdd_io_reg_deinit;
}
vdd_io_reg_deinit:
if (curr_vdd_io_reg)
msmsdcc_vreg_deinit_reg(curr_vdd_io_reg);
vdd_reg_deinit:
if (curr_vdd_reg)
msmsdcc_vreg_deinit_reg(curr_vdd_reg);
out:
return rc;
}
static int msmsdcc_vreg_enable(struct msm_mmc_reg_data *vreg)
{
int rc = 0;
/* Put regulator in HPM (high power mode) */
rc = msmsdcc_vreg_set_optimum_mode(vreg, vreg->hpm_uA);
if (rc < 0)
goto out;
if (!vreg->is_enabled) {
/* Set voltage level */
rc = msmsdcc_vreg_set_voltage(vreg, vreg->high_vol_level,
vreg->high_vol_level);
if (rc)
goto out;
rc = regulator_enable(vreg->reg);
if (rc) {
pr_err("%s: regulator_enable(%s) failed. rc=%d\n",
__func__, vreg->name, rc);
goto out;
}
vreg->is_enabled = true;
}
out:
return rc;
}
static int msmsdcc_vreg_disable(struct msm_mmc_reg_data *vreg, bool is_init)
{
int rc = 0;
/* Never disable regulator marked as always_on */
if (vreg->is_enabled && !vreg->always_on) {
rc = regulator_disable(vreg->reg);
if (rc) {
pr_err("%s: regulator_disable(%s) failed. rc=%d\n",
__func__, vreg->name, rc);
goto out;
}
vreg->is_enabled = false;
rc = msmsdcc_vreg_set_optimum_mode(vreg, 0);
if (rc < 0)
goto out;
/* Set min. voltage level to 0 */
rc = msmsdcc_vreg_set_voltage(vreg, 0, vreg->high_vol_level);
if (rc)
goto out;
} else if (vreg->is_enabled && vreg->always_on) {
if (!is_init && vreg->lpm_sup) {
/* Put always_on regulator in LPM (low power mode) */
rc = msmsdcc_vreg_set_optimum_mode(vreg, vreg->lpm_uA);
if (rc < 0)
goto out;
} else if (is_init && vreg->reset_at_init) {
/**
* The regulator might not actually be disabled if it
* is shared and in use by other drivers.
*/
rc = regulator_disable(vreg->reg);
if (rc) {
pr_err("%s: regulator_disable(%s) failed at " \
"bootup. rc=%d\n", __func__,
vreg->name, rc);
goto out;
}
vreg->is_enabled = false;
}
}
out:
return rc;
}
static int msmsdcc_setup_vreg(struct msmsdcc_host *host, bool enable,
bool is_init)
{
int rc = 0, i;
struct msm_mmc_slot_reg_data *curr_slot;
struct msm_mmc_reg_data *vreg_table[2];
curr_slot = host->plat->vreg_data;
if (!curr_slot) {
pr_debug("%s: vreg info unavailable, assuming the slot is powered by always on domain\n",
mmc_hostname(host->mmc));
goto out;
}
vreg_table[0] = curr_slot->vdd_data;
vreg_table[1] = curr_slot->vdd_io_data;
for (i = 0; i < ARRAY_SIZE(vreg_table); i++) {
if (vreg_table[i]) {
if (enable)
rc = msmsdcc_vreg_enable(vreg_table[i]);
else
rc = msmsdcc_vreg_disable(vreg_table[i],
is_init);
if (rc)
goto out;
}
}
out:
return rc;
}
/*
* Reset vreg by ensuring it is off during probe. A call
* to enable vreg is needed to balance disable vreg
*/
static int msmsdcc_vreg_reset(struct msmsdcc_host *host)
{
int rc;
rc = msmsdcc_setup_vreg(host, 1, true);
if (rc)
return rc;
rc = msmsdcc_setup_vreg(host, 0, true);
return rc;
}
enum vdd_io_level {
/* set vdd_io_data->low_vol_level */
VDD_IO_LOW,
/* set vdd_io_data->high_vol_level */
VDD_IO_HIGH,
/*
* set whatever there in voltage_level (third argument) of
* msmsdcc_set_vdd_io_vol() function.
*/
VDD_IO_SET_LEVEL,
};
/*
* This function returns the current VDD IO voltage level.
* Returns negative value if it fails to read the voltage level
* Returns 0 if regulator was disabled or if VDD_IO (and VDD)
* regulator were not defined for host.
*/
static int msmsdcc_get_vdd_io_vol(struct msmsdcc_host *host)
{
int rc = 0;
if (host->plat->vreg_data) {
struct msm_mmc_reg_data *io_reg =
host->plat->vreg_data->vdd_io_data;
/*
* If vdd_io is not defined, then we can consider that
* IO voltage is same as VDD.
*/
if (!io_reg)
io_reg = host->plat->vreg_data->vdd_data;
if (io_reg && io_reg->is_enabled)
rc = msmsdcc_vreg_get_voltage(io_reg);
}
return rc;
}
/*
* This function updates the IO pad power switch bit in MCI_CLK register
* based on currrent IO pad voltage level.
* NOTE: This function assumes that host lock was not taken by caller.
*/
static void msmsdcc_update_io_pad_pwr_switch(struct msmsdcc_host *host)
{
int rc = 0;
unsigned long flags;
if (!is_io_pad_pwr_switch(host))
return;
rc = msmsdcc_get_vdd_io_vol(host);
spin_lock_irqsave(&host->lock, flags);
/*
* Dual voltage pad is the SDCC's (chipset) functionality and not all
* the SDCC instances support the dual voltage pads.
* For dual-voltage pad (1.8v/3.3v), SW should set IO_PAD_PWR_SWITCH
* bit before using the pads in 1.8V mode.
* For regular, not dual-voltage pads (including eMMC 1.2v/1.8v pads),
* IO_PAD_PWR_SWITCH bit is a don't care.
* But we don't have an option to know (by reading some SDCC register)
* that a particular SDCC instance supports dual voltage pads or not,
* so we simply set the IO_PAD_PWR_SWITCH bit for low voltage IO
* (1.8v/1.2v). For regular (not dual-voltage pads), this bit value
* is anyway ignored.
*/
if (rc > 0 && rc < 2700000)
host->io_pad_pwr_switch = 1;
else
host->io_pad_pwr_switch = 0;
if (atomic_read(&host->clks_on)) {
if (host->io_pad_pwr_switch)
writel_relaxed((readl_relaxed(host->base + MMCICLOCK) |
IO_PAD_PWR_SWITCH),
host->base + MMCICLOCK);
else
writel_relaxed((readl_relaxed(host->base + MMCICLOCK) &
~IO_PAD_PWR_SWITCH),
host->base + MMCICLOCK);
msmsdcc_sync_reg_wr(host);
}
spin_unlock_irqrestore(&host->lock, flags);
}
static int msmsdcc_set_vdd_io_vol(struct msmsdcc_host *host,
enum vdd_io_level level,
unsigned int voltage_level)
{
int rc = 0;
int set_level;
if (host->plat->vreg_data) {
struct msm_mmc_reg_data *vdd_io_reg =
host->plat->vreg_data->vdd_io_data;
if (vdd_io_reg && vdd_io_reg->is_enabled) {
switch (level) {
case VDD_IO_LOW:
set_level = vdd_io_reg->low_vol_level;
break;
case VDD_IO_HIGH:
set_level = vdd_io_reg->high_vol_level;
break;
case VDD_IO_SET_LEVEL:
set_level = voltage_level;
break;
default:
pr_err("%s: %s: invalid argument level = %d",
mmc_hostname(host->mmc), __func__,
level);
rc = -EINVAL;
goto out;
}
rc = msmsdcc_vreg_set_voltage(vdd_io_reg,
set_level, set_level);
}
}
out:
return rc;
}
static inline int msmsdcc_is_pwrsave(struct msmsdcc_host *host)
{
if (host->clk_rate > 400000 && msmsdcc_pwrsave)
return 1;
return 0;
}
/*
* Any function calling msmsdcc_setup_clocks must
* acquire clk_mutex. May sleep.
*/
static int msmsdcc_setup_clocks(struct msmsdcc_host *host, bool enable)
{
int rc = 0;
if (enable && !atomic_read(&host->clks_on)) {
if (!IS_ERR_OR_NULL(host->bus_clk)) {
rc = clk_prepare_enable(host->bus_clk);
if (rc) {
pr_err("%s: %s: failed to enable the bus-clock with error %d\n",
mmc_hostname(host->mmc), __func__, rc);
goto out;
}
}
if (!IS_ERR(host->pclk)) {
rc = clk_prepare_enable(host->pclk);
if (rc) {
pr_err("%s: %s: failed to enable the pclk with error %d\n",
mmc_hostname(host->mmc), __func__, rc);
goto disable_bus;
}
}
rc = clk_prepare_enable(host->clk);
if (rc) {
pr_err("%s: %s: failed to enable the host-clk with error %d\n",
mmc_hostname(host->mmc), __func__, rc);
goto disable_pclk;
}
mb();
msmsdcc_delay(host);
atomic_set(&host->clks_on, 1);
} else if (!enable && atomic_read(&host->clks_on)) {
mb();
msmsdcc_delay(host);
clk_disable_unprepare(host->clk);
if (!IS_ERR(host->pclk))
clk_disable_unprepare(host->pclk);
if (!IS_ERR_OR_NULL(host->bus_clk))
clk_disable_unprepare(host->bus_clk);
atomic_set(&host->clks_on, 0);
}
goto out;
disable_pclk:
if (!IS_ERR_OR_NULL(host->pclk))
clk_disable_unprepare(host->pclk);
disable_bus:
if (!IS_ERR_OR_NULL(host->bus_clk))
clk_disable_unprepare(host->bus_clk);
out:
return rc;
}
static inline unsigned int msmsdcc_get_sup_clk_rate(struct msmsdcc_host *host,
unsigned int req_clk)
{
unsigned int sel_clk = -1;
if (req_clk < msmsdcc_get_min_sup_clk_rate(host)) {
sel_clk = msmsdcc_get_min_sup_clk_rate(host);
goto out;
}
if (host->plat->sup_clk_table && host->plat->sup_clk_cnt) {
unsigned char cnt;
for (cnt = 0; cnt < host->plat->sup_clk_cnt; cnt++) {
if (host->plat->sup_clk_table[cnt] > req_clk)
break;
else if (host->plat->sup_clk_table[cnt] == req_clk) {
sel_clk = host->plat->sup_clk_table[cnt];
break;
} else
sel_clk = host->plat->sup_clk_table[cnt];
}
} else {
if ((req_clk < host->plat->msmsdcc_fmax) &&
(req_clk > host->plat->msmsdcc_fmid))
sel_clk = host->plat->msmsdcc_fmid;
else
sel_clk = req_clk;
}
out:
return sel_clk;
}
static inline unsigned int msmsdcc_get_min_sup_clk_rate(
struct msmsdcc_host *host)
{
if (host->plat->sup_clk_table && host->plat->sup_clk_cnt)
return host->plat->sup_clk_table[0];
else
return host->plat->msmsdcc_fmin;
}
static inline unsigned int msmsdcc_get_max_sup_clk_rate(
struct msmsdcc_host *host)
{
if (host->plat->sup_clk_table && host->plat->sup_clk_cnt)
return host->plat->sup_clk_table[host->plat->sup_clk_cnt - 1];
else
return host->plat->msmsdcc_fmax;
}
static int msmsdcc_setup_gpio(struct msmsdcc_host *host, bool enable)
{
struct msm_mmc_gpio_data *curr;
int i, rc = 0;
curr = host->plat->pin_data->gpio_data;
for (i = 0; i < curr->size; i++) {
if (!gpio_is_valid(curr->gpio[i].no)) {
rc = -EINVAL;
pr_err("%s: Invalid gpio = %d\n",
mmc_hostname(host->mmc), curr->gpio[i].no);
goto free_gpios;
}
if (enable) {
if (curr->gpio[i].is_always_on &&
curr->gpio[i].is_enabled)
continue;
rc = gpio_request(curr->gpio[i].no,
curr->gpio[i].name);
if (rc) {
pr_err("%s: gpio_request(%d, %s) failed %d\n",
mmc_hostname(host->mmc),
curr->gpio[i].no,
curr->gpio[i].name, rc);
goto free_gpios;
}
curr->gpio[i].is_enabled = true;
} else {
if (curr->gpio[i].is_always_on)
continue;
gpio_free(curr->gpio[i].no);
curr->gpio[i].is_enabled = false;
}
}
goto out;
free_gpios:
for (i--; i >= 0; i--) {
gpio_free(curr->gpio[i].no);
curr->gpio[i].is_enabled = false;
}
out:
return rc;
}
static int msmsdcc_setup_pad(struct msmsdcc_host *host, bool enable)
{
struct msm_mmc_pad_data *curr;
int i;
curr = host->plat->pin_data->pad_data;
for (i = 0; i < curr->drv->size; i++) {
if (enable)
msm_tlmm_set_hdrive(curr->drv->on[i].no,
curr->drv->on[i].val);
else
msm_tlmm_set_hdrive(curr->drv->off[i].no,
curr->drv->off[i].val);
}
for (i = 0; i < curr->pull->size; i++) {
if (enable)
msm_tlmm_set_pull(curr->pull->on[i].no,
curr->pull->on[i].val);
else
msm_tlmm_set_pull(curr->pull->off[i].no,
curr->pull->off[i].val);
}
return 0;
}
static u32 msmsdcc_setup_pins(struct msmsdcc_host *host, bool enable)
{
int rc = 0;
if (!host->plat->pin_data || host->plat->pin_data->cfg_sts == enable)
return 0;
if (host->plat->pin_data->is_gpio)
rc = msmsdcc_setup_gpio(host, enable);
else
rc = msmsdcc_setup_pad(host, enable);
if (!rc)
host->plat->pin_data->cfg_sts = enable;
return rc;
}
static int msmsdcc_cfg_mpm_sdiowakeup(struct msmsdcc_host *host,
unsigned mode)
{
int ret = 0;
unsigned int pin = host->plat->mpm_sdiowakeup_int;
if (!pin)
return 0;
switch (mode) {
case SDC_DAT1_DISABLE:
ret = msm_mpm_enable_pin(pin, 0);
break;
case SDC_DAT1_ENABLE:
ret = msm_mpm_set_pin_type(pin, IRQ_TYPE_LEVEL_LOW);
ret = msm_mpm_enable_pin(pin, 1);
break;
case SDC_DAT1_ENWAKE:
ret = msm_mpm_set_pin_wake(pin, 1);
break;
case SDC_DAT1_DISWAKE:
ret = msm_mpm_set_pin_wake(pin, 0);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static u32 msmsdcc_setup_pwr(struct msmsdcc_host *host, struct mmc_ios *ios)
{
u32 pwr = 0;
int ret = 0;
struct mmc_host *mmc = host->mmc;
if (host->plat->translate_vdd && !host->sdio_gpio_lpm)
ret = host->plat->translate_vdd(mmc_dev(mmc), ios->vdd);
else if (!host->plat->translate_vdd && !host->sdio_gpio_lpm)
ret = msmsdcc_setup_vreg(host, !!ios->vdd, false);
if (ret) {
pr_err("%s: Failed to setup voltage regulators\n",
mmc_hostname(host->mmc));
goto out;
}
switch (ios->power_mode) {
case MMC_POWER_OFF:
pwr = MCI_PWR_OFF;
msmsdcc_cfg_mpm_sdiowakeup(host, SDC_DAT1_DISABLE);
/*
* If VDD IO rail is always on, set low voltage for VDD
* IO rail when slot is not in use (like when card is not
* present or during system suspend).
*/
msmsdcc_set_vdd_io_vol(host, VDD_IO_LOW, 0);
msmsdcc_update_io_pad_pwr_switch(host);
msmsdcc_setup_pins(host, false);
/*
* Reset the mask to prevent hitting any pending interrupts
* after powering up the card again.
*/
if (atomic_read(&host->clks_on)) {
writel_relaxed(0, host->base + MMCIMASK0);
mb();
}
break;
case MMC_POWER_UP:
/* writing PWR_UP bit is redundant */
pwr = MCI_PWR_UP;
msmsdcc_cfg_mpm_sdiowakeup(host, SDC_DAT1_ENABLE);
msmsdcc_set_vdd_io_vol(host, VDD_IO_HIGH, 0);
msmsdcc_update_io_pad_pwr_switch(host);
msmsdcc_setup_pins(host, true);
break;
case MMC_POWER_ON:
pwr = MCI_PWR_ON;
break;
}
out:
return pwr;
}
static void msmsdcc_enable_irq_wake(struct msmsdcc_host *host)
{
unsigned int wakeup_irq;
wakeup_irq = (host->plat->sdiowakeup_irq) ?
host->plat->sdiowakeup_irq :
host->core_irqres->start;
if (!host->irq_wake_enabled) {
enable_irq_wake(wakeup_irq);
host->irq_wake_enabled = true;
}
}
static void msmsdcc_disable_irq_wake(struct msmsdcc_host *host)
{
unsigned int wakeup_irq;
wakeup_irq = (host->plat->sdiowakeup_irq) ?
host->plat->sdiowakeup_irq :
host->core_irqres->start;
if (host->irq_wake_enabled) {
disable_irq_wake(wakeup_irq);
host->irq_wake_enabled = false;
}
}
/* Returns required bandwidth in Bytes per Sec */
static unsigned int msmsdcc_get_bw_required(struct msmsdcc_host *host,
struct mmc_ios *ios)
{
unsigned int bw;
bw = host->clk_rate;
/*
* For DDR mode, SDCC controller clock will be at
* the double rate than the actual clock that goes to card.
