| /* |
| * |
| * Alchemy Au1x00 ethernet driver |
| * |
| * Copyright 2001-2003, 2006 MontaVista Software Inc. |
| * Copyright 2002 TimeSys Corp. |
| * Added ethtool/mii-tool support, |
| * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> |
| * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de |
| * or riemer@riemer-nt.de: fixed the link beat detection with |
| * ioctls (SIOCGMIIPHY) |
| * Author: MontaVista Software, Inc. |
| * ppopov@mvista.com or source@mvista.com |
| * |
| * ######################################################################## |
| * |
| * This program is free software; you can distribute it and/or modify it |
| * under the terms of the GNU General Public License (Version 2) as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| * |
| * ######################################################################## |
| * |
| * |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/string.h> |
| #include <linux/timer.h> |
| #include <linux/errno.h> |
| #include <linux/in.h> |
| #include <linux/ioport.h> |
| #include <linux/bitops.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/ethtool.h> |
| #include <linux/mii.h> |
| #include <linux/skbuff.h> |
| #include <linux/delay.h> |
| #include <asm/mipsregs.h> |
| #include <asm/irq.h> |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| |
| #include <asm/mach-au1x00/au1000.h> |
| #include <asm/cpu.h> |
| #include "au1000_eth.h" |
| |
| #ifdef AU1000_ETH_DEBUG |
| static int au1000_debug = 5; |
| #else |
| static int au1000_debug = 3; |
| #endif |
| |
| #define DRV_NAME "au1000_eth" |
| #define DRV_VERSION "1.5" |
| #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>" |
| #define DRV_DESC "Au1xxx on-chip Ethernet driver" |
| |
| MODULE_AUTHOR(DRV_AUTHOR); |
| MODULE_DESCRIPTION(DRV_DESC); |
| MODULE_LICENSE("GPL"); |
| |
| // prototypes |
| static void hard_stop(struct net_device *); |
| static void enable_rx_tx(struct net_device *dev); |
| static struct net_device * au1000_probe(int port_num); |
| static int au1000_init(struct net_device *); |
| static int au1000_open(struct net_device *); |
| static int au1000_close(struct net_device *); |
| static int au1000_tx(struct sk_buff *, struct net_device *); |
| static int au1000_rx(struct net_device *); |
| static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *); |
| static void au1000_tx_timeout(struct net_device *); |
| static int au1000_set_config(struct net_device *dev, struct ifmap *map); |
| static void set_rx_mode(struct net_device *); |
| static struct net_device_stats *au1000_get_stats(struct net_device *); |
| static void au1000_timer(unsigned long); |
| static int au1000_ioctl(struct net_device *, struct ifreq *, int); |
| static int mdio_read(struct net_device *, int, int); |
| static void mdio_write(struct net_device *, int, int, u16); |
| static void dump_mii(struct net_device *dev, int phy_id); |
| |
| // externs |
| extern void ack_rise_edge_irq(unsigned int); |
| extern int get_ethernet_addr(char *ethernet_addr); |
| extern void str2eaddr(unsigned char *ea, unsigned char *str); |
| extern char * __init prom_getcmdline(void); |
| |
| /* |
| * Theory of operation |
| * |
| * The Au1000 MACs use a simple rx and tx descriptor ring scheme. |
| * There are four receive and four transmit descriptors. These |
| * descriptors are not in memory; rather, they are just a set of |
| * hardware registers. |
| * |