*/
if (ios->bus_width == MMC_BUS_WIDTH_4)
bw /= 2;
else if (ios->bus_width == MMC_BUS_WIDTH_1)
bw /= 8;
return bw;
}
static int msmsdcc_msm_bus_get_vote_for_bw(struct msmsdcc_host *host,
unsigned int bw)
{
unsigned int *table = host->plat->msm_bus_voting_data->bw_vecs;
unsigned int size = host->plat->msm_bus_voting_data->bw_vecs_size;
int i;
if (host->msm_bus_vote.is_max_bw_needed && bw)
return host->msm_bus_vote.max_bw_vote;
for (i = 0; i < size; i++) {
if (bw <= table[i])
break;
}
if (i && (i == size))
i--;
return i;
}
static int msmsdcc_msm_bus_register(struct msmsdcc_host *host)
{
int rc = 0;
struct msm_bus_scale_pdata *use_cases;
if (host->plat->msm_bus_voting_data &&
host->plat->msm_bus_voting_data->use_cases &&
host->plat->msm_bus_voting_data->bw_vecs &&
host->plat->msm_bus_voting_data->bw_vecs_size) {
use_cases = host->plat->msm_bus_voting_data->use_cases;
host->msm_bus_vote.client_handle =
msm_bus_scale_register_client(use_cases);
} else {
return 0;
}
if (!host->msm_bus_vote.client_handle) {
pr_err("%s: msm_bus_scale_register_client() failed\n",
mmc_hostname(host->mmc));
rc = -EFAULT;
} else {
/* cache the vote index for minimum and maximum bandwidth */
host->msm_bus_vote.min_bw_vote =
msmsdcc_msm_bus_get_vote_for_bw(host, 0);
host->msm_bus_vote.max_bw_vote =
msmsdcc_msm_bus_get_vote_for_bw(host, UINT_MAX);
}
return rc;
}
static void msmsdcc_msm_bus_unregister(struct msmsdcc_host *host)
{
if (host->msm_bus_vote.client_handle)
msm_bus_scale_unregister_client(
host->msm_bus_vote.client_handle);
}
/*
* This function must be called with host lock acquired.
* Caller of this function should also ensure that msm bus client
* handle is not null.
*/
static inline int msmsdcc_msm_bus_set_vote(struct msmsdcc_host *host,
int vote,
unsigned long flags)
{
int rc = 0;
if (vote != host->msm_bus_vote.curr_vote) {
spin_unlock_irqrestore(&host->lock, flags);
rc = msm_bus_scale_client_update_request(
host->msm_bus_vote.client_handle, vote);
if (rc)
pr_err("%s: msm_bus_scale_client_update_request() failed."
" bus_client_handle=0x%x, vote=%d, err=%d\n",
mmc_hostname(host->mmc),
host->msm_bus_vote.client_handle, vote, rc);
spin_lock_irqsave(&host->lock, flags);
if (!rc)
host->msm_bus_vote.curr_vote = vote;
}
return rc;
}
/*
* Internal work. Work to set 0 bandwidth for msm bus.
*/
static void msmsdcc_msm_bus_work(struct work_struct *work)
{
struct msmsdcc_host *host = container_of(work,
struct msmsdcc_host,
msm_bus_vote.vote_work.work);
unsigned long flags;
if (!host->msm_bus_vote.client_handle)
return;
spin_lock_irqsave(&host->lock, flags);
/* don't vote for 0 bandwidth if any request is in progress */
if (!host->curr.mrq)
msmsdcc_msm_bus_set_vote(host,
host->msm_bus_vote.min_bw_vote, flags);
else
pr_warning("%s: %s: SDCC transfer in progress. skipping"
" bus voting to 0 bandwidth\n",
mmc_hostname(host->mmc), __func__);
spin_unlock_irqrestore(&host->lock, flags);
}
/*
* This function cancels any scheduled delayed work
* and sets the bus vote based on ios argument.
* If "ios" argument is NULL, bandwidth required is 0 else
* calculate the bandwidth based on ios parameters.
*/
static void msmsdcc_msm_bus_cancel_work_and_set_vote(
struct msmsdcc_host *host,
struct mmc_ios *ios)
{
unsigned long flags;
unsigned int bw;
int vote;
if (!host->msm_bus_vote.client_handle)
return;
bw = ios ? msmsdcc_get_bw_required(host, ios) : 0;
cancel_delayed_work_sync(&host->msm_bus_vote.vote_work);
spin_lock_irqsave(&host->lock, flags);
vote = msmsdcc_msm_bus_get_vote_for_bw(host, bw);
msmsdcc_msm_bus_set_vote(host, vote, flags);
spin_unlock_irqrestore(&host->lock, flags);
}
/* This function queues a work which will set the bandwidth requiement to 0 */
static void msmsdcc_msm_bus_queue_work(struct msmsdcc_host *host)
{
unsigned long flags;
if (!host->msm_bus_vote.client_handle)
return;
spin_lock_irqsave(&host->lock, flags);
if (host->msm_bus_vote.min_bw_vote != host->msm_bus_vote.curr_vote)
queue_delayed_work(system_nrt_wq,
&host->msm_bus_vote.vote_work,
msecs_to_jiffies(MSM_MMC_BUS_VOTING_DELAY));
spin_unlock_irqrestore(&host->lock, flags);
}
static void
msmsdcc_cfg_sdio_wakeup(struct msmsdcc_host *host, bool enable_wakeup_irq)
{
struct mmc_host *mmc = host->mmc;
/*
* SDIO_AL clients has different mechanism of handling LPM through
* sdio_al driver itself. The sdio wakeup interrupt is configured as
* part of that. Here, we are interested only in clients like WLAN.
*/
if (!(mmc->card && mmc_card_sdio(mmc->card))
|| host->plat->is_sdio_al_client)
goto out;
if (!host->sdcc_suspended) {
/*
* When MSM is not in power collapse and we
* are disabling clocks, enable bit 22 in MASK0
* to handle asynchronous SDIO interrupts.
*/
if (enable_wakeup_irq) {
writel_relaxed(MCI_SDIOINTMASK, host->base + MMCIMASK0);
mb();
} else {
writel_relaxed(MCI_SDIOINTMASK, host->base + MMCICLEAR);
msmsdcc_sync_reg_wr(host);
}
goto out;
} else if (!mmc_card_wake_sdio_irq(mmc)) {
/*
* Wakeup MSM only if SDIO function drivers set
* MMC_PM_WAKE_SDIO_IRQ flag in their suspend call.
*/
goto out;
}
if (enable_wakeup_irq) {
if (!host->plat->sdiowakeup_irq) {
/*
* When there is no gpio line that can be configured
* as wakeup interrupt handle it by configuring
* asynchronous sdio interrupts and DAT1 line.
*/
writel_relaxed(MCI_SDIOINTMASK,
host->base + MMCIMASK0);
mb();
msmsdcc_cfg_mpm_sdiowakeup(host, SDC_DAT1_ENWAKE);
/* configure sdcc core interrupt as wakeup interrupt */
msmsdcc_enable_irq_wake(host);
} else {
/* Let gpio line handle wakeup interrupt */
writel_relaxed(0, host->base + MMCIMASK0);
mb();
if (host->sdio_wakeupirq_disabled) {
host->sdio_wakeupirq_disabled = 0;
/* configure gpio line as wakeup interrupt */
msmsdcc_enable_irq_wake(host);
enable_irq(host->plat->sdiowakeup_irq);
}
}
} else {
if (!host->plat->sdiowakeup_irq) {
/*
* We may not have cleared bit 22 in the interrupt
* handler as the clocks might be off at that time.
*/
writel_relaxed(MCI_SDIOINTMASK, host->base + MMCICLEAR);
msmsdcc_sync_reg_wr(host);
msmsdcc_cfg_mpm_sdiowakeup(host, SDC_DAT1_DISWAKE);
msmsdcc_disable_irq_wake(host);
} else if (!host->sdio_wakeupirq_disabled) {
disable_irq_nosync(host->plat->sdiowakeup_irq);
msmsdcc_disable_irq_wake(host);
host->sdio_wakeupirq_disabled = 1;
}
}
out:
return;
}
static void
msmsdcc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct msmsdcc_host *host = mmc_priv(mmc);
u32 clk = 0, pwr = 0;
int rc;
unsigned long flags;
unsigned int clock;
/*
* Disable SDCC core interrupt until set_ios is completed.
* This avoids any race conditions with interrupt raised
* when turning on/off the clocks. One possible
* scenario is SDIO operational interrupt while the clock
* is turned off.
* host->lock is being released intermittently below.
* Thus, prevent concurrent access to host.
*/
mutex_lock(&host->clk_mutex);
DBG(host, "ios->clock = %u\n", ios->clock);
spin_lock_irqsave(&host->lock, flags);
if (!host->sdcc_irq_disabled) {
disable_irq_nosync(host->core_irqres->start);
host->sdcc_irq_disabled = 1;
}
spin_unlock_irqrestore(&host->lock, flags);
/* Make sure sdcc core irq is synchronized */
synchronize_irq(host->core_irqres->start);
pwr = msmsdcc_setup_pwr(host, ios);
spin_lock_irqsave(&host->lock, flags);
if (ios->clock) {
spin_unlock_irqrestore(&host->lock, flags);
rc = msmsdcc_setup_clocks(host, true);
if (rc)
goto out;
spin_lock_irqsave(&host->lock, flags);
writel_relaxed(host->mci_irqenable, host->base + MMCIMASK0);
mb();
msmsdcc_cfg_sdio_wakeup(host, false);
clock = msmsdcc_get_sup_clk_rate(host, ios->clock);
/*
* For DDR50 mode, controller needs clock rate to be
* double than what is required on the SD card CLK pin.
*/
if (ios->timing == MMC_TIMING_UHS_DDR50) {
/*
* Make sure that we don't double the clock if
* doubled clock rate is already set
*/
if (!host->ddr_doubled_clk_rate ||
(host->ddr_doubled_clk_rate &&
(host->ddr_doubled_clk_rate != ios->clock))) {
host->ddr_doubled_clk_rate =
msmsdcc_get_sup_clk_rate(
host, (ios->clock * 2));
clock = host->ddr_doubled_clk_rate;
}
} else {
host->ddr_doubled_clk_rate = 0;
}
if (clock != host->clk_rate) {
spin_unlock_irqrestore(&host->lock, flags);
rc = clk_set_rate(host->clk, clock);
spin_lock_irqsave(&host->lock, flags);
if (rc < 0)
pr_err("%s: failed to set clk rate %u\n",
mmc_hostname(mmc), clock);
host->clk_rate = clock;
host->reg_write_delay =
(1 + ((3 * USEC_PER_SEC) /
(host->clk_rate ? host->clk_rate :
msmsdcc_get_min_sup_clk_rate(host))));
}
/*
* give atleast 2 MCLK cycles delay for clocks
* and SDCC core to stabilize
*/
mb();
msmsdcc_delay(host);
clk |= MCI_CLK_ENABLE;
}
if (ios->bus_width == MMC_BUS_WIDTH_8)
clk |= MCI_CLK_WIDEBUS_8;
else if (ios->bus_width == MMC_BUS_WIDTH_4)
clk |= MCI_CLK_WIDEBUS_4;
else
clk |= MCI_CLK_WIDEBUS_1;
if (msmsdcc_is_pwrsave(host))
clk |= MCI_CLK_PWRSAVE;
clk |= MCI_CLK_FLOWENA;
host->tuning_needed = 0;
/*
* Select the controller timing mode according
* to current bus speed mode
*/
if (host->clk_rate > (100 * 1000 * 1000) &&
(ios->timing == MMC_TIMING_UHS_SDR104 ||
ios->timing == MMC_TIMING_MMC_HS200)) {
/* Card clock frequency must be > 100MHz to enable tuning */
clk |= (4 << 14);
host->tuning_needed = 1;
} else if (ios->timing == MMC_TIMING_UHS_DDR50) {
clk |= (3 << 14);
} else {
clk |= (2 << 14); /* feedback clock */
}
/* Select free running MCLK as input clock of cm_dll_sdc4 */
clk |= (2 << 23);
if (host->io_pad_pwr_switch)
clk |= IO_PAD_PWR_SWITCH;
/* Don't write into registers if clocks are disabled */
if (atomic_read(&host->clks_on)) {
if (readl_relaxed(host->base + MMCICLOCK) != clk) {
writel_relaxed(clk, host->base + MMCICLOCK);
msmsdcc_sync_reg_wr(host);
}
if (readl_relaxed(host->base + MMCIPOWER) != pwr) {
host->pwr = pwr;
writel_relaxed(pwr, host->base + MMCIPOWER);
msmsdcc_sync_reg_wr(host);
}
}
if (!(clk & MCI_CLK_ENABLE) && atomic_read(&host->clks_on)) {
msmsdcc_cfg_sdio_wakeup(host, true);
spin_unlock_irqrestore(&host->lock, flags);
/*
* May get a wake-up interrupt the instant we disable the
* clocks. This would disable the wake-up interrupt.
*/
msmsdcc_setup_clocks(host, false);
spin_lock_irqsave(&host->lock, flags);
}
if (host->tuning_in_progress)
WARN(!atomic_read(&host->clks_on),
"tuning_in_progress but SDCC clocks are OFF\n");
/* Let interrupts be disabled if the host is powered off */
if (ios->power_mode != MMC_POWER_OFF && host->sdcc_irq_disabled) {
enable_irq(host->core_irqres->start);
host->sdcc_irq_disabled = 0;
}
spin_unlock_irqrestore(&host->lock, flags);
out:
mutex_unlock(&host->clk_mutex);
}
int msmsdcc_set_pwrsave(struct mmc_host *mmc, int pwrsave)
{
struct msmsdcc_host *host = mmc_priv(mmc);
u32 clk;
clk = readl_relaxed(host->base + MMCICLOCK);
pr_debug("Changing to pwr_save=%d", pwrsave);
if (pwrsave && msmsdcc_is_pwrsave(host))
clk |= MCI_CLK_PWRSAVE;
else
clk &= ~MCI_CLK_PWRSAVE;
writel_relaxed(clk, host->base + MMCICLOCK);
msmsdcc_sync_reg_wr(host);
return 0;
}
static int msmsdcc_get_ro(struct mmc_host *mmc)
{
int status = -ENOSYS;
struct msmsdcc_host *host = mmc_priv(mmc);
if (host->plat->wpswitch) {
status = host->plat->wpswitch(mmc_dev(mmc));
} else if (gpio_is_valid(host->plat->wpswitch_gpio)) {
status = gpio_request(host->plat->wpswitch_gpio,
"SD_WP_Switch");
if (status) {
pr_err("%s: %s: Failed to request GPIO %d\n",
mmc_hostname(mmc), __func__,
host->plat->wpswitch_gpio);
} else {
status = gpio_direction_input(
host->plat->wpswitch_gpio);
if (!status) {
/*
* Wait for atleast 300ms as debounce
* time for GPIO input to stabilize.
*/
msleep(300);
status = gpio_get_value_cansleep(
host->plat->wpswitch_gpio);
status ^= !host->plat->is_wpswitch_active_low;
}
gpio_free(host->plat->wpswitch_gpio);
}
}
if (status < 0)
status = -ENOSYS;
pr_debug("%s: Card read-only status %d\n", __func__, status);
return status;
}
static void msmsdcc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct msmsdcc_host *host = mmc_priv(mmc);
unsigned long flags;
/*
* We may come here with clocks turned off in that case don't
* attempt to write into MASK0 register. While turning on the
* clocks mci_irqenable will be written to MASK0 register.
*/
spin_lock_irqsave(&host->lock, flags);
if (enable) {
host->mci_irqenable |= MCI_SDIOINTOPERMASK;
if (atomic_read(&host->clks_on)) {
writel_relaxed(readl_relaxed(host->base + MMCIMASK0) |
MCI_SDIOINTOPERMASK, host->base + MMCIMASK0);
mb();
}
} else {
host->mci_irqenable &= ~MCI_SDIOINTOPERMASK;
if (atomic_read(&host->clks_on)) {
writel_relaxed(readl_relaxed(host->base + MMCIMASK0) &
~MCI_SDIOINTOPERMASK, host->base + MMCIMASK0);
mb();
}
}
spin_unlock_irqrestore(&host->lock, flags);
}
#ifdef CONFIG_PM_RUNTIME
static void msmsdcc_print_rpm_info(struct msmsdcc_host *host)
{
struct device *dev = mmc_dev(host->mmc);
pr_err("%s: PM: sdcc_suspended=%d, pending_resume=%d, sdcc_suspending=%d\n",
mmc_hostname(host->mmc), host->sdcc_suspended,
host->pending_resume, host->sdcc_suspending);
pr_err("%s: RPM: runtime_status=%d, usage_count=%d,"
" is_suspended=%d, disable_depth=%d, runtime_error=%d,"
" request_pending=%d, request=%d\n",
mmc_hostname(host->mmc), dev->power.runtime_status,
atomic_read(&dev->power.usage_count),
dev->power.is_suspended, dev->power.disable_depth,
dev->power.runtime_error, dev->power.request_pending,
dev->power.request);
}
static int msmsdcc_enable(struct mmc_host *mmc)
{
int rc = 0;
struct device *dev = mmc->parent;
struct msmsdcc_host *host = mmc_priv(mmc);
msmsdcc_pm_qos_update_latency(host, 1);
if (mmc->card && mmc_card_sdio(mmc->card))
goto out;
if (host->sdcc_suspended && host->pending_resume) {
host->pending_resume = false;
pm_runtime_get_noresume(dev);
rc = msmsdcc_runtime_resume(dev);
goto skip_get_sync;
}
if (dev->power.runtime_status == RPM_SUSPENDING) {
if (mmc->suspend_task == current) {
pm_runtime_get_noresume(dev);
goto out;
}
} else if (dev->power.runtime_status == RPM_RESUMING) {
pm_runtime_get_noresume(dev);
goto out;
}
rc = pm_runtime_get_sync(dev);
skip_get_sync:
if (rc < 0) {
WARN(1, "%s: %s: failed with error %d\n", mmc_hostname(mmc),
__func__, rc);
msmsdcc_print_rpm_info(host);
return rc;
}
out:
msmsdcc_msm_bus_cancel_work_and_set_vote(host, &mmc->ios);
return 0;
}
static int msmsdcc_disable(struct mmc_host *mmc)
{
int rc;
struct msmsdcc_host *host = mmc_priv(mmc);
msmsdcc_pm_qos_update_latency(host, 0);
if (mmc->card && mmc_card_sdio(mmc->card)) {
rc = 0;
goto out;
}
if (host->plat->disable_runtime_pm)
return -ENOTSUPP;
rc = pm_runtime_put_sync(mmc->parent);
if (rc < 0) {
WARN(1, "%s: %s: failed with error %d\n", mmc_hostname(mmc),
__func__, rc);
msmsdcc_print_rpm_info(host);
return rc;
}
out:
msmsdcc_msm_bus_queue_work(host);
return rc;
}
#else
static void msmsdcc_print_rpm_info(struct msmsdcc_host *host) {}
static int msmsdcc_enable(struct mmc_host *mmc)
{
struct device *dev = mmc->parent;
struct msmsdcc_host *host = mmc_priv(mmc);
int rc = 0;
msmsdcc_pm_qos_update_latency(host, 1);
if (mmc->card && mmc_card_sdio(mmc->card)) {
rc = 0;
goto out;
}
if (host->sdcc_suspended && host->pending_resume) {
host->pending_resume = false;
rc = msmsdcc_runtime_resume(dev);
goto out;
}
mutex_lock(&host->clk_mutex);
rc = msmsdcc_setup_clocks(host, true);
mutex_unlock(&host->clk_mutex);
out:
if (rc < 0) {
pr_info("%s: %s: failed with error %d", mmc_hostname(mmc),
__func__, rc);
msmsdcc_pm_qos_update_latency(host, 0);
return rc;
}
msmsdcc_msm_bus_cancel_work_and_set_vote(host, &mmc->ios);
return 0;
}
static int msmsdcc_disable(struct mmc_host *mmc)
{
struct msmsdcc_host *host = mmc_priv(mmc);
int rc = 0;
msmsdcc_pm_qos_update_latency(host, 0);
if (mmc->card && mmc_card_sdio(mmc->card))
goto out;
mutex_lock(&host->clk_mutex);
rc = msmsdcc_setup_clocks(host, false);
mutex_unlock(&host->clk_mutex);
if (rc) {
msmsdcc_pm_qos_update_latency(host, 1);
return rc;
}
out:
msmsdcc_msm_bus_queue_work(host);
return rc;
}
#endif
static int msmsdcc_switch_io_voltage(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct msmsdcc_host *host = mmc_priv(mmc);
unsigned long flags;
int rc = 0;
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
/* Set VDD IO to high voltage range (2.7v - 3.6v) */
rc = msmsdcc_set_vdd_io_vol(host, VDD_IO_HIGH, 0);
if (!rc)
msmsdcc_update_io_pad_pwr_switch(host);
goto out;
case MMC_SIGNAL_VOLTAGE_180:
break;
case MMC_SIGNAL_VOLTAGE_120:
/*
* For eMMC cards, VDD_IO voltage range must be changed
* only if it operates in HS200 SDR 1.2V mode or in
* DDR 1.2V mode.
*/
rc = msmsdcc_set_vdd_io_vol(host, VDD_IO_SET_LEVEL, 1200000);
if (!rc)
msmsdcc_update_io_pad_pwr_switch(host);
goto out;
default:
/* invalid selection. don't do anything */
rc = -EINVAL;
goto out;
}
/*
* If we are here means voltage switch from high voltage to
* low voltage is required
*/
spin_lock_irqsave(&host->lock, flags);
/*
* Poll on MCIDATIN_3_0 and MCICMDIN bits of MCI_TEST_INPUT
* register until they become all zeros.
*/
if (readl_relaxed(host->base + MCI_TEST_INPUT) & (0xF << 1)) {
rc = -EAGAIN;
pr_err("%s: %s: MCIDATIN_3_0 is still not all zeros",
mmc_hostname(mmc), __func__);
goto out_unlock;
}
/* Stop SD CLK output. */
writel_relaxed((readl_relaxed(host->base + MMCICLOCK) |
MCI_CLK_PWRSAVE), host->base + MMCICLOCK);
msmsdcc_sync_reg_wr(host);
spin_unlock_irqrestore(&host->lock, flags);
/*
* Switch VDD Io from high voltage range (2.7v - 3.6v) to
* low voltage range (1.7v - 1.95v).
*/
rc = msmsdcc_set_vdd_io_vol(host, VDD_IO_LOW, 0);
if (rc)
goto out;
msmsdcc_update_io_pad_pwr_switch(host);
/* Wait 5 ms for the voltage regulater in the card to become stable. */
usleep_range(5000, 5500);
spin_lock_irqsave(&host->lock, flags);
/* Disable PWRSAVE would make sure that SD CLK is always running */
writel_relaxed((readl_relaxed(host->base + MMCICLOCK)
& ~MCI_CLK_PWRSAVE), host->base + MMCICLOCK);
msmsdcc_sync_reg_wr(host);
spin_unlock_irqrestore(&host->lock, flags);
/*
* If MCIDATIN_3_0 and MCICMDIN bits of MCI_TEST_INPUT register
* don't become all ones within 1 ms then a Voltage Switch
* sequence has failed and a power cycle to the card is required.
* Otherwise Voltage Switch sequence is completed successfully.
*/
usleep_range(1000, 1500);
spin_lock_irqsave(&host->lock, flags);
if ((readl_relaxed(host->base + MCI_TEST_INPUT) & (0xF << 1))
!= (0xF << 1)) {
pr_err("%s: %s: MCIDATIN_3_0 are still not all ones",
mmc_hostname(mmc), __func__);
rc = -EAGAIN;
goto out_unlock;
}
out_unlock:
/* Enable PWRSAVE */
writel_relaxed((readl_relaxed(host->base + MMCICLOCK) |
MCI_CLK_PWRSAVE), host->base + MMCICLOCK);
msmsdcc_sync_reg_wr(host);
spin_unlock_irqrestore(&host->lock, flags);
out:
return rc;
}
static inline void msmsdcc_cm_sdc4_dll_set_freq(struct msmsdcc_host *host)
{
u32 mclk_freq = 0;
/* Program the MCLK value to MCLK_FREQ bit field */
if (host->clk_rate <= 112000000)
mclk_freq = 0;
else if (host->clk_rate <= 125000000)
mclk_freq = 1;
else if (host->clk_rate <= 137000000)
mclk_freq = 2;
else if (host->clk_rate <= 150000000)
mclk_freq = 3;
else if (host->clk_rate <= 162000000)
mclk_freq = 4;
else if (host->clk_rate <= 175000000)
mclk_freq = 5;
else if (host->clk_rate <= 187000000)
mclk_freq = 6;
else if (host->clk_rate <= 200000000)
mclk_freq = 7;
writel_relaxed(((readl_relaxed(host->base + MCI_DLL_CONFIG)
& ~(7 << 24)) | (mclk_freq << 24)),
host->base + MCI_DLL_CONFIG);
}
/* Initialize the DLL (Programmable Delay Line ) */
static int msmsdcc_init_cm_sdc4_dll(struct msmsdcc_host *host)
{
int rc = 0;
unsigned long flags;
u32 wait_cnt;
spin_lock_irqsave(&host->lock, flags);
/*
* Make sure that clock is always enabled when DLL
* tuning is in progress. Keeping PWRSAVE ON may
* turn off the clock. So let's disable the PWRSAVE
* here and re-enable it once tuning is completed.
*/
writel_relaxed((readl_relaxed(host->base + MMCICLOCK)
& ~MCI_CLK_PWRSAVE), host->base + MMCICLOCK);
msmsdcc_sync_reg_wr(host);
/* Write 1 to DLL_RST bit of MCI_DLL_CONFIG register */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
| MCI_DLL_RST), host->base + MCI_DLL_CONFIG);
/* Write 1 to DLL_PDN bit of MCI_DLL_CONFIG register */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
| MCI_DLL_PDN), host->base + MCI_DLL_CONFIG);
msmsdcc_cm_sdc4_dll_set_freq(host);
/* Write 0 to DLL_RST bit of MCI_DLL_CONFIG register */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
& ~MCI_DLL_RST), host->base + MCI_DLL_CONFIG);
/* Write 0 to DLL_PDN bit of MCI_DLL_CONFIG register */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
& ~MCI_DLL_PDN), host->base + MCI_DLL_CONFIG);
/* Set DLL_EN bit to 1. */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
| MCI_DLL_EN), host->base + MCI_DLL_CONFIG);
/* Set CK_OUT_EN bit to 1. */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
| MCI_CK_OUT_EN), host->base + MCI_DLL_CONFIG);
wait_cnt = 50;
/* Wait until DLL_LOCK bit of MCI_DLL_STATUS register becomes '1' */
while (!(readl_relaxed(host->base + MCI_DLL_STATUS) & MCI_DLL_LOCK)) {
/* max. wait for 50us sec for LOCK bit to be set */
if (--wait_cnt == 0) {
pr_err("%s: %s: DLL failed to LOCK\n",
mmc_hostname(host->mmc), __func__);
rc = -ETIMEDOUT;
goto out;
}
/* wait for 1us before polling again */
udelay(1);
}
out:
/* re-enable PWRSAVE */
writel_relaxed((readl_relaxed(host->base + MMCICLOCK) |
MCI_CLK_PWRSAVE), host->base + MMCICLOCK);
msmsdcc_sync_reg_wr(host);
spin_unlock_irqrestore(&host->lock, flags);
return rc;
}
static inline int msmsdcc_dll_poll_ck_out_en(struct msmsdcc_host *host,
u8 poll)
{
int rc = 0;
u32 wait_cnt = 50;
u8 ck_out_en = 0;
/* poll for MCI_CK_OUT_EN bit. max. poll time = 50us */
ck_out_en = !!(readl_relaxed(host->base + MCI_DLL_CONFIG) &
MCI_CK_OUT_EN);
while (ck_out_en != poll) {
if (--wait_cnt == 0) {
pr_err("%s: %s: CK_OUT_EN bit is not %d\n",
mmc_hostname(host->mmc), __func__, poll);
rc = -ETIMEDOUT;
goto out;
}
udelay(1);
ck_out_en = !!(readl_relaxed(host->base + MCI_DLL_CONFIG) &
MCI_CK_OUT_EN);
}
out:
return rc;
}
/*
* Enable a CDR circuit in CM_SDC4_DLL block to enable automatic
* calibration sequence. This function should be called before
* enabling AUTO_CMD19 bit in MCI_CMD register for block read
* commands (CMD17/CMD18).
*
* This function gets called when host spinlock acquired.
*/
static int msmsdcc_enable_cdr_cm_sdc4_dll(struct msmsdcc_host *host)
{
int rc = 0;
u32 config;
config = readl_relaxed(host->base + MCI_DLL_CONFIG);
config |= MCI_CDR_EN;
config &= ~(MCI_CDR_EXT_EN | MCI_CK_OUT_EN);
writel_relaxed(config, host->base + MCI_DLL_CONFIG);
/* Wait until CK_OUT_EN bit of MCI_DLL_CONFIG register becomes '0' */
rc = msmsdcc_dll_poll_ck_out_en(host, 0);
if (rc)
goto err_out;
/* Set CK_OUT_EN bit of MCI_DLL_CONFIG register to 1. */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
| MCI_CK_OUT_EN), host->base + MCI_DLL_CONFIG);
/* Wait until CK_OUT_EN bit of MCI_DLL_CONFIG register becomes '1' */
rc = msmsdcc_dll_poll_ck_out_en(host, 1);
if (rc)
goto err_out;
goto out;
err_out:
pr_err("%s: %s: Failed\n", mmc_hostname(host->mmc), __func__);
out:
return rc;
}
static int msmsdcc_config_cm_sdc4_dll_phase(struct msmsdcc_host *host,
u8 phase)
{
int rc = 0;
u8 grey_coded_phase_table[] = {0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
0xC, 0xD, 0xF, 0xE, 0xA, 0xB, 0x9,
0x8};
unsigned long flags;
u32 config;
spin_lock_irqsave(&host->lock, flags);
config = readl_relaxed(host->base + MCI_DLL_CONFIG);
config &= ~(MCI_CDR_EN | MCI_CK_OUT_EN);
config |= (MCI_CDR_EXT_EN | MCI_DLL_EN);
writel_relaxed(config, host->base + MCI_DLL_CONFIG);
/* Wait until CK_OUT_EN bit of MCI_DLL_CONFIG register becomes '0' */
rc = msmsdcc_dll_poll_ck_out_en(host, 0);
if (rc)
goto err_out;
/*
* Write the selected DLL clock output phase (0 ... 15)
* to CDR_SELEXT bit field of MCI_DLL_CONFIG register.
*/
writel_relaxed(((readl_relaxed(host->base + MCI_DLL_CONFIG)
& ~(0xF << 20))
| (grey_coded_phase_table[phase] << 20)),
host->base + MCI_DLL_CONFIG);
/* Set CK_OUT_EN bit of MCI_DLL_CONFIG register to 1. */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
| MCI_CK_OUT_EN), host->base + MCI_DLL_CONFIG);
/* Wait until CK_OUT_EN bit of MCI_DLL_CONFIG register becomes '1' */
rc = msmsdcc_dll_poll_ck_out_en(host, 1);
if (rc)
goto err_out;
config = readl_relaxed(host->base + MCI_DLL_CONFIG);
config |= MCI_CDR_EN;
config &= ~MCI_CDR_EXT_EN;
writel_relaxed(config, host->base + MCI_DLL_CONFIG);
goto out;
err_out:
pr_err("%s: %s: Failed to set DLL phase: %d\n",
mmc_hostname(host->mmc), __func__, phase);
out:
spin_unlock_irqrestore(&host->lock, flags);
return rc;
}
/*
* Find out the greatest range of consecuitive selected
* DLL clock output phases that can be used as sampling
* setting for SD3.0 UHS-I card read operation (in SDR104
* timing mode) or for eMMC4.5 card read operation (in HS200
* timing mode).
* Select the 3/4 of the range and configure the DLL with the
* selected DLL clock output phase.
*/
static int find_most_appropriate_phase(struct msmsdcc_host *host,
u8 *phase_table, u8 total_phases)
{
#define MAX_PHASES 16
int ret;
u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
u8 phases_per_row[MAX_PHASES] = {0};
int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
bool phase_0_found = false, phase_15_found = false;
if (!total_phases || (total_phases > MAX_PHASES)) {
pr_err("%s: %s: invalid argument: total_phases=%d\n",
mmc_hostname(host->mmc), __func__, total_phases);
return -EINVAL;
}
for (cnt = 0; cnt < total_phases; cnt++) {
ranges[row_index][col_index] = phase_table[cnt];
phases_per_row[row_index] += 1;
col_index++;
if ((cnt + 1) == total_phases) {
continue;
/* check if next phase in phase_table is consecutive or not */
} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
row_index++;
col_index = 0;
}
}
if (row_index >= MAX_PHASES)
return -EINVAL;
/* Check if phase-0 is present in first valid window? */
if (!ranges[0][0]) {
phase_0_found = true;
phase_0_raw_index = 0;
/* Check if cycle exist between 2 valid windows */
for (cnt = 1; cnt <= row_index; cnt++) {
if (phases_per_row[cnt]) {
for (i = 0; i < phases_per_row[cnt]; i++) {
if (ranges[cnt][i] == 15) {
phase_15_found = true;
phase_15_raw_index = cnt;
break;
}
}
}
}
}
/* If 2 valid windows form cycle then merge them as single window */
if (phase_0_found && phase_15_found) {
/* number of phases in raw where phase 0 is present */
u8 phases_0 = phases_per_row[phase_0_raw_index];
/* number of phases in raw where phase 15 is present */
u8 phases_15 = phases_per_row[phase_15_raw_index];
if (phases_0 + phases_15 >= MAX_PHASES)
/*
* If there are more than 1 phase windows then total
* number of phases in both the windows should not be
* more than or equal to MAX_PHASES.
*/
return -EINVAL;
/* Merge 2 cyclic windows */
i = phases_15;
for (cnt = 0; cnt < phases_0; cnt++) {
ranges[phase_15_raw_index][i] =
ranges[phase_0_raw_index][cnt];
if (++i >= MAX_PHASES)
break;
}
phases_per_row[phase_0_raw_index] = 0;
phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
}
for (cnt = 0; cnt <= row_index; cnt++) {
if (phases_per_row[cnt] > curr_max) {
curr_max = phases_per_row[cnt];
selected_row_index = cnt;
}
}
i = ((curr_max * 3) / 4);
if (i)
i--;
ret = (int)ranges[selected_row_index][i];
if (ret >= MAX_PHASES) {
ret = -EINVAL;
pr_err("%s: %s: invalid phase selected=%d\n",
mmc_hostname(host->mmc), __func__, ret);
}
return ret;
}
static int msmsdcc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
int rc = 0;
struct msmsdcc_host *host = mmc_priv(mmc);
unsigned long flags;
u8 phase, *data_buf, tuned_phases[16], tuned_phase_cnt = 0;
const u32 *tuning_block_pattern = tuning_block_64;
int size = sizeof(tuning_block_64); /* Tuning pattern size in bytes */
pr_debug("%s: Enter %s\n", mmc_hostname(mmc), __func__);
/* Tuning is only required for SDR104 modes */
if (!host->tuning_needed) {
rc = 0;
goto exit;
}
spin_lock_irqsave(&host->lock, flags);
WARN(!host->pwr, "SDCC power is turned off\n");
WARN(!atomic_read(&host->clks_on), "SDCC clocks are turned off\n");
WARN(host->sdcc_irq_disabled, "SDCC IRQ is disabled\n");
host->tuning_in_progress = 1;
if ((opcode == MMC_SEND_TUNING_BLOCK_HS200) &&
(mmc->ios.bus_width == MMC_BUS_WIDTH_8)) {
tuning_block_pattern = tuning_block_128;
size = sizeof(tuning_block_128);
}
spin_unlock_irqrestore(&host->lock, flags);
/* first of all reset the tuning block */
rc = msmsdcc_init_cm_sdc4_dll(host);
if (rc)
goto out;
data_buf = kmalloc(size, GFP_KERNEL);
if (!data_buf) {
rc = -ENOMEM;
goto out;
}
phase = 0;
do {
struct mmc_command cmd = {0};
struct mmc_data data = {0};
struct mmc_request mrq = {
.cmd = &cmd,
.data = &data
};
struct scatterlist sg;
/* set the phase in delay line hw block */
rc = msmsdcc_config_cm_sdc4_dll_phase(host, phase);
if (rc)
goto kfree;
cmd.opcode = opcode;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
data.blksz = size;
data.blocks = 1;
data.flags = MMC_DATA_READ;
data.timeout_ns = 1000 * 1000 * 1000; /* 1 sec */
data.sg = &sg;
data.sg_len = 1;
sg_init_one(&sg, data_buf, size);
memset(data_buf, 0, size);
mmc_wait_for_req(mmc, &mrq);
if (!cmd.error && !data.error &&
!memcmp(data_buf, tuning_block_pattern, size)) {
/* tuning is successful at this tuning point */
tuned_phases[tuned_phase_cnt++] = phase;
pr_debug("%s: %s: found good phase = %d\n",
mmc_hostname(mmc), __func__, phase);
}
} while (++phase < 16);
if (tuned_phase_cnt) {
rc = find_most_appropriate_phase(host, tuned_phases,
tuned_phase_cnt);
if (rc < 0)
goto kfree;
else
phase = (u8)rc;
/*
* Finally set the selected phase in delay
* line hw block.