| * Since the Au1000 has a coherent data cache, the receive and |
| * transmit buffers are allocated from the KSEG0 segment. The |
| * hardware registers, however, are still mapped at KSEG1 to |
| * make sure there's no out-of-order writes, and that all writes |
| * complete immediately. |
| */ |
| |
| /* These addresses are only used if yamon doesn't tell us what |
| * the mac address is, and the mac address is not passed on the |
| * command line. |
| */ |
| static unsigned char au1000_mac_addr[6] __devinitdata = { |
| 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00 |
| }; |
| |
| #define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0)) |
| #define RUN_AT(x) (jiffies + (x)) |
| |
| // For reading/writing 32-bit words from/to DMA memory |
| #define cpu_to_dma32 cpu_to_be32 |
| #define dma32_to_cpu be32_to_cpu |
| |
| struct au1000_private *au_macs[NUM_ETH_INTERFACES]; |
| |
| /* FIXME |
| * All of the PHY code really should be detached from the MAC |
| * code. |
| */ |
| |
| /* Default advertise */ |
| #define GENMII_DEFAULT_ADVERTISE \ |
| ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ |
| ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ |
| ADVERTISED_Autoneg |
| |
| #define GENMII_DEFAULT_FEATURES \ |
| SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ |
| SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ |
| SUPPORTED_Autoneg |
| |
| int bcm_5201_init(struct net_device *dev, int phy_addr) |
| { |
| s16 data; |
| |
| /* Stop auto-negotiation */ |
| data = mdio_read(dev, phy_addr, MII_CONTROL); |
| mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); |
| |
| /* Set advertisement to 10/100 and Half/Full duplex |
| * (full capabilities) */ |
| data = mdio_read(dev, phy_addr, MII_ANADV); |
| data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; |
| mdio_write(dev, phy_addr, MII_ANADV, data); |
| |
| /* Restart auto-negotiation */ |
| data = mdio_read(dev, phy_addr, MII_CONTROL); |
| data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; |
| mdio_write(dev, phy_addr, MII_CONTROL, data); |
| |
| if (au1000_debug > 4) |
| dump_mii(dev, phy_addr); |
| return 0; |
| } |
| |
| int bcm_5201_reset(struct net_device *dev, int phy_addr) |
| { |
| s16 mii_control, timeout; |
| |
| mii_control = mdio_read(dev, phy_addr, MII_CONTROL); |
| mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); |
| mdelay(1); |
| for (timeout = 100; timeout > 0; --timeout) { |
| mii_control = mdio_read(dev, phy_addr, MII_CONTROL); |
| if ((mii_control & MII_CNTL_RESET) == 0) |
| break; |
| mdelay(1); |
| } |
| if (mii_control & MII_CNTL_RESET) { |
| printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); |
| return -1; |
| } |
| return 0; |
| } |
| |
| int |
| bcm_5201_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) |
| { |
| u16 mii_data; |
| struct au1000_private *aup; |
| |
| if (!dev) { |
| printk(KERN_ERR "bcm_5201_status error: NULL dev\n"); |
| return -1; |
| } |
| aup = (struct au1000_private *) dev->priv; |
| |
| mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); |
| if (mii_data & MII_STAT_LINK) { |
| *link = 1; |
| mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL); |
| if (mii_data & MII_AUX_100) { |
| if (mii_data & MII_AUX_FDX) { |
| *speed = IF_PORT_100BASEFX; |
| dev->if_port = IF_PORT_100BASEFX; |
| } |
| else { |
| *speed = IF_PORT_100BASETX; |
| dev->if_port = IF_PORT_100BASETX; |
| } |
| } |
| else { |
| *speed = IF_PORT_10BASET; |