*/
rc = msmsdcc_config_cm_sdc4_dll_phase(host, phase);
if (rc)
goto kfree;
pr_debug("%s: %s: finally setting the tuning phase to %d\n",
mmc_hostname(mmc), __func__, phase);
} else {
/* tuning failed */
pr_err("%s: %s: no tuning point found\n",
mmc_hostname(mmc), __func__);
msmsdcc_dump_sdcc_state(host);
rc = -EAGAIN;
}
kfree:
kfree(data_buf);
out:
spin_lock_irqsave(&host->lock, flags);
host->tuning_in_progress = 0;
spin_unlock_irqrestore(&host->lock, flags);
exit:
pr_debug("%s: Exit %s\n", mmc_hostname(mmc), __func__);
return rc;
}
/*
* Work around of the unavailability of a power_reset functionality in SD cards
* by turning the OFF & back ON the regulators supplying the SD card.
*/
void msmsdcc_hw_reset(struct mmc_host *mmc)
{
struct mmc_card *card = mmc->card;
struct msmsdcc_host *host = mmc_priv(mmc);
int rc;
/* Write-protection bits would be lost on a hardware reset in emmc */
if (!card || !mmc_card_sd(card))
return;
/*
* Continuing on failing to disable regulator would lead to a panic
* anyway, since the commands would fail and console would be flooded
* with prints, eventually leading to a watchdog bark
*/
rc = msmsdcc_setup_vreg(host, false, false);
if (rc) {
pr_err("%s: %s disable regulator: failed: %d\n",
mmc_hostname(mmc), __func__, rc);
BUG_ON(rc);
}
/* 10ms delay for the supply to reach the desired voltage level */
usleep_range(10000, 12000);
/*
* Continuing on failing to enable regulator would lead to a panic
* anyway, since the commands would fail and console would be flooded
* with prints, eventually leading to a watchdog bark
*/
rc = msmsdcc_setup_vreg(host, true, false);
if (rc) {
pr_err("%s: %s enable regulator: failed: %d\n",
mmc_hostname(mmc), __func__, rc);
BUG_ON(rc);
}
/* 10ms delay for the supply to reach the desired voltage level */
usleep_range(10000, 12000);
}
static const struct mmc_host_ops msmsdcc_ops = {
.enable = msmsdcc_enable,
.disable = msmsdcc_disable,
.pre_req = msmsdcc_pre_req,
.post_req = msmsdcc_post_req,
.request = msmsdcc_request,
.set_ios = msmsdcc_set_ios,
.get_ro = msmsdcc_get_ro,
.enable_sdio_irq = msmsdcc_enable_sdio_irq,
.start_signal_voltage_switch = msmsdcc_switch_io_voltage,
.execute_tuning = msmsdcc_execute_tuning,
.hw_reset = msmsdcc_hw_reset,
};
static void msmsdcc_enable_status_gpio(struct msmsdcc_host *host)
{
unsigned int gpio_no = host->plat->status_gpio;
int status;
if (!gpio_is_valid(gpio_no))
return;
status = gpio_request(gpio_no, "SD_HW_Detect");
if (status)
pr_err("%s: %s: gpio_request(%d) failed\n",
mmc_hostname(host->mmc), __func__, gpio_no);
}
static void msmsdcc_disable_status_gpio(struct msmsdcc_host *host)
{
if (gpio_is_valid(host->plat->status_gpio))
gpio_free(host->plat->status_gpio);
}
static unsigned int
msmsdcc_slot_status(struct msmsdcc_host *host)
{
int status;
status = gpio_get_value_cansleep(host->plat->status_gpio);
if (host->plat->is_status_gpio_active_low)
status = !status;
return status;
}
static void
msmsdcc_check_status(unsigned long data)
{
struct msmsdcc_host *host = (struct msmsdcc_host *)data;
unsigned int status;
if (host->plat->status || gpio_is_valid(host->plat->status_gpio)) {
if (host->plat->status)
status = host->plat->status(mmc_dev(host->mmc));
else
status = msmsdcc_slot_status(host);
host->eject = !status;
if (status ^ host->oldstat) {
if (host->plat->status)
pr_info("%s: Slot status change detected "
"(%d -> %d)\n",
mmc_hostname(host->mmc),
host->oldstat, status);
else if (host->plat->is_status_gpio_active_low)
pr_info("%s: Slot status change detected "
"(%d -> %d) and the card detect GPIO"
" is ACTIVE_LOW\n",
mmc_hostname(host->mmc),
host->oldstat, status);
else
pr_info("%s: Slot status change detected "
"(%d -> %d) and the card detect GPIO"
" is ACTIVE_HIGH\n",
mmc_hostname(host->mmc),
host->oldstat, status);
mmc_detect_change(host->mmc, 0);
}
host->oldstat = status;
} else {
mmc_detect_change(host->mmc, 0);
}
}
static irqreturn_t
msmsdcc_platform_status_irq(int irq, void *dev_id)
{
struct msmsdcc_host *host = dev_id;
pr_debug("%s: %d\n", __func__, irq);
msmsdcc_check_status((unsigned long) host);
return IRQ_HANDLED;
}
static irqreturn_t
msmsdcc_platform_sdiowakeup_irq(int irq, void *dev_id)
{
struct msmsdcc_host *host = dev_id;
pr_debug("%s: SDIO Wake up IRQ : %d\n", mmc_hostname(host->mmc), irq);
spin_lock(&host->lock);
if (!host->sdio_wakeupirq_disabled) {
disable_irq_nosync(irq);
if (host->sdcc_suspended) {
wake_lock(&host->sdio_wlock);
msmsdcc_disable_irq_wake(host);
}
host->sdio_wakeupirq_disabled = 1;
}
if (host->plat->is_sdio_al_client) {
wake_lock(&host->sdio_wlock);
spin_unlock(&host->lock);
mmc_signal_sdio_irq(host->mmc);
goto out_unlocked;
}
spin_unlock(&host->lock);
out_unlocked:
return IRQ_HANDLED;
}
static void
msmsdcc_status_notify_cb(int card_present, void *dev_id)
{
struct msmsdcc_host *host = dev_id;
pr_debug("%s: card_present %d\n", mmc_hostname(host->mmc),
card_present);
msmsdcc_check_status((unsigned long) host);
}
static int
msmsdcc_init_dma(struct msmsdcc_host *host)
{
memset(&host->dma, 0, sizeof(struct msmsdcc_dma_data));
host->dma.host = host;
host->dma.channel = -1;
host->dma.crci = -1;
if (!host->dmares)
return -ENODEV;
host->dma.nc = dma_alloc_coherent(NULL,
sizeof(struct msmsdcc_nc_dmadata),
&host->dma.nc_busaddr,
GFP_KERNEL);
if (host->dma.nc == NULL) {
pr_err("Unable to allocate DMA buffer\n");
return -ENOMEM;
}
memset(host->dma.nc, 0x00, sizeof(struct msmsdcc_nc_dmadata));
host->dma.cmd_busaddr = host->dma.nc_busaddr;
host->dma.cmdptr_busaddr = host->dma.nc_busaddr +
offsetof(struct msmsdcc_nc_dmadata, cmdptr);
host->dma.channel = host->dmares->start;
host->dma.crci = host->dma_crci_res->start;
return 0;
}
#ifdef CONFIG_MMC_MSM_SPS_SUPPORT
/**
* Allocate and Connect a SDCC peripheral's SPS endpoint
*
* This function allocates endpoint context and
* connect it with memory endpoint by calling
* appropriate SPS driver APIs.
*
* Also registers a SPS callback function with
* SPS driver
*
* This function should only be called once typically
* during driver probe.
*
* @host - Pointer to sdcc host structure
* @ep - Pointer to sps endpoint data structure
* @is_produce - 1 means Producer endpoint
* 0 means Consumer endpoint
*
* @return - 0 if successful else negative value.
*
*/
static int msmsdcc_sps_init_ep_conn(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep,
bool is_producer)
{
int rc = 0;
struct sps_pipe *sps_pipe_handle;
struct sps_connect *sps_config = &ep->config;
struct sps_register_event *sps_event = &ep->event;
/* Allocate endpoint context */
sps_pipe_handle = sps_alloc_endpoint();
if (!sps_pipe_handle) {
pr_err("%s: sps_alloc_endpoint() failed!!! is_producer=%d",
mmc_hostname(host->mmc), is_producer);
rc = -ENOMEM;
goto out;
}
/* Get default connection configuration for an endpoint */
rc = sps_get_config(sps_pipe_handle, sps_config);
if (rc) {
pr_err("%s: sps_get_config() failed!!! pipe_handle=0x%x,"
" rc=%d", mmc_hostname(host->mmc),
(u32)sps_pipe_handle, rc);
goto get_config_err;
}
/* Modify the default connection configuration */
if (is_producer) {
/*
* For SDCC producer transfer, source should be
* SDCC peripheral where as destination should
* be system memory.
*/
sps_config->source = host->sps.bam_handle;
sps_config->destination = SPS_DEV_HANDLE_MEM;
/* Producer pipe will handle this connection */
sps_config->mode = SPS_MODE_SRC;
sps_config->options =
SPS_O_AUTO_ENABLE | SPS_O_EOT | SPS_O_ACK_TRANSFERS;
} else {
/*
* For SDCC consumer transfer, source should be
* system memory where as destination should
* SDCC peripheral
*/
sps_config->source = SPS_DEV_HANDLE_MEM;
sps_config->destination = host->sps.bam_handle;
sps_config->mode = SPS_MODE_DEST;
sps_config->options =
SPS_O_AUTO_ENABLE | SPS_O_EOT | SPS_O_ACK_TRANSFERS;
}
/* Producer pipe index */
sps_config->src_pipe_index = host->sps.src_pipe_index;
/* Consumer pipe index */
sps_config->dest_pipe_index = host->sps.dest_pipe_index;
/*
* This event thresold value is only significant for BAM-to-BAM
* transfer. It's ignored for BAM-to-System mode transfer.
*/
sps_config->event_thresh = 0x10;
/* Allocate maximum descriptor fifo size */
sps_config->desc.size = SPS_MAX_DESC_FIFO_SIZE -
(SPS_MAX_DESC_FIFO_SIZE % SPS_MAX_DESC_LENGTH);
sps_config->desc.base = dma_alloc_coherent(mmc_dev(host->mmc),
sps_config->desc.size,
&sps_config->desc.phys_base,
GFP_KERNEL);
if (!sps_config->desc.base) {
rc = -ENOMEM;
pr_err("%s: dma_alloc_coherent() failed!!! Can't allocate buffer\n"
, mmc_hostname(host->mmc));
goto get_config_err;
}
memset(sps_config->desc.base, 0x00, sps_config->desc.size);
/* Establish connection between peripheral and memory endpoint */
rc = sps_connect(sps_pipe_handle, sps_config);
if (rc) {
pr_err("%s: sps_connect() failed!!! pipe_handle=0x%x,"
" rc=%d", mmc_hostname(host->mmc),
(u32)sps_pipe_handle, rc);
goto sps_connect_err;
}
sps_event->mode = SPS_TRIGGER_CALLBACK;
sps_event->options = SPS_O_EOT;
sps_event->callback = msmsdcc_sps_complete_cb;
sps_event->xfer_done = NULL;
sps_event->user = (void *)host;
/* Register callback event for EOT (End of transfer) event. */
rc = sps_register_event(sps_pipe_handle, sps_event);
if (rc) {
pr_err("%s: sps_connect() failed!!! pipe_handle=0x%x,"
" rc=%d", mmc_hostname(host->mmc),
(u32)sps_pipe_handle, rc);
goto reg_event_err;
}
/* Now save the sps pipe handle */
ep->pipe_handle = sps_pipe_handle;
pr_debug("%s: %s, success !!! %s: pipe_handle=0x%x,"
" desc_fifo.phys_base=0x%x\n", mmc_hostname(host->mmc),
__func__, is_producer ? "READ" : "WRITE",
(u32)sps_pipe_handle, sps_config->desc.phys_base);
goto out;
reg_event_err:
sps_disconnect(sps_pipe_handle);
sps_connect_err:
dma_free_coherent(mmc_dev(host->mmc),
sps_config->desc.size,
sps_config->desc.base,
sps_config->desc.phys_base);
get_config_err:
sps_free_endpoint(sps_pipe_handle);
out:
return rc;
}
/**
* Disconnect and Deallocate a SDCC peripheral's SPS endpoint
*
* This function disconnect endpoint and deallocates
* endpoint context.
*
* This function should only be called once typically
* during driver remove.
*
* @host - Pointer to sdcc host structure
* @ep - Pointer to sps endpoint data structure
*
*/
static void msmsdcc_sps_exit_ep_conn(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep)
{
struct sps_pipe *sps_pipe_handle = ep->pipe_handle;
struct sps_connect *sps_config = &ep->config;
struct sps_register_event *sps_event = &ep->event;
sps_event->xfer_done = NULL;
sps_event->callback = NULL;
sps_register_event(sps_pipe_handle, sps_event);
sps_disconnect(sps_pipe_handle);
dma_free_coherent(mmc_dev(host->mmc),
sps_config->desc.size,
sps_config->desc.base,
sps_config->desc.phys_base);
sps_free_endpoint(sps_pipe_handle);
}
/**
* Reset SDCC peripheral's SPS endpoint
*
* This function disconnects an endpoint.
*
* This function should be called for reseting
* SPS endpoint when data transfer error is
* encountered during data transfer. This
* can be considered as soft reset to endpoint.
*
* This function should only be called if
* msmsdcc_sps_init() is already called.
*
* @host - Pointer to sdcc host structure
* @ep - Pointer to sps endpoint data structure
*
* @return - 0 if successful else negative value.
*/
static int msmsdcc_sps_reset_ep(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep)
{
int rc = 0;
struct sps_pipe *sps_pipe_handle = ep->pipe_handle;
rc = sps_disconnect(sps_pipe_handle);
if (rc) {
pr_err("%s: %s: sps_disconnect() failed!!! pipe_handle=0x%x,"
" rc=%d", mmc_hostname(host->mmc), __func__,
(u32)sps_pipe_handle, rc);
goto out;
}
out:
return rc;
}
/**
* Restore SDCC peripheral's SPS endpoint
*
* This function connects an endpoint.
*
* This function should be called for restoring
* SPS endpoint after data transfer error is
* encountered during data transfer. This
* can be considered as soft reset to endpoint.
*
* This function should only be called if
* msmsdcc_sps_reset_ep() is called before.
*
* @host - Pointer to sdcc host structure
* @ep - Pointer to sps endpoint data structure
*
* @return - 0 if successful else negative value.
*/
static int msmsdcc_sps_restore_ep(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep)
{
int rc = 0;
struct sps_pipe *sps_pipe_handle = ep->pipe_handle;
struct sps_connect *sps_config = &ep->config;
struct sps_register_event *sps_event = &ep->event;
/* Establish connection between peripheral and memory endpoint */
rc = sps_connect(sps_pipe_handle, sps_config);
if (rc) {
pr_err("%s: %s: sps_connect() failed!!! pipe_handle=0x%x,"
" rc=%d", mmc_hostname(host->mmc), __func__,
(u32)sps_pipe_handle, rc);
goto out;
}
/* Register callback event for EOT (End of transfer) event. */
rc = sps_register_event(sps_pipe_handle, sps_event);
if (rc) {
pr_err("%s: %s: sps_register_event() failed!!!"
" pipe_handle=0x%x, rc=%d",
mmc_hostname(host->mmc), __func__,
(u32)sps_pipe_handle, rc);
goto reg_event_err;
}
goto out;
reg_event_err:
sps_disconnect(sps_pipe_handle);
out:
return rc;
}
/**
* Handle BAM device's global error condition
*
* This is an error handler for the SDCC bam device
*
* This function is registered as a callback with SPS-BAM
* driver and will called in case there are an errors for
* the SDCC BAM deivce. Any error conditions in the BAM
* device are global and will be result in this function
* being called once per device.
*
* This function will be called from the sps driver's
* interrupt context.
*
* @sps_cb_case - indicates what error it is
* @user - Pointer to sdcc host structure
*/
static void
msmsdcc_sps_bam_global_irq_cb(enum sps_callback_case sps_cb_case, void *user)
{
struct msmsdcc_host *host = (struct msmsdcc_host *)user;
struct mmc_request *mrq;
unsigned long flags;
int32_t error = 0;
BUG_ON(!host);
BUG_ON(!is_sps_mode(host));
if (sps_cb_case == SPS_CALLBACK_BAM_ERROR_IRQ) {
/**
* Reset the all endpoints along with reseting the sps device.
*/
host->sps.pipe_reset_pending = true;
host->sps.reset_device = true;
pr_err("%s: BAM Global ERROR IRQ happened\n",
mmc_hostname(host->mmc));
error = EAGAIN;
} else if (sps_cb_case == SPS_CALLBACK_BAM_HRESP_ERR_IRQ) {
/**
* This means that there was an AHB access error and
* the address we are trying to read/write is something
* we dont have priviliges to do so.