| dev->if_port = IF_PORT_10BASET; |
| } |
| |
| } |
| else { |
| *link = 0; |
| *speed = 0; |
| dev->if_port = IF_PORT_UNKNOWN; |
| } |
| return 0; |
| } |
| |
| int lsi_80227_init(struct net_device *dev, int phy_addr) |
| { |
| if (au1000_debug > 4) |
| printk("lsi_80227_init\n"); |
| |
| /* restart auto-negotiation */ |
| mdio_write(dev, phy_addr, MII_CONTROL, |
| MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO); // | MII_CNTL_FDX); |
| mdelay(1); |
| |
| /* set up LEDs to correct display */ |
| #ifdef CONFIG_MIPS_MTX1 |
| mdio_write(dev, phy_addr, 17, 0xff80); |
| #else |
| mdio_write(dev, phy_addr, 17, 0xffc0); |
| #endif |
| |
| if (au1000_debug > 4) |
| dump_mii(dev, phy_addr); |
| return 0; |
| } |
| |
| int lsi_80227_reset(struct net_device *dev, int phy_addr) |
| { |
| s16 mii_control, timeout; |
| |
| if (au1000_debug > 4) { |
| printk("lsi_80227_reset\n"); |
| dump_mii(dev, phy_addr); |
| } |
| |
| mii_control = mdio_read(dev, phy_addr, MII_CONTROL); |
| mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); |
| mdelay(1); |
| for (timeout = 100; timeout > 0; --timeout) { |
| mii_control = mdio_read(dev, phy_addr, MII_CONTROL); |
| if ((mii_control & MII_CNTL_RESET) == 0) |
| break; |
| mdelay(1); |
| } |
| if (mii_control & MII_CNTL_RESET) { |
| printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); |
| return -1; |
| } |
| return 0; |
| } |
| |
| int |
| lsi_80227_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) |
| { |
| u16 mii_data; |
| struct au1000_private *aup; |
| |
| if (!dev) { |
| printk(KERN_ERR "lsi_80227_status error: NULL dev\n"); |
| return -1; |
| } |
| aup = (struct au1000_private *) dev->priv; |
| |
| mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); |
| if (mii_data & MII_STAT_LINK) { |
| *link = 1; |
| mii_data = mdio_read(dev, aup->phy_addr, MII_LSI_PHY_STAT); |
| if (mii_data & MII_LSI_PHY_STAT_SPD) { |
| if (mii_data & MII_LSI_PHY_STAT_FDX) { |
| *speed = IF_PORT_100BASEFX; |
| dev->if_port = IF_PORT_100BASEFX; |
| } |
| else { |
| *speed = IF_PORT_100BASETX; |
| dev->if_port = IF_PORT_100BASETX; |
| } |
| } |
| else { |
| *speed = IF_PORT_10BASET; |
| dev->if_port = IF_PORT_10BASET; |
| } |
| |
| } |
| else { |
| *link = 0; |
| *speed = 0; |
| dev->if_port = IF_PORT_UNKNOWN; |
| } |
| return 0; |
| } |
| |
| int am79c901_init(struct net_device *dev, int phy_addr) |
| { |
| printk("am79c901_init\n"); |
| return 0; |
| } |
| |
| int am79c901_reset(struct net_device *dev, int phy_addr) |
| { |
| printk("am79c901_reset\n"); |
| return 0; |
| } |
| |
| int |
| am79c901_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) |
| { |
| return 0; |
| } |
| |
| int am79c874_init(struct net_device *dev, int phy_addr) |
| { |
| s16 data; |
| |
| /* 79c874 has quit resembled bit assignments to BCM5201 */ |
| if (au1000_debug > 4) |
| printk("am79c847_init\n"); |
| |
| /* Stop auto-negotiation */ |
| data = mdio_read(dev, phy_addr, MII_CONTROL); |
| mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); |
| |
| /* Set advertisement to 10/100 and Half/Full duplex |
| * (full capabilities) */ |
| data = mdio_read(dev, phy_addr, MII_ANADV); |
| data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; |
| mdio_write(dev, phy_addr, MII_ANADV, data); |
| |
| /* Restart auto-negotiation */ |
| data = mdio_read(dev, phy_addr, MII_CONTROL); |
| data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; |