*/
pr_err("%s: BAM HRESP_ERR_IRQ happened\n",
mmc_hostname(host->mmc));
error = EACCES;
} else {
/**
* This should not have happened ideally. If this happens
* there is some seriously wrong.
*/
pr_err("%s: BAM global IRQ callback received, type:%d\n",
mmc_hostname(host->mmc), (u32) sps_cb_case);
error = EIO;
}
spin_lock_irqsave(&host->lock, flags);
mrq = host->curr.mrq;
if (mrq && mrq->cmd) {
msmsdcc_dump_sdcc_state(host);
if (!mrq->cmd->error)
mrq->cmd->error = -error;
if (host->curr.data) {
if (mrq->data && !mrq->data->error)
mrq->data->error = -error;
host->curr.data_xfered = 0;
if (host->sps.sg && is_sps_mode(host)) {
/* Stop current SPS transfer */
msmsdcc_sps_exit_curr_xfer(host);
} else {
/* this condition should not have happened */
pr_err("%s: something is seriously wrong. "\
"Funtion: %s, line: %d\n",
mmc_hostname(host->mmc),
__func__, __LINE__);
}
} else {
/* this condition should not have happened */
pr_err("%s: something is seriously wrong. Funtion: "\
"%s, line: %d\n", mmc_hostname(host->mmc),
__func__, __LINE__);
}
}
spin_unlock_irqrestore(&host->lock, flags);
}
/**
* Initialize SPS HW connected with SDCC core
*
* This function register BAM HW resources with
* SPS driver and then initialize 2 SPS endpoints
*
* This function should only be called once typically
* during driver probe.
*
* @host - Pointer to sdcc host structure
*
* @return - 0 if successful else negative value.
*
*/
static int msmsdcc_sps_init(struct msmsdcc_host *host)
{
int rc = 0;
struct sps_bam_props bam = {0};
host->bam_base = ioremap(host->bam_memres->start,
resource_size(host->bam_memres));
if (!host->bam_base) {
pr_err("%s: BAM ioremap() failed!!! phys_addr=0x%x,"
" size=0x%x", mmc_hostname(host->mmc),
host->bam_memres->start,
(host->bam_memres->end -
host->bam_memres->start));
rc = -ENOMEM;
goto out;
}
bam.phys_addr = host->bam_memres->start;
bam.virt_addr = host->bam_base;
/*
* This event thresold value is only significant for BAM-to-BAM
* transfer. It's ignored for BAM-to-System mode transfer.
*/
bam.event_threshold = 0x10; /* Pipe event threshold */
/*
* This threshold controls when the BAM publish
* the descriptor size on the sideband interface.
* SPS HW will be used for data transfer size even
* less than SDCC FIFO size. So let's set BAM summing
* thresold to SPS_MIN_XFER_SIZE bytes.
*/
bam.summing_threshold = SPS_MIN_XFER_SIZE;
/* SPS driver wll handle the SDCC BAM IRQ */
bam.irq = (u32)host->bam_irqres->start;
bam.manage = SPS_BAM_MGR_LOCAL;
bam.callback = msmsdcc_sps_bam_global_irq_cb;
bam.user = (void *)host;
pr_info("%s: bam physical base=0x%x\n", mmc_hostname(host->mmc),
(u32)bam.phys_addr);
pr_info("%s: bam virtual base=0x%x\n", mmc_hostname(host->mmc),
(u32)bam.virt_addr);
/* Register SDCC Peripheral BAM device to SPS driver */
rc = sps_register_bam_device(&bam, &host->sps.bam_handle);
if (rc) {
pr_err("%s: sps_register_bam_device() failed!!! err=%d",
mmc_hostname(host->mmc), rc);
goto reg_bam_err;
}
pr_info("%s: BAM device registered. bam_handle=0x%x",
mmc_hostname(host->mmc), host->sps.bam_handle);
host->sps.src_pipe_index = SPS_SDCC_PRODUCER_PIPE_INDEX;
host->sps.dest_pipe_index = SPS_SDCC_CONSUMER_PIPE_INDEX;
rc = msmsdcc_sps_init_ep_conn(host, &host->sps.prod,
SPS_PROD_PERIPHERAL);
if (rc)
goto sps_reset_err;
rc = msmsdcc_sps_init_ep_conn(host, &host->sps.cons,
SPS_CONS_PERIPHERAL);
if (rc)
goto cons_conn_err;
pr_info("%s: Qualcomm MSM SDCC-BAM at 0x%016llx irq %d\n",
mmc_hostname(host->mmc),
(unsigned long long)host->bam_memres->start,
(unsigned int)host->bam_irqres->start);
goto out;
cons_conn_err:
msmsdcc_sps_exit_ep_conn(host, &host->sps.prod);
sps_reset_err:
sps_deregister_bam_device(host->sps.bam_handle);
reg_bam_err:
iounmap(host->bam_base);
out:
return rc;
}
/**
* De-initialize SPS HW connected with SDCC core
*
* This function deinitialize SPS endpoints and then
* deregisters BAM resources from SPS driver.
*
* This function should only be called once typically
* during driver remove.
*
* @host - Pointer to sdcc host structure
*
*/
static void msmsdcc_sps_exit(struct msmsdcc_host *host)
{
msmsdcc_sps_exit_ep_conn(host, &host->sps.cons);
msmsdcc_sps_exit_ep_conn(host, &host->sps.prod);
sps_deregister_bam_device(host->sps.bam_handle);
iounmap(host->bam_base);
}
#endif /* CONFIG_MMC_MSM_SPS_SUPPORT */
static ssize_t
show_polling(struct device *dev, struct device_attribute *attr, char *buf)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
int poll;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
poll = !!(mmc->caps & MMC_CAP_NEEDS_POLL);
spin_unlock_irqrestore(&host->lock, flags);
return snprintf(buf, PAGE_SIZE, "%d\n", poll);
}
static ssize_t
store_polling(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
int value;
unsigned long flags;
sscanf(buf, "%d", &value);
spin_lock_irqsave(&host->lock, flags);
if (value) {
mmc->caps |= MMC_CAP_NEEDS_POLL;
mmc_detect_change(host->mmc, 0);
} else {
mmc->caps &= ~MMC_CAP_NEEDS_POLL;
}
#ifdef CONFIG_HAS_EARLYSUSPEND
host->polling_enabled = mmc->caps & MMC_CAP_NEEDS_POLL;
#endif
spin_unlock_irqrestore(&host->lock, flags);
return count;
}
static ssize_t
show_sdcc_to_mem_max_bus_bw(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
return snprintf(buf, PAGE_SIZE, "%u\n",
host->msm_bus_vote.is_max_bw_needed);
}
static ssize_t
store_sdcc_to_mem_max_bus_bw(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
uint32_t value;
unsigned long flags;
if (!kstrtou32(buf, 0, &value)) {
spin_lock_irqsave(&host->lock, flags);
host->msm_bus_vote.is_max_bw_needed = !!value;
spin_unlock_irqrestore(&host->lock, flags);
}
return count;
}
static ssize_t
show_idle_timeout(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
return snprintf(buf, PAGE_SIZE, "%u (Min 5 sec)\n",
host->idle_tout / 1000);
}
static ssize_t
store_idle_timeout(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
unsigned int long flags;
int timeout; /* in secs */
if (!kstrtou32(buf, 0, &timeout)
&& (timeout > MSM_MMC_DEFAULT_IDLE_TIMEOUT / 1000)) {
spin_lock_irqsave(&host->lock, flags);
host->idle_tout = timeout * 1000;
spin_unlock_irqrestore(&host->lock, flags);
}
return count;
}
static inline void set_auto_cmd_setting(struct device *dev,
const char *buf,
bool is_cmd19)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
unsigned int long flags;
int temp;
if (!kstrtou32(buf, 0, &temp)) {
spin_lock_irqsave(&host->lock, flags);
if (is_cmd19)
host->en_auto_cmd19 = !!temp;
else
host->en_auto_cmd21 = !!temp;
spin_unlock_irqrestore(&host->lock, flags);
}
}
static ssize_t
show_enable_auto_cmd19(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
return snprintf(buf, PAGE_SIZE, "%d\n", host->en_auto_cmd19);
}
static ssize_t
store_enable_auto_cmd19(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
set_auto_cmd_setting(dev, buf, true);
return count;
}
static ssize_t
show_enable_auto_cmd21(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
return snprintf(buf, PAGE_SIZE, "%d\n", host->en_auto_cmd21);
}
static ssize_t
store_enable_auto_cmd21(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
set_auto_cmd_setting(dev, buf, false);
return count;
}
#ifdef CONFIG_HAS_EARLYSUSPEND
static void msmsdcc_early_suspend(struct early_suspend *h)
{
struct msmsdcc_host *host =
container_of(h, struct msmsdcc_host, early_suspend);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->polling_enabled = host->mmc->caps & MMC_CAP_NEEDS_POLL;
host->mmc->caps &= ~MMC_CAP_NEEDS_POLL;
spin_unlock_irqrestore(&host->lock, flags);
};
static void msmsdcc_late_resume(struct early_suspend *h)
{
struct msmsdcc_host *host =
container_of(h, struct msmsdcc_host, early_suspend);
unsigned long flags;
if (host->polling_enabled) {
spin_lock_irqsave(&host->lock, flags);
host->mmc->caps |= MMC_CAP_NEEDS_POLL;
mmc_detect_change(host->mmc, 0);
spin_unlock_irqrestore(&host->lock, flags);
}
};
#endif
static void msmsdcc_print_regs(const char *name, void __iomem *base,
u32 phys_base, unsigned int no_of_regs)
{
unsigned int i;
if (!base)
return;
pr_err("===== %s: Register Dumps @phys_base=0x%x, @virt_base=0x%x"
" =====\n", name, phys_base, (u32)base);
for (i = 0; i < no_of_regs; i = i + 4) {
pr_err("Reg=0x%.2x: 0x%.8x, 0x%.8x, 0x%.8x, 0x%.8x\n", i*4,
(u32)readl_relaxed(base + i*4),
(u32)readl_relaxed(base + ((i+1)*4)),
(u32)readl_relaxed(base + ((i+2)*4)),
(u32)readl_relaxed(base + ((i+3)*4)));
}
}
static void msmsdcc_dump_sdcc_state(struct msmsdcc_host *host)
{
/* Dump current state of SDCC clocks, power and irq */
pr_err("%s: SDCC PWR is %s\n", mmc_hostname(host->mmc),
(host->pwr ? "ON" : "OFF"));
pr_err("%s: SDCC clks are %s, MCLK rate=%d\n",
mmc_hostname(host->mmc),
(atomic_read(&host->clks_on) ? "ON" : "OFF"),
(u32)clk_get_rate(host->clk));
pr_err("%s: SDCC irq is %s\n", mmc_hostname(host->mmc),
(host->sdcc_irq_disabled ? "disabled" : "enabled"));
/* Now dump SDCC registers. Don't print FIFO registers */
if (atomic_read(&host->clks_on)) {
msmsdcc_print_regs("SDCC-CORE", host->base,
host->core_memres->start, 28);
pr_err("%s: MCI_TEST_INPUT = 0x%.8x\n",
mmc_hostname(host->mmc),
readl_relaxed(host->base + MCI_TEST_INPUT));
}
if (host->curr.data) {
if (!msmsdcc_is_dma_possible(host, host->curr.data))
pr_err("%s: PIO mode\n", mmc_hostname(host->mmc));
else if (is_dma_mode(host))
pr_err("%s: ADM mode: busy=%d, chnl=%d, crci=%d\n",
mmc_hostname(host->mmc), host->dma.busy,
host->dma.channel, host->dma.crci);
else if (is_sps_mode(host)) {
if (host->sps.busy && atomic_read(&host->clks_on))
msmsdcc_print_regs("SDCC-DML", host->dml_base,
host->dml_memres->start,
16);
pr_err("%s: SPS mode: busy=%d\n",
mmc_hostname(host->mmc), host->sps.busy);
}
pr_err("%s: xfer_size=%d, data_xfered=%d, xfer_remain=%d\n",
mmc_hostname(host->mmc), host->curr.xfer_size,
host->curr.data_xfered, host->curr.xfer_remain);
}
pr_err("%s: got_dataend=%d, prog_enable=%d,"
" wait_for_auto_prog_done=%d, got_auto_prog_done=%d,"
" req_tout_ms=%d\n", mmc_hostname(host->mmc),
host->curr.got_dataend, host->prog_enable,
host->curr.wait_for_auto_prog_done,
host->curr.got_auto_prog_done, host->curr.req_tout_ms);
msmsdcc_print_rpm_info(host);
}
static void msmsdcc_req_tout_timer_hdlr(unsigned long data)
{
struct msmsdcc_host *host = (struct msmsdcc_host *)data;
struct mmc_request *mrq;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->dummy_52_sent) {
pr_info("%s: %s: dummy CMD52 timeout\n",
mmc_hostname(host->mmc), __func__);
host->dummy_52_sent = 0;
}
mrq = host->curr.mrq;
if (mrq && mrq->cmd) {
pr_info("%s: CMD%d: Request timeout\n", mmc_hostname(host->mmc),
mrq->cmd->opcode);
msmsdcc_dump_sdcc_state(host);
if (!mrq->cmd->error)
mrq->cmd->error = -ETIMEDOUT;
host->dummy_52_needed = 0;
if (host->curr.data) {
if (mrq->data && !mrq->data->error)
mrq->data->error = -ETIMEDOUT;
host->curr.data_xfered = 0;
if (host->dma.sg && is_dma_mode(host)) {
msm_dmov_flush(host->dma.channel, 0);
} else if (host->sps.sg && is_sps_mode(host)) {
/* Stop current SPS transfer */
msmsdcc_sps_exit_curr_xfer(host);
} else {
msmsdcc_reset_and_restore(host);
msmsdcc_stop_data(host);
if (mrq->data && mrq->data->stop)
msmsdcc_start_command(host,
mrq->data->stop, 0);
else
msmsdcc_request_end(host, mrq);
}
} else {
host->prog_enable = 0;
host->curr.wait_for_auto_prog_done = false;
msmsdcc_reset_and_restore(host);
msmsdcc_request_end(host, mrq);
}
}
spin_unlock_irqrestore(&host->lock, flags);
}
/*
* msmsdcc_dt_get_array - Wrapper fn to read an array of 32 bit integers
*
* @dev: device node from which the property value is to be read.
* @prop_name: name of the property to be searched.
* @out_array: filled array returned to caller
* @len: filled array size returned to caller
* @size: expected size of the array
*
* If expected "size" doesn't match with "len" an error is returned. If
* expected size is zero, the length of actual array is returned provided
* return value is zero.
*
* RETURNS:
* zero on success, negative error if failed.
*/
static int msmsdcc_dt_get_array(struct device *dev, const char *prop_name,
u32 **out_array, int *len, int size)
{
int ret = 0;
u32 *array = NULL;
struct device_node *np = dev->of_node;
if (of_get_property(np, prop_name, len)) {
size_t sz;
sz = *len = *len / sizeof(*array);
if (sz > 0 && !(size > 0 && (sz != size))) {
array = devm_kzalloc(dev, sz * sizeof(*array),
GFP_KERNEL);
if (!array) {
dev_err(dev, "%s: no memory\n", prop_name);
ret = -ENOMEM;
goto out;
}
ret = of_property_read_u32_array(np, prop_name,
array, sz);
if (ret < 0) {
dev_err(dev, "%s: error reading array %d\n",
prop_name, ret);
goto out;
}
} else {
dev_err(dev, "%s invalid size\n", prop_name);
ret = -EINVAL;
goto out;
}
} else {
dev_err(dev, "%s not specified\n", prop_name);
ret = -EINVAL;
goto out;
}
*out_array = array;
out:
if (ret)
*len = 0;
return ret;
}
static int msmsdcc_dt_get_pad_pull_info(struct device *dev, int id,
struct msm_mmc_pad_pull_data **pad_pull_data)
{
int ret = 0, base = 0, len, i;
u32 *tmp;
struct msm_mmc_pad_pull_data *pull_data;
struct msm_mmc_pad_pull *pull;
switch (id) {
case 1:
base = TLMM_PULL_SDC1_CLK;
break;
case 2:
base = TLMM_PULL_SDC2_CLK;
break;
case 3:
base = TLMM_PULL_SDC3_CLK;
break;
case 4:
base = TLMM_PULL_SDC4_CLK;
break;
default:
dev_err(dev, "%s: Invalid slot id\n", __func__);
ret = -EINVAL;
goto err;
}
pull_data = devm_kzalloc(dev, sizeof(struct msm_mmc_pad_pull_data),
GFP_KERNEL);
if (!pull_data) {
dev_err(dev, "No memory msm_mmc_pad_pull_data\n");
ret = -ENOMEM;
goto err;
}
pull_data->size = 3; /* array size for clk, cmd, data */
/* Allocate on, off configs for clk, cmd, data */
pull = devm_kzalloc(dev, 2 * pull_data->size *\
sizeof(struct msm_mmc_pad_pull), GFP_KERNEL);
if (!pull) {
dev_err(dev, "No memory for msm_mmc_pad_pull\n");
ret = -ENOMEM;
goto err;
}
pull_data->on = pull;
pull_data->off = pull + pull_data->size;
ret = msmsdcc_dt_get_array(dev, "qcom,sdcc-pad-pull-on",
&tmp, &len, pull_data->size);
if (!ret) {
for (i = 0; i < len; i++) {
pull_data->on[i].no = base + i;
pull_data->on[i].val = tmp[i];
dev_dbg(dev, "%s: val[%d]=0x%x\n", __func__,
i, pull_data->on[i].val);
}
} else {
goto err;
}
ret = msmsdcc_dt_get_array(dev, "qcom,sdcc-pad-pull-off",
&tmp, &len, pull_data->size);
if (!ret) {
for (i = 0; i < len; i++) {
pull_data->off[i].no = base + i;
pull_data->off[i].val = tmp[i];
dev_dbg(dev, "%s: val[%d]=0x%x\n", __func__,
i, pull_data->off[i].val);
}
} else {
goto err;
}
*pad_pull_data = pull_data;
err:
return ret;
}
static int msmsdcc_dt_get_pad_drv_info(struct device *dev, int id,
struct msm_mmc_pad_drv_data **pad_drv_data)
{
int ret = 0, base = 0, len, i;
u32 *tmp;
struct msm_mmc_pad_drv_data *drv_data;
struct msm_mmc_pad_drv *drv;
switch (id) {
case 1:
base = TLMM_HDRV_SDC1_CLK;
break;
case 2:
base = TLMM_HDRV_SDC2_CLK;
break;
case 3:
base = TLMM_HDRV_SDC3_CLK;
break;
case 4:
base = TLMM_HDRV_SDC4_CLK;
break;
default:
dev_err(dev, "%s: Invalid slot id\n", __func__);
ret = -EINVAL;
goto err;
}
drv_data = devm_kzalloc(dev, sizeof(struct msm_mmc_pad_drv_data),
GFP_KERNEL);
if (!drv_data) {
dev_err(dev, "No memory for msm_mmc_pad_drv_data\n");
ret = -ENOMEM;
goto err;
}
drv_data->size = 3; /* array size for clk, cmd, data */
/* Allocate on, off configs for clk, cmd, data */
drv = devm_kzalloc(dev, 2 * drv_data->size *\
sizeof(struct msm_mmc_pad_drv), GFP_KERNEL);
if (!drv) {
dev_err(dev, "No memory msm_mmc_pad_drv\n");
ret = -ENOMEM;
goto err;
}
drv_data->on = drv;
drv_data->off = drv + drv_data->size;
ret = msmsdcc_dt_get_array(dev, "qcom,sdcc-pad-drv-on",
&tmp, &len, drv_data->size);
if (!ret) {
for (i = 0; i < len; i++) {
drv_data->on[i].no = base + i;
drv_data->on[i].val = tmp[i];
dev_dbg(dev, "%s: val[%d]=0x%x\n", __func__,
i, drv_data->on[i].val);
}
} else {
goto err;
}
ret = msmsdcc_dt_get_array(dev, "qcom,sdcc-pad-drv-off",
&tmp, &len, drv_data->size);
if (!ret) {
for (i = 0; i < len; i++) {
drv_data->off[i].no = base + i;
drv_data->off[i].val = tmp[i];
dev_dbg(dev, "%s: val[%d]=0x%x\n", __func__,
i, drv_data->off[i].val);
}
} else {
goto err;
}
*pad_drv_data = drv_data;
err:
return ret;
}
static void msmsdcc_dt_get_cd_wp_gpio(struct device *dev,
struct mmc_platform_data *pdata)
{
enum of_gpio_flags flags = OF_GPIO_ACTIVE_LOW;
struct device_node *np = dev->of_node;
pdata->status_gpio = of_get_named_gpio_flags(np,
"cd-gpios", 0, &flags);
if (gpio_is_valid(pdata->status_gpio)) {
struct platform_device *pdev = container_of(dev,
struct platform_device, dev);
pdata->status_irq = platform_get_irq_byname(pdev, "status_irq");
pdata->is_status_gpio_active_low = flags & OF_GPIO_ACTIVE_LOW;
}
pdata->wpswitch_gpio = of_get_named_gpio_flags(np,
"wp-gpios", 0, &flags);
if (gpio_is_valid(pdata->wpswitch_gpio))
pdata->is_wpswitch_active_low = flags & OF_GPIO_ACTIVE_LOW;
}
static int msmsdcc_dt_parse_gpio_info(struct device *dev,
struct mmc_platform_data *pdata)
{
int ret = 0, id = 0, cnt, i;
struct msm_mmc_pin_data *pin_data;
struct device_node *np = dev->of_node;
msmsdcc_dt_get_cd_wp_gpio(dev, pdata);
pin_data = devm_kzalloc(dev, sizeof(*pin_data), GFP_KERNEL);
if (!pin_data) {
dev_err(dev, "No memory for pin_data\n");
ret = -ENOMEM;
goto err;
}
cnt = of_gpio_count(np);
if (cnt > 0) {
pin_data->is_gpio = true;
pin_data->gpio_data = devm_kzalloc(dev,
sizeof(struct msm_mmc_gpio_data), GFP_KERNEL);
if (!pin_data->gpio_data) {
dev_err(dev, "No memory for gpio_data\n");
ret = -ENOMEM;
goto err;
}
pin_data->gpio_data->size = cnt;
pin_data->gpio_data->gpio = devm_kzalloc(dev,
cnt * sizeof(struct msm_mmc_gpio), GFP_KERNEL);
if (!pin_data->gpio_data->gpio) {
dev_err(dev, "No memory for gpio\n");
ret = -ENOMEM;
goto err;
}
for (i = 0; i < cnt; i++) {
const char *name = NULL;
char result[32];
pin_data->gpio_data->gpio[i].no = of_get_gpio(np, i);
of_property_read_string_index(np,
"qcom,sdcc-gpio-names", i, &name);
snprintf(result, 32, "%s-%s",
dev_name(dev), name ? name : "?");
pin_data->gpio_data->gpio[i].name = result;
dev_dbg(dev, "%s: gpio[%s] = %d\n", __func__,
pin_data->gpio_data->gpio[i].name,
pin_data->gpio_data->gpio[i].no);
}
} else {
pin_data->pad_data = devm_kzalloc(dev,
sizeof(struct msm_mmc_pad_data), GFP_KERNEL);
if (!pin_data->pad_data) {
dev_err(dev, "No memory for pin_data->pad_data\n");
ret = -ENOMEM;
goto err;
}
of_property_read_u32(np, "cell-index", &id);
ret = msmsdcc_dt_get_pad_pull_info(dev, id,
&pin_data->pad_data->pull);
if (ret)
goto err;
ret = msmsdcc_dt_get_pad_drv_info(dev, id,
&pin_data->pad_data->drv);
if (ret)
goto err;
}
pdata->pin_data = pin_data;
err:
if (ret)
dev_err(dev, "%s failed with err %d\n", __func__, ret);
return ret;
}
#define MAX_PROP_SIZE 32
static int msmsdcc_dt_parse_vreg_info(struct device *dev,
struct msm_mmc_reg_data **vreg_data, const char *vreg_name)
{
int len, ret = 0;
const __be32 *prop;
char prop_name[MAX_PROP_SIZE];
struct msm_mmc_reg_data *vreg;
struct device_node *np = dev->of_node;
snprintf(prop_name, MAX_PROP_SIZE, "%s-supply", vreg_name);
if (of_parse_phandle(np, prop_name, 0)) {
vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
if (!vreg) {
dev_err(dev, "No memory for vreg: %s\n", vreg_name);
ret = -ENOMEM;
goto err;
}
vreg->name = vreg_name;
snprintf(prop_name, MAX_PROP_SIZE,
"qcom,sdcc-%s-always_on", vreg_name);
if (of_get_property(np, prop_name, NULL))
vreg->always_on = true;
snprintf(prop_name, MAX_PROP_SIZE,
"qcom,sdcc-%s-lpm_sup", vreg_name);
if (of_get_property(np, prop_name, NULL))
vreg->lpm_sup = true;
snprintf(prop_name, MAX_PROP_SIZE,
"qcom,sdcc-%s-voltage_level", vreg_name);
prop = of_get_property(np, prop_name, &len);
if (!prop || (len != (2 * sizeof(__be32)))) {
dev_warn(dev, "%s %s property\n",
prop ? "invalid format" : "no", prop_name);
} else {
vreg->low_vol_level = be32_to_cpup(&prop[0]);
vreg->high_vol_level = be32_to_cpup(&prop[1]);
}
snprintf(prop_name, MAX_PROP_SIZE,
"qcom,sdcc-%s-current_level", vreg_name);
prop = of_get_property(np, prop_name, &len);
if (!prop || (len != (2 * sizeof(__be32)))) {
dev_warn(dev, "%s %s property\n",
prop ? "invalid format" : "no", prop_name);
} else {
vreg->lpm_uA = be32_to_cpup(&prop[0]);
vreg->hpm_uA = be32_to_cpup(&prop[1]);
}
*vreg_data = vreg;
dev_dbg(dev, "%s: %s %s vol=[%d %d]uV, curr=[%d %d]uA\n",
vreg->name, vreg->always_on ? "always_on," : "",
vreg->lpm_sup ? "lpm_sup," : "", vreg->low_vol_level,
vreg->high_vol_level, vreg->lpm_uA, vreg->hpm_uA);
}
err:
return ret;
}
static struct mmc_platform_data *msmsdcc_populate_pdata(struct device *dev)
{
int i, ret;
struct mmc_platform_data *pdata;
struct device_node *np = dev->of_node;
u32 bus_width = 0, current_limit = 0;
u32 *clk_table, *sup_voltages;
int clk_table_len, sup_volt_len, len;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(dev, "could not allocate memory for platform data\n");
goto err;
}
of_property_read_u32(np, "qcom,sdcc-bus-width", &bus_width);
if (bus_width == 8) {
pdata->mmc_bus_width = MMC_CAP_8_BIT_DATA;
} else if (bus_width == 4) {
pdata->mmc_bus_width = MMC_CAP_4_BIT_DATA;
} else {
dev_notice(dev, "Invalid bus width, default to 1 bit mode\n");
pdata->mmc_bus_width = 0;
}
ret = msmsdcc_dt_get_array(dev, "qcom,sdcc-sup-voltages",
&sup_voltages, &sup_volt_len, 0);
if (!ret) {
for (i = 0; i < sup_volt_len; i += 2) {
u32 mask;
mask = mmc_vddrange_to_ocrmask(sup_voltages[i],
sup_voltages[i + 1]);
if (!mask)
dev_err(dev, "Invalide voltage range %d\n", i);
pdata->ocr_mask |= mask;
}
dev_dbg(dev, "OCR mask=0x%x\n", pdata->ocr_mask);
}
ret = msmsdcc_dt_get_array(dev, "qcom,sdcc-clk-rates",
&clk_table, &clk_table_len, 0);
if (!ret) {
pdata->sup_clk_table = clk_table;
pdata->sup_clk_cnt = clk_table_len;
}
pdata->vreg_data = devm_kzalloc(dev,
sizeof(struct msm_mmc_slot_reg_data), GFP_KERNEL);
if (!pdata->vreg_data) {
dev_err(dev, "could not allocate memory for vreg_data\n");
goto err;
}
if (msmsdcc_dt_parse_vreg_info(dev,
&pdata->vreg_data->vdd_data, "vdd"))
goto err;
if (msmsdcc_dt_parse_vreg_info(dev,
&pdata->vreg_data->vdd_io_data, "vdd-io"))
goto err;
if (msmsdcc_dt_parse_gpio_info(dev, pdata))
goto err;
len = of_property_count_strings(np, "qcom,sdcc-bus-speed-mode");
for (i = 0; i < len; i++) {
const char *name = NULL;
of_property_read_string_index(np,
"qcom,sdcc-bus-speed-mode", i, &name);
if (!name)
continue;
if (!strncmp(name, "SDR12", sizeof("SDR12")))
pdata->uhs_caps |= MMC_CAP_UHS_SDR12;
else if (!strncmp(name, "SDR25", sizeof("SDR25")))
pdata->uhs_caps |= MMC_CAP_UHS_SDR25;
else if (!strncmp(name, "SDR50", sizeof("SDR50")))
pdata->uhs_caps |= MMC_CAP_UHS_SDR50;
else if (!strncmp(name, "DDR50", sizeof("DDR50")))
pdata->uhs_caps |= MMC_CAP_UHS_DDR50;
else if (!strncmp(name, "SDR104", sizeof("SDR104")))
pdata->uhs_caps |= MMC_CAP_UHS_SDR104;
else if (!strncmp(name, "HS200_1p8v", sizeof("HS200_1p8v")))
pdata->uhs_caps2 |= MMC_CAP2_HS200_1_8V_SDR;
else if (!strncmp(name, "HS200_1p2v", sizeof("HS200_1p2v")))
pdata->uhs_caps2 |= MMC_CAP2_HS200_1_2V_SDR;
else if (!strncmp(name, "DDR_1p8v", sizeof("DDR_1p8v")))
pdata->uhs_caps |= MMC_CAP_1_8V_DDR
| MMC_CAP_UHS_DDR50;
else if (!strncmp(name, "DDR_1p2v", sizeof("DDR_1p2v")))
pdata->uhs_caps |= MMC_CAP_1_2V_DDR
| MMC_CAP_UHS_DDR50;
}
of_property_read_u32(np, "qcom,sdcc-current-limit", &current_limit);
if (current_limit == 800)
pdata->uhs_caps |= MMC_CAP_MAX_CURRENT_800;
else if (current_limit == 600)
pdata->uhs_caps |= MMC_CAP_MAX_CURRENT_600;
else if (current_limit == 400)
pdata->uhs_caps |= MMC_CAP_MAX_CURRENT_400;
else if (current_limit == 200)
pdata->uhs_caps |= MMC_CAP_MAX_CURRENT_200;
if (of_get_property(np, "qcom,sdcc-xpc", NULL))
pdata->xpc_cap = true;
if (of_get_property(np, "qcom,sdcc-nonremovable", NULL))
pdata->nonremovable = true;
if (of_get_property(np, "qcom,sdcc-disable_cmd23", NULL))
pdata->disable_cmd23 = true;
return pdata;
err:
return NULL;
}
static int
msmsdcc_probe(struct platform_device *pdev)
{
struct mmc_platform_data *plat;
struct msmsdcc_host *host;
struct mmc_host *mmc;
unsigned long flags;
struct resource *core_irqres = NULL;
struct resource *bam_irqres = NULL;
struct resource *core_memres = NULL;
struct resource *dml_memres = NULL;
struct resource *bam_memres = NULL;
struct resource *dmares = NULL;
struct resource *dma_crci_res = NULL;
int ret = 0;
if (pdev->dev.of_node) {
plat = msmsdcc_populate_pdata(&pdev->dev);
of_property_read_u32((&pdev->dev)->of_node,
"cell-index", &pdev->id);
} else {
plat = pdev->dev.platform_data;
}
/* must have platform data */
if (!plat) {
pr_err("%s: Platform data not available\n", __func__);
ret = -EINVAL;
goto out;
}
if (pdev->id < 1 || pdev->id > 5)
return -EINVAL;
if (plat->is_sdio_al_client && !plat->sdiowakeup_irq) {
pr_err("%s: No wakeup IRQ for sdio_al client\n", __func__);
return -EINVAL;
}
if (pdev->resource == NULL || pdev->num_resources < 2) {
pr_err("%s: Invalid resource\n", __func__);
return -ENXIO;
}
core_memres = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "core_mem");
bam_memres = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "bam_mem");
dml_memres = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "dml_mem");
core_irqres = platform_get_resource_byname(pdev,
IORESOURCE_IRQ, "core_irq");
bam_irqres = platform_get_resource_byname(pdev,
IORESOURCE_IRQ, "bam_irq");
dmares = platform_get_resource_byname(pdev,
IORESOURCE_DMA, "dma_chnl");
dma_crci_res = platform_get_resource_byname(pdev,
IORESOURCE_DMA, "dma_crci");
if (!core_irqres || !core_memres) {
pr_err("%s: Invalid sdcc core resource\n", __func__);
return -ENXIO;
}
/*
* Both BAM and DML memory resource should be preset.
* BAM IRQ resource should also be present.
*/
if ((bam_memres && !dml_memres) ||
(!bam_memres && dml_memres) ||
((bam_memres && dml_memres) && !bam_irqres)) {
pr_err("%s: Invalid sdcc BAM/DML resource\n", __func__);
return -ENXIO;
}
/*
* Setup our host structure
*/
mmc = mmc_alloc_host(sizeof(struct msmsdcc_host), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto out;
}
host = mmc_priv(mmc);
host->pdev_id = pdev->id;
host->plat = plat;
host->mmc = mmc;
host->curr.cmd = NULL;
if (!plat->disable_bam && bam_memres && dml_memres && bam_irqres)
set_hw_caps(host, MSMSDCC_SPS_BAM_SUP);
else if (dmares)
set_hw_caps(host, MSMSDCC_DMA_SUP);
host->base = ioremap(core_memres->start,
resource_size(core_memres));
if (!host->base) {
ret = -ENOMEM;
goto host_free;
}
host->core_irqres = core_irqres;
host->bam_irqres = bam_irqres;
host->core_memres = core_memres;
host->dml_memres = dml_memres;
host->bam_memres = bam_memres;
host->dmares = dmares;
host->dma_crci_res = dma_crci_res;
spin_lock_init(&host->lock);
mutex_init(&host->clk_mutex);
#ifdef CONFIG_MMC_EMBEDDED_SDIO
if (plat->embedded_sdio)
mmc_set_embedded_sdio_data(mmc,
&plat->embedded_sdio->cis,
&plat->embedded_sdio->cccr,
plat->embedded_sdio->funcs,
plat->embedded_sdio->num_funcs);
#endif
tasklet_init(&host->dma_tlet, msmsdcc_dma_complete_tlet,
(unsigned long)host);
tasklet_init(&host->sps.tlet, msmsdcc_sps_complete_tlet,
(unsigned long)host);
if (is_dma_mode(host)) {
/* Setup DMA */
ret = msmsdcc_init_dma(host);
if (ret)
goto ioremap_free;
} else {
host->dma.channel = -1;
host->dma.crci = -1;
}
/*
* Setup SDCC bus voter clock.
*/
host->bus_clk = clk_get(&pdev->dev, "bus_clk");
if (!IS_ERR_OR_NULL(host->bus_clk)) {
/* Vote for max. clk rate for max. performance */
ret = clk_set_rate(host->bus_clk, INT_MAX);
if (ret)
goto bus_clk_put;
ret = clk_prepare_enable(host->bus_clk);
if (ret)
goto bus_clk_put;
}
/*
* Setup main peripheral bus clock
*/
host->pclk = clk_get(&pdev->dev, "iface_clk");
if (!IS_ERR(host->pclk)) {
ret = clk_prepare_enable(host->pclk);
if (ret)
goto pclk_put;
host->pclk_rate = clk_get_rate(host->pclk);
}
/*
* Setup SDC MMC clock
*/
host->clk = clk_get(&pdev->dev, "core_clk");
if (IS_ERR(host->clk)) {
ret = PTR_ERR(host->clk);
goto pclk_disable;
}
ret = clk_set_rate(host->clk, msmsdcc_get_min_sup_clk_rate(host));
if (ret) {
pr_err("%s: Clock rate set failed (%d)\n", __func__, ret);
goto clk_put;
}
ret = clk_prepare_enable(host->clk);
if (ret)
goto clk_put;
host->clk_rate = clk_get_rate(host->clk);
if (!host->clk_rate)
dev_err(&pdev->dev, "Failed to read MCLK\n");
set_default_hw_caps(host);
/*
* Set the register write delay according to min. clock frequency
* supported and update later when the host->clk_rate changes.
*/
host->reg_write_delay =
(1 + ((3 * USEC_PER_SEC) /
msmsdcc_get_min_sup_clk_rate(host)));
atomic_set(&host->clks_on, 1);
/* Apply Hard reset to SDCC to put it in power on default state */
msmsdcc_hard_reset(host);
#define MSM_MMC_DEFAULT_CPUDMA_LATENCY 200 /* usecs */
/* pm qos request to prevent apps idle power collapse */
if (host->plat->cpu_dma_latency)
host->cpu_dma_latency = host->plat->cpu_dma_latency;
else
host->cpu_dma_latency = MSM_MMC_DEFAULT_CPUDMA_LATENCY;
pm_qos_add_request(&host->pm_qos_req_dma,
PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
ret = msmsdcc_msm_bus_register(host);
if (ret)
goto pm_qos_remove;
if (host->msm_bus_vote.client_handle)
INIT_DELAYED_WORK(&host->msm_bus_vote.vote_work,
msmsdcc_msm_bus_work);
ret = msmsdcc_vreg_init(host, true);
if (ret) {
pr_err("%s: msmsdcc_vreg_init() failed (%d)\n", __func__, ret);
goto clk_disable;
}
/* Clocks has to be running before accessing SPS/DML HW blocks */
if (is_sps_mode(host)) {
/* Initialize SPS */
ret = msmsdcc_sps_init(host);
if (ret)
goto vreg_deinit;
/* Initialize DML */
ret = msmsdcc_dml_init(host);
if (ret)
goto sps_exit;
}
mmc_dev(mmc)->dma_mask = &dma_mask;
/*
* Setup MMC host structure
*/
mmc->ops = &msmsdcc_ops;
mmc->f_min = msmsdcc_get_min_sup_clk_rate(host);
mmc->f_max = msmsdcc_get_max_sup_clk_rate(host);
mmc->ocr_avail = plat->ocr_mask;
mmc->clkgate_delay = MSM_MMC_CLK_GATE_DELAY;
mmc->pm_caps |= MMC_PM_KEEP_POWER | MMC_PM_WAKE_SDIO_IRQ;
mmc->caps |= plat->mmc_bus_width;
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED;
mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
mmc->caps |= MMC_CAP_HW_RESET;
/*
* If we send the CMD23 before multi block write/read command
* then we need not to send CMD12 at the end of the transfer.
* If we don't send the CMD12 then only way to detect the PROG_DONE
* status is to use the AUTO_PROG_DONE status provided by SDCC4
* controller. So let's enable the CMD23 for SDCC4 only.
*/
if (!plat->disable_cmd23 && is_auto_prog_done(host))
mmc->caps |= MMC_CAP_CMD23;
mmc->caps |= plat->uhs_caps;
mmc->caps2 |= plat->uhs_caps2;
/*
* XPC controls the maximum current in the default speed mode of SDXC
* card. XPC=0 means 100mA (max.) but speed class is not supported.
* XPC=1 means 150mA (max.) and speed class is supported.
*/
if (plat->xpc_cap)
mmc->caps |= (MMC_CAP_SET_XPC_330 | MMC_CAP_SET_XPC_300 |
MMC_CAP_SET_XPC_180);
mmc->caps2 |= MMC_CAP2_PACKED_WR;
mmc->caps2 |= MMC_CAP2_PACKED_WR_CONTROL;
mmc->caps2 |= (MMC_CAP2_BOOTPART_NOACC | MMC_CAP2_DETECT_ON_ERR);
mmc->caps2 |= MMC_CAP2_SANITIZE;
mmc->caps2 |= MMC_CAP2_CACHE_CTRL;
mmc->caps2 |= MMC_CAP2_INIT_BKOPS;
if (plat->nonremovable)
mmc->caps |= MMC_CAP_NONREMOVABLE;
mmc->caps |= MMC_CAP_SDIO_IRQ;
if (plat->is_sdio_al_client)
mmc->pm_flags |= MMC_PM_IGNORE_PM_NOTIFY;
mmc->max_segs = msmsdcc_get_nr_sg(host);
mmc->max_blk_size = MMC_MAX_BLK_SIZE;
mmc->max_blk_count = MMC_MAX_BLK_CNT;
mmc->max_req_size = MMC_MAX_REQ_SIZE;
mmc->max_seg_size = mmc->max_req_size;
writel_relaxed(0, host->base + MMCIMASK0);
writel_relaxed(MCI_CLEAR_STATIC_MASK, host->base + MMCICLEAR);
msmsdcc_sync_reg_wr(host);
writel_relaxed(MCI_IRQENABLE, host->base + MMCIMASK0);
mb();
host->mci_irqenable = MCI_IRQENABLE;
ret = request_irq(core_irqres->start, msmsdcc_irq, IRQF_SHARED,
DRIVER_NAME " (cmd)", host);
if (ret)
goto dml_exit;
ret = request_irq(core_irqres->start, msmsdcc_pio_irq, IRQF_SHARED,
DRIVER_NAME " (pio)", host);
if (ret)
goto irq_free;
/*
* Enable SDCC IRQ only when host is powered on. Otherwise, this
* IRQ is un-necessarily being monitored by MPM (Modem power
* management block) during idle-power collapse. The MPM will be
* configured to monitor the DATA1 GPIO line with level-low trigger
* and thus depending on the GPIO status, it prevents TCXO shutdown
* during idle-power collapse.
*/
disable_irq(core_irqres->start);
host->sdcc_irq_disabled = 1;
if (plat->sdiowakeup_irq) {
wake_lock_init(&host->sdio_wlock, WAKE_LOCK_SUSPEND,
mmc_hostname(mmc));
ret = request_irq(plat->sdiowakeup_irq,
msmsdcc_platform_sdiowakeup_irq,
IRQF_SHARED | IRQF_TRIGGER_LOW,
DRIVER_NAME "sdiowakeup", host);
if (ret) {
pr_err("Unable to get sdio wakeup IRQ %d (%d)\n",
plat->sdiowakeup_irq, ret);
goto pio_irq_free;
} else {
spin_lock_irqsave(&host->lock, flags);
if (!host->sdio_wakeupirq_disabled) {
disable_irq_nosync(plat->sdiowakeup_irq);
host->sdio_wakeupirq_disabled = 1;
}
spin_unlock_irqrestore(&host->lock, flags);
}
}
if (host->plat->mpm_sdiowakeup_int) {
wake_lock_init(&host->sdio_wlock, WAKE_LOCK_SUSPEND,
mmc_hostname(mmc));
}
wake_lock_init(&host->sdio_suspend_wlock, WAKE_LOCK_SUSPEND,
mmc_hostname(mmc));
/*
* Setup card detect change
*/
if (!plat->status_gpio)
plat->status_gpio = -ENOENT;
if (!plat->wpswitch_gpio)
plat->wpswitch_gpio = -ENOENT;
if (plat->status || gpio_is_valid(plat->status_gpio)) {
if (plat->status) {
host->oldstat = plat->status(mmc_dev(host->mmc));
} else {
msmsdcc_enable_status_gpio(host);
host->oldstat = msmsdcc_slot_status(host);
}
host->eject = !host->oldstat;
}
if (plat->status_irq) {
ret = request_threaded_irq(plat->status_irq, NULL,
msmsdcc_platform_status_irq,
plat->irq_flags,
DRIVER_NAME " (slot)",
host);
if (ret) {
pr_err("Unable to get slot IRQ %d (%d)\n",
plat->status_irq, ret);
goto sdiowakeup_irq_free;
}
} else if (plat->register_status_notify) {
plat->register_status_notify(msmsdcc_status_notify_cb, host);
} else if (!plat->status)
pr_err("%s: No card detect facilities available\n",
mmc_hostname(mmc));
mmc_set_drvdata(pdev, mmc);
ret = pm_runtime_set_active(&(pdev)->dev);
if (ret < 0)
pr_info("%s: %s: failed with error %d", mmc_hostname(mmc),
__func__, ret);
/*
* There is no notion of suspend/resume for SD/MMC/SDIO
* cards. So host can be suspended/resumed with out
* worrying about its children.
*/
pm_suspend_ignore_children(&(pdev)->dev, true);
/*
* MMC/SD/SDIO bus suspend/resume operations are defined
* only for the slots that will be used for non-removable
* media or for all slots when CONFIG_MMC_UNSAFE_RESUME is
* defined. Otherwise, they simply become card removal and
* insertion events during suspend and resume respectively.
* Hence, enable run-time PM only for slots for which bus
* suspend/resume operations are defined.
*/
#ifdef CONFIG_MMC_UNSAFE_RESUME
/*
* If this capability is set, MMC core will enable/disable host
* for every claim/release operation on a host. We use this
* notification to increment/decrement runtime pm usage count.
*/
pm_runtime_enable(&(pdev)->dev);
#else
if (mmc->caps & MMC_CAP_NONREMOVABLE) {
pm_runtime_enable(&(pdev)->dev);
}
#endif
host->idle_tout = MSM_MMC_DEFAULT_IDLE_TIMEOUT;
setup_timer(&host->req_tout_timer, msmsdcc_req_tout_timer_hdlr,
(unsigned long)host);
mmc_add_host(mmc);
#ifdef CONFIG_HAS_EARLYSUSPEND
host->early_suspend.suspend = msmsdcc_early_suspend;
host->early_suspend.resume = msmsdcc_late_resume;
host->early_suspend.level = EARLY_SUSPEND_LEVEL_DISABLE_FB;
register_early_suspend(&host->early_suspend);
#endif
pr_info("%s: Qualcomm MSM SDCC-core at 0x%016llx irq %d,%d dma %d"
" dmacrcri %d\n", mmc_hostname(mmc),
(unsigned long long)core_memres->start,
(unsigned int) core_irqres->start,
(unsigned int) plat->status_irq, host->dma.channel,
host->dma.crci);
pr_info("%s: Controller capabilities: 0x%.8x\n",
mmc_hostname(mmc), host->hw_caps);
pr_info("%s: 8 bit data mode %s\n", mmc_hostname(mmc),
(mmc->caps & MMC_CAP_8_BIT_DATA ? "enabled" : "disabled"));
pr_info("%s: 4 bit data mode %s\n", mmc_hostname(mmc),
(mmc->caps & MMC_CAP_4_BIT_DATA ? "enabled" : "disabled"));
pr_info("%s: polling status mode %s\n", mmc_hostname(mmc),
(mmc->caps & MMC_CAP_NEEDS_POLL ? "enabled" : "disabled"));
pr_info("%s: MMC clock %u -> %u Hz, PCLK %u Hz\n",
mmc_hostname(mmc), msmsdcc_get_min_sup_clk_rate(host),
msmsdcc_get_max_sup_clk_rate(host), host->pclk_rate);
pr_info("%s: Slot eject status = %d\n", mmc_hostname(mmc),
host->eject);
pr_info("%s: Power save feature enable = %d\n",
mmc_hostname(mmc), msmsdcc_pwrsave);
if (is_dma_mode(host) && host->dma.channel != -1
&& host->dma.crci != -1) {
pr_info("%s: DM non-cached buffer at %p, dma_addr 0x%.8x\n",
mmc_hostname(mmc), host->dma.nc, host->dma.nc_busaddr);
pr_info("%s: DM cmd busaddr 0x%.8x, cmdptr busaddr 0x%.8x\n",
mmc_hostname(mmc), host->dma.cmd_busaddr,
host->dma.cmdptr_busaddr);
} else if (is_sps_mode(host)) {
pr_info("%s: SPS-BAM data transfer mode available\n",
mmc_hostname(mmc));
} else
pr_info("%s: PIO transfer enabled\n", mmc_hostname(mmc));
#if defined(CONFIG_DEBUG_FS)
msmsdcc_dbg_createhost(host);
#endif
host->max_bus_bw.show = show_sdcc_to_mem_max_bus_bw;
host->max_bus_bw.store = store_sdcc_to_mem_max_bus_bw;
sysfs_attr_init(&host->max_bus_bw.attr);
host->max_bus_bw.attr.name = "max_bus_bw";
host->max_bus_bw.attr.mode = S_IRUGO | S_IWUSR;
ret = device_create_file(&pdev->dev, &host->max_bus_bw);
if (ret)
goto platform_irq_free;
if (!plat->status_irq) {
host->polling.show = show_polling;
host->polling.store = store_polling;
sysfs_attr_init(&host->polling.attr);
host->polling.attr.name = "polling";
host->polling.attr.mode = S_IRUGO | S_IWUSR;
ret = device_create_file(&pdev->dev, &host->polling);
if (ret)
goto remove_max_bus_bw_file;
}
host->idle_timeout.show = show_idle_timeout;
host->idle_timeout.store = store_idle_timeout;
sysfs_attr_init(&host->idle_timeout.attr);
host->idle_timeout.attr.name = "idle_timeout";
host->idle_timeout.attr.mode = S_IRUGO | S_IWUSR;
ret = device_create_file(&pdev->dev, &host->idle_timeout);
if (ret)
goto remove_polling_file;
if (!is_auto_cmd19(host))
goto add_auto_cmd21_atrr;
/* Sysfs entry for AUTO CMD19 control */
host->auto_cmd19_attr.show = show_enable_auto_cmd19;
host->auto_cmd19_attr.store = store_enable_auto_cmd19;
sysfs_attr_init(&host->auto_cmd19_attr.attr);
host->auto_cmd19_attr.attr.name = "enable_auto_cmd19";
host->auto_cmd19_attr.attr.mode = S_IRUGO | S_IWUSR;
ret = device_create_file(&pdev->dev, &host->auto_cmd19_attr);
if (ret)
goto remove_idle_timeout_file;
add_auto_cmd21_atrr:
if (!is_auto_cmd21(host))
goto exit;
/* Sysfs entry for AUTO CMD21 control */
host->auto_cmd21_attr.show = show_enable_auto_cmd21;
host->auto_cmd21_attr.store = store_enable_auto_cmd21;
sysfs_attr_init(&host->auto_cmd21_attr.attr);
host->auto_cmd21_attr.attr.name = "enable_auto_cmd21";
host->auto_cmd21_attr.attr.mode = S_IRUGO | S_IWUSR;
ret = device_create_file(&pdev->dev, &host->auto_cmd21_attr);
if (ret)
goto remove_auto_cmd19_attr_file;
exit:
return 0;
remove_auto_cmd19_attr_file:
if (is_auto_cmd19(host))
device_remove_file(&pdev->dev, &host->auto_cmd19_attr);
remove_idle_timeout_file:
device_remove_file(&pdev->dev, &host->idle_timeout);
remove_polling_file:
if (!plat->status_irq)
device_remove_file(&pdev->dev, &host->polling);
remove_max_bus_bw_file:
device_remove_file(&pdev->dev, &host->max_bus_bw);
platform_irq_free:
del_timer_sync(&host->req_tout_timer);
pm_runtime_disable(&(pdev)->dev);
pm_runtime_set_suspended(&(pdev)->dev);
if (plat->status_irq)
free_irq(plat->status_irq, host);
msmsdcc_disable_status_gpio(host);
sdiowakeup_irq_free:
wake_lock_destroy(&host->sdio_suspend_wlock);
if (plat->sdiowakeup_irq)
free_irq(plat->sdiowakeup_irq, host);
pio_irq_free:
if (plat->sdiowakeup_irq)
wake_lock_destroy(&host->sdio_wlock);
free_irq(core_irqres->start, host);
irq_free:
free_irq(core_irqres->start, host);
dml_exit:
if (is_sps_mode(host))
msmsdcc_dml_exit(host);
sps_exit:
if (is_sps_mode(host))
msmsdcc_sps_exit(host);
vreg_deinit:
msmsdcc_vreg_init(host, false);
clk_disable:
clk_disable(host->clk);
msmsdcc_msm_bus_unregister(host);
pm_qos_remove:
if (host->cpu_dma_latency)
pm_qos_remove_request(&host->pm_qos_req_dma);
clk_put:
clk_put(host->clk);
pclk_disable:
if (!IS_ERR(host->pclk))
clk_disable_unprepare(host->pclk);
pclk_put:
if (!IS_ERR(host->pclk))
clk_put(host->pclk);
if (!IS_ERR_OR_NULL(host->bus_clk))
clk_disable_unprepare(host->bus_clk);
bus_clk_put:
if (!IS_ERR_OR_NULL(host->bus_clk))
clk_put(host->bus_clk);
if (is_dma_mode(host)) {
if (host->dmares)
dma_free_coherent(NULL,
sizeof(struct msmsdcc_nc_dmadata),
host->dma.nc, host->dma.nc_busaddr);
}
ioremap_free:
iounmap(host->base);
host_free:
mmc_free_host(mmc);
out:
return ret;
}
#ifdef CONFIG_DEBUG_FS
static void msmsdcc_remove_debugfs(struct msmsdcc_host *host)
{
debugfs_remove_recursive(host->debugfs_host_dir);
host->debugfs_host_dir = NULL;
}
#else
static void msmsdcc_remove_debugfs(msmsdcc_host *host) {}
#endif
static int msmsdcc_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = mmc_get_drvdata(pdev);
struct mmc_platform_data *plat;
struct msmsdcc_host *host;
if (!mmc)
return -ENXIO;
if (pm_runtime_suspended(&(pdev)->dev))
pm_runtime_resume(&(pdev)->dev);
host = mmc_priv(mmc);
DBG(host, "Removing SDCC device = %d\n", pdev->id);
plat = host->plat;
if (is_auto_cmd19(host))
device_remove_file(&pdev->dev, &host->auto_cmd19_attr);
if (is_auto_cmd21(host))
device_remove_file(&pdev->dev, &host->auto_cmd21_attr);
device_remove_file(&pdev->dev, &host->max_bus_bw);
if (!plat->status_irq)
device_remove_file(&pdev->dev, &host->polling);
device_remove_file(&pdev->dev, &host->idle_timeout);
msmsdcc_remove_debugfs(host);
del_timer_sync(&host->req_tout_timer);
tasklet_kill(&host->dma_tlet);
tasklet_kill(&host->sps.tlet);
mmc_remove_host(mmc);
if (plat->status_irq)
free_irq(plat->status_irq, host);
msmsdcc_disable_status_gpio(host);
wake_lock_destroy(&host->sdio_suspend_wlock);
if (plat->sdiowakeup_irq) {
wake_lock_destroy(&host->sdio_wlock);
irq_set_irq_wake(plat->sdiowakeup_irq, 0);
free_irq(plat->sdiowakeup_irq, host);
}
free_irq(host->core_irqres->start, host);
free_irq(host->core_irqres->start, host);
clk_put(host->clk);
if (!IS_ERR(host->pclk))
clk_put(host->pclk);
if (!IS_ERR_OR_NULL(host->bus_clk))
clk_put(host->bus_clk);
if (host->cpu_dma_latency)
pm_qos_remove_request(&host->pm_qos_req_dma);
if (host->msm_bus_vote.client_handle) {
msmsdcc_msm_bus_cancel_work_and_set_vote(host, NULL);
msmsdcc_msm_bus_unregister(host);
}
msmsdcc_vreg_init(host, false);
if (is_dma_mode(host)) {
if (host->dmares)
dma_free_coherent(NULL,
sizeof(struct msmsdcc_nc_dmadata),
host->dma.nc, host->dma.nc_busaddr);
}
if (is_sps_mode(host)) {
msmsdcc_dml_exit(host);
msmsdcc_sps_exit(host);
}
iounmap(host->base);
mmc_free_host(mmc);
#ifdef CONFIG_HAS_EARLYSUSPEND
unregister_early_suspend(&host->early_suspend);
#endif
pm_runtime_disable(&(pdev)->dev);
pm_runtime_set_suspended(&(pdev)->dev);
return 0;
}
#ifdef CONFIG_MSM_SDIO_AL
int msmsdcc_sdio_al_lpm(struct mmc_host *mmc, bool enable)
{
struct msmsdcc_host *host = mmc_priv(mmc);
unsigned long flags;
int rc = 0;
mutex_lock(&host->clk_mutex);
spin_lock_irqsave(&host->lock, flags);
pr_debug("%s: %sabling LPM\n", mmc_hostname(mmc),
enable ? "En" : "Dis");
if (enable) {
if (!host->sdcc_irq_disabled) {
writel_relaxed(0, host->base + MMCIMASK0);
disable_irq_nosync(host->core_irqres->start);
host->sdcc_irq_disabled = 1;
}
rc = msmsdcc_setup_clocks(host, false);
if (rc)
goto out;
if (host->plat->sdio_lpm_gpio_setup &&
!host->sdio_gpio_lpm) {
spin_unlock_irqrestore(&host->lock, flags);
host->plat->sdio_lpm_gpio_setup(mmc_dev(mmc), 0);
spin_lock_irqsave(&host->lock, flags);
host->sdio_gpio_lpm = 1;
}
if (host->sdio_wakeupirq_disabled) {
msmsdcc_enable_irq_wake(host);
enable_irq(host->plat->sdiowakeup_irq);
host->sdio_wakeupirq_disabled = 0;
}
} else {
rc = msmsdcc_setup_clocks(host, true);
if (rc)
goto out;
if (!host->sdio_wakeupirq_disabled) {
disable_irq_nosync(host->plat->sdiowakeup_irq);
host->sdio_wakeupirq_disabled = 1;
msmsdcc_disable_irq_wake(host);
}
if (host->plat->sdio_lpm_gpio_setup &&
host->sdio_gpio_lpm) {
spin_unlock_irqrestore(&host->lock, flags);
host->plat->sdio_lpm_gpio_setup(mmc_dev(mmc), 1);
spin_lock_irqsave(&host->lock, flags);
host->sdio_gpio_lpm = 0;
}
if (host->sdcc_irq_disabled && atomic_read(&host->clks_on)) {
writel_relaxed(host->mci_irqenable,
host->base + MMCIMASK0);
mb();
enable_irq(host->core_irqres->start);
host->sdcc_irq_disabled = 0;
}
}
out:
spin_unlock_irqrestore(&host->lock, flags);
mutex_unlock(&host->clk_mutex);
return rc;
}
#else
int msmsdcc_sdio_al_lpm(struct mmc_host *mmc, bool enable)
{
return 0;
}
#endif
#ifdef CONFIG_PM
#ifdef CONFIG_MMC_CLKGATE
static inline void msmsdcc_gate_clock(struct msmsdcc_host *host)
{
struct mmc_host *mmc = host->mmc;
unsigned long flags;
mmc_host_clk_hold(mmc);
spin_lock_irqsave(&mmc->clk_lock, flags);
mmc->clk_old = mmc->ios.clock;
mmc->ios.clock = 0;
mmc->clk_gated = true;
spin_unlock_irqrestore(&mmc->clk_lock, flags);
mmc_set_ios(mmc);
mmc_host_clk_release(mmc);
}
static inline void msmsdcc_ungate_clock(struct msmsdcc_host *host)
{
struct mmc_host *mmc = host->mmc;
mmc_host_clk_hold(mmc);
mmc->ios.clock = host->clk_rate;
mmc_set_ios(mmc);
mmc_host_clk_release(mmc);
}
#else
static inline void msmsdcc_gate_clock(struct msmsdcc_host *host)
{
struct mmc_host *mmc = host->mmc;
mmc->ios.clock = 0;
mmc_set_ios(mmc);
}
static inline void msmsdcc_ungate_clock(struct msmsdcc_host *host)
{
struct mmc_host *mmc = host->mmc;
mmc->ios.clock = host->clk_rate;
mmc_set_ios(mmc);
}
#endif
#if CONFIG_DEBUG_FS
static void msmsdcc_print_pm_stats(struct msmsdcc_host *host, ktime_t start,
const char *func)
{
ktime_t diff;
if (host->print_pm_stats) {
diff = ktime_sub(ktime_get(), start);
pr_info("%s: %s: Completed in %llu usec\n", func,
mmc_hostname(host->mmc), (u64)ktime_to_us(diff));
}
}
#else
static void msmsdcc_print_pm_stats(struct msmsdcc_host *host, ktime_t start,
const char *func) {}
#endif
static int
msmsdcc_runtime_suspend(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
int rc = 0;
unsigned long flags;
ktime_t start = ktime_get();
if (host->plat->is_sdio_al_client) {
rc = 0;
goto out;
}
pr_debug("%s: %s: start\n", mmc_hostname(mmc), __func__);
if (mmc) {
host->sdcc_suspending = 1;
mmc->suspend_task = current;
/*
* MMC core thinks that host is disabled by now since
* runtime suspend is scheduled after msmsdcc_disable()
* is called. Thus, MMC core will try to enable the host
* while suspending it. This results in a synchronous
* runtime resume request while in runtime suspending
* context and hence inorder to complete this resume
* requet, it will wait for suspend to be complete,
* but runtime suspend also can not proceed further
* until the host is resumed. Thus, it leads to a hang.
* Hence, increase the pm usage count before suspending
* the host so that any resume requests after this will
* simple become pm usage counter increment operations.
*/
pm_runtime_get_noresume(dev);
/* If there is pending detect work abort runtime suspend */
if (unlikely(work_busy(&mmc->detect.work)))
rc = -EAGAIN;
else
rc = mmc_suspend_host(mmc);
pm_runtime_put_noidle(dev);
if (!rc) {
spin_lock_irqsave(&host->lock, flags);
host->sdcc_suspended = true;
spin_unlock_irqrestore(&host->lock, flags);
if (mmc->card && mmc_card_sdio(mmc->card) &&
mmc->ios.clock) {
/*
* If SDIO function driver doesn't want
* to power off the card, atleast turn off
* clocks to allow deep sleep (TCXO shutdown).
*/
msmsdcc_gate_clock(host);
}
}
host->sdcc_suspending = 0;
mmc->suspend_task = NULL;
if (rc && wake_lock_active(&host->sdio_suspend_wlock))
wake_unlock(&host->sdio_suspend_wlock);
}
pr_debug("%s: %s: ends with err=%d\n", mmc_hostname(mmc), __func__, rc);
out:
/* set bus bandwidth to 0 immediately */
msmsdcc_msm_bus_cancel_work_and_set_vote(host, NULL);
msmsdcc_print_pm_stats(host, start, __func__);
return rc;
}
static int
msmsdcc_runtime_resume(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
unsigned long flags;
ktime_t start = ktime_get();
if (host->plat->is_sdio_al_client)
goto out;
pr_debug("%s: %s: start\n", mmc_hostname(mmc), __func__);
if (mmc) {
if (mmc->card && mmc_card_sdio(mmc->card) &&
mmc_card_keep_power(mmc)) {
msmsdcc_ungate_clock(host);
}
mmc_resume_host(mmc);
/*
* FIXME: Clearing of flags must be handled in clients
* resume handler.
*/
spin_lock_irqsave(&host->lock, flags);
mmc->pm_flags = 0;
host->sdcc_suspended = false;
spin_unlock_irqrestore(&host->lock, flags);
/*
* After resuming the host wait for sometime so that
* the SDIO work will be processed.
*/
if (mmc->card && mmc_card_sdio(mmc->card)) {
if ((host->plat->mpm_sdiowakeup_int ||
host->plat->sdiowakeup_irq) &&
wake_lock_active(&host->sdio_wlock))
wake_lock_timeout(&host->sdio_wlock, 1);
}
wake_unlock(&host->sdio_suspend_wlock);
}
host->pending_resume = false;
pr_debug("%s: %s: end\n", mmc_hostname(mmc), __func__);
out:
msmsdcc_print_pm_stats(host, start, __func__);
return 0;
}
static int msmsdcc_runtime_idle(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
if (host->plat->is_sdio_al_client)
return 0;
/* Idle timeout is not configurable for now */
pm_schedule_suspend(dev, host->idle_tout);
return -EAGAIN;
}
static int msmsdcc_pm_suspend(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
int rc = 0;
ktime_t start = ktime_get();
if (host->plat->is_sdio_al_client) {
rc = 0;
goto out;
}
if (host->plat->status_irq) {
disable_irq(host->plat->status_irq);
msmsdcc_disable_status_gpio(host);
}
if (!pm_runtime_suspended(dev))
rc = msmsdcc_runtime_suspend(dev);
out:
msmsdcc_print_pm_stats(host, start, __func__);
return rc;
}
static int msmsdcc_suspend_noirq(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
int rc = 0;
/*
* After platform suspend there may be active request
* which might have enabled clocks. For example, in SDIO
* case, ksdioirq thread might have scheduled after sdcc
* suspend but before system freeze. In that case abort
* suspend and retry instead of keeping the clocks on
* during suspend and not allowing TCXO.
*/
if (atomic_read(&host->clks_on) && !host->plat->is_sdio_al_client) {
pr_warn("%s: clocks are on after suspend, aborting system "
"suspend\n", mmc_hostname(mmc));
rc = -EAGAIN;
}
return rc;
}
static int msmsdcc_pm_resume(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
int rc = 0;
ktime_t start = ktime_get();
if (host->plat->is_sdio_al_client) {
rc = 0;
goto out;
}
if (mmc->card && mmc_card_sdio(mmc->card))
rc = msmsdcc_runtime_resume(dev);
/*
* As runtime PM is enabled before calling the device's platform resume
* callback, we use the pm_runtime_suspended API to know if SDCC is
* really runtime suspended or not and set the pending_resume flag only
* if its not runtime suspended.
*/
else if (!pm_runtime_suspended(dev))
host->pending_resume = true;
if (host->plat->status_irq) {
msmsdcc_enable_status_gpio(host);
msmsdcc_check_status((unsigned long)host);
enable_irq(host->plat->status_irq);
}
out:
msmsdcc_print_pm_stats(host, start, __func__);
return rc;
}
#else
static int msmsdcc_runtime_suspend(struct device *dev)
{
return 0;
}
static int msmsdcc_runtime_idle(struct device *dev)
{
return 0;
}
static int msmsdcc_pm_suspend(struct device *dev)
{
return 0;
}
static int msmsdcc_pm_resume(struct device *dev)
{
return 0;
}
static int msmsdcc_suspend_noirq(struct device *dev)
{
return 0;
}
static int msmsdcc_runtime_resume(struct device *dev)
{
return 0;
}
#endif
static const struct dev_pm_ops msmsdcc_dev_pm_ops = {
.runtime_suspend = msmsdcc_runtime_suspend,
.runtime_resume = msmsdcc_runtime_resume,
.runtime_idle = msmsdcc_runtime_idle,
.suspend = msmsdcc_pm_suspend,
.resume = msmsdcc_pm_resume,
.suspend_noirq = msmsdcc_suspend_noirq,
};
static const struct of_device_id msmsdcc_dt_match[] = {
{.compatible = "qcom,msm-sdcc"},
};
MODULE_DEVICE_TABLE(of, msmsdcc_dt_match);
static struct platform_driver msmsdcc_driver = {
.probe = msmsdcc_probe,
.remove = msmsdcc_remove,
.driver = {
.name = "msm_sdcc",
.pm = &msmsdcc_dev_pm_ops,
.of_match_table = msmsdcc_dt_match,
},
};
static int __init msmsdcc_init(void)
{
#if defined(CONFIG_DEBUG_FS)
int ret = 0;
ret = msmsdcc_dbg_init();
if (ret) {
pr_err("Failed to create debug fs dir \n");
return ret;
}
#endif
return platform_driver_register(&msmsdcc_driver);
}
static void __exit msmsdcc_exit(void)
{
platform_driver_unregister(&msmsdcc_driver);
#if defined(CONFIG_DEBUG_FS)
debugfs_remove(debugfs_dir);
#endif
}
module_init(msmsdcc_init);
module_exit(msmsdcc_exit);
MODULE_DESCRIPTION("Qualcomm Multimedia Card Interface driver");
MODULE_LICENSE("GPL");
#if defined(CONFIG_DEBUG_FS)
static int msmsdcc_dbg_idle_tout_get(void *data, u64 *val)
{
struct msmsdcc_host *host = data;
*val = host->idle_tout / 1000L;
return 0;
}
static int msmsdcc_dbg_idle_tout_set(void *data, u64 val)
{
struct msmsdcc_host *host = data;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->idle_tout = (u32)val * 1000;
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(msmsdcc_dbg_idle_tout_ops,
msmsdcc_dbg_idle_tout_get,
msmsdcc_dbg_idle_tout_set,
"%llu\n");
static int msmsdcc_dbg_pio_mode_get(void *data, u64 *val)
{
struct msmsdcc_host *host = data;
*val = (u64) host->enforce_pio_mode;
return 0;
}
static int msmsdcc_dbg_pio_mode_set(void *data, u64 val)
{
struct msmsdcc_host *host = data;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->enforce_pio_mode = !!val;
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(msmsdcc_dbg_pio_mode_ops,
msmsdcc_dbg_pio_mode_get,
msmsdcc_dbg_pio_mode_set,
"%llu\n");
static int msmsdcc_dbg_pm_stats_get(void *data, u64 *val)
{
struct msmsdcc_host *host = data;
*val = !!host->print_pm_stats;
return 0;
}
static int msmsdcc_dbg_pm_stats_set(void *data, u64 val)
{
struct msmsdcc_host *host = data;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->print_pm_stats = !!val;
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(msmsdcc_dbg_pm_stats_ops,
msmsdcc_dbg_pm_stats_get,
msmsdcc_dbg_pm_stats_set,
"%llu\n");
static void msmsdcc_dbg_createhost(struct msmsdcc_host *host)
{
int err = 0;
if (!debugfs_dir)
return;
host->debugfs_host_dir = debugfs_create_dir(
mmc_hostname(host->mmc), debugfs_dir);
if (IS_ERR(host->debugfs_host_dir)) {
err = PTR_ERR(host->debugfs_host_dir);
host->debugfs_host_dir = NULL;
pr_err("%s: Failed to create debugfs dir for host with err=%d\n",
mmc_hostname(host->mmc), err);
return;
}
host->debugfs_idle_tout = debugfs_create_file("idle_tout",
S_IRUSR | S_IWUSR, host->debugfs_host_dir, host,
&msmsdcc_dbg_idle_tout_ops);
if (IS_ERR(host->debugfs_idle_tout)) {
err = PTR_ERR(host->debugfs_idle_tout);
host->debugfs_idle_tout = NULL;
pr_err("%s: Failed to create idle_tout debugfs entry with err=%d\n",
mmc_hostname(host->mmc), err);
}
host->debugfs_pio_mode = debugfs_create_file("pio_mode",
S_IRUSR | S_IWUSR, host->debugfs_host_dir, host,
&msmsdcc_dbg_pio_mode_ops);
if (IS_ERR(host->debugfs_pio_mode)) {
err = PTR_ERR(host->debugfs_pio_mode);
host->debugfs_pio_mode = NULL;
pr_err("%s: Failed to create pio_mode debugfs entry with err=%d\n",
mmc_hostname(host->mmc), err);
}
host->debugfs_pm_stats = debugfs_create_file("pm_stats",
S_IRUSR | S_IWUSR, host->debugfs_host_dir, host,
&msmsdcc_dbg_pm_stats_ops);
if (IS_ERR(host->debugfs_pm_stats)) {
err = PTR_ERR(host->debugfs_pm_stats);
host->debugfs_pm_stats = NULL;
pr_err("%s: Failed to create pm_stats debugfs entry with err=%d\n",
mmc_hostname(host->mmc), err);
}
}
static int __init msmsdcc_dbg_init(void)
{
int err;
debugfs_dir = debugfs_create_dir("msm_sdcc", 0);
if (IS_ERR(debugfs_dir)) {
err = PTR_ERR(debugfs_dir);
debugfs_dir = NULL;
return err;
}
return 0;
}
#endif