| |
| mdio_write(dev, phy_addr, MII_CONTROL, data); |
| |
| if (au1000_debug > 4) dump_mii(dev, phy_addr); |
| return 0; |
| } |
| |
| int am79c874_reset(struct net_device *dev, int phy_addr) |
| { |
| s16 mii_control, timeout; |
| |
| if (au1000_debug > 4) |
| printk("am79c874_reset\n"); |
| |
| mii_control = mdio_read(dev, phy_addr, MII_CONTROL); |
| mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); |
| mdelay(1); |
| for (timeout = 100; timeout > 0; --timeout) { |
| mii_control = mdio_read(dev, phy_addr, MII_CONTROL); |
| if ((mii_control & MII_CNTL_RESET) == 0) |
| break; |
| mdelay(1); |
| } |
| if (mii_control & MII_CNTL_RESET) { |
| printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); |
| return -1; |
| } |
| return 0; |
| } |
| |
| int |
| am79c874_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) |
| { |
| u16 mii_data; |
| struct au1000_private *aup; |
| |
| // printk("am79c874_status\n"); |
| if (!dev) { |
| printk(KERN_ERR "am79c874_status error: NULL dev\n"); |
| return -1; |
| } |
| |
| aup = (struct au1000_private *) dev->priv; |
| mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); |
| |
| if (mii_data & MII_STAT_LINK) { |
| *link = 1; |
| mii_data = mdio_read(dev, aup->phy_addr, MII_AMD_PHY_STAT); |
| if (mii_data & MII_AMD_PHY_STAT_SPD) { |
| if (mii_data & MII_AMD_PHY_STAT_FDX) { |
| *speed = IF_PORT_100BASEFX; |
| dev->if_port = IF_PORT_100BASEFX; |
| } |
| else { |
| *speed = IF_PORT_100BASETX; |
| dev->if_port = IF_PORT_100BASETX; |
| } |
| } |
| else { |
| *speed = IF_PORT_10BASET; |
| dev->if_port = IF_PORT_10BASET; |
| } |
| |
| } |
| else { |
| *link = 0; |
| *speed = 0; |
| dev->if_port = IF_PORT_UNKNOWN; |
| } |
| return 0; |
| } |
| |
| int lxt971a_init(struct net_device *dev, int phy_addr) |
| { |
| if (au1000_debug > 4) |
| printk("lxt971a_init\n"); |
| |
| /* restart auto-negotiation */ |
| mdio_write(dev, phy_addr, MII_CONTROL, |
| MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO | MII_CNTL_FDX); |
| |
| /* set up LEDs to correct display */ |
| mdio_write(dev, phy_addr, 20, 0x0422); |
| |
| if (au1000_debug > 4) |
| dump_mii(dev, phy_addr); |
| return 0; |
| } |
| |
| int lxt971a_reset(struct net_device *dev, int phy_addr) |
| { |
| s16 mii_control, timeout; |
| |
| if (au1000_debug > 4) { |
| printk("lxt971a_reset\n"); |
| dump_mii(dev, phy_addr); |
| } |
| |
| mii_control = mdio_read(dev, phy_addr, MII_CONTROL); |
| mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); |
| mdelay(1); |
| for (timeout = 100; timeout > 0; --timeout) { |
| mii_control = mdio_read(dev, phy_addr, MII_CONTROL); |
| if ((mii_control & MII_CNTL_RESET) == 0) |
| break; |
| mdelay(1); |
| } |
| if (mii_control & MII_CNTL_RESET) { |
| printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); |
| return -1; |
| } |
| return 0; |
| } |
| |
| int |
| lxt971a_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) |
| { |
| u16 mii_data; |
| struct au1000_private *aup; |
| |
| if (!dev) { |
| printk(KERN_ERR "lxt971a_status error: NULL dev\n"); |
| return -1; |
| } |
| aup = (struct au1000_private *) dev->priv; |
| |
| mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); |
| if (mii_data & MII_STAT_LINK) { |
| *link = 1; |
| mii_data = mdio_read(dev, aup->phy_addr, MII_INTEL_PHY_STAT); |
| if (mii_data & MII_INTEL_PHY_STAT_SPD) { |
| if (mii_data & MII_INTEL_PHY_STAT_FDX) { |
| *speed = IF_PORT_100BASEFX; |
| dev->if_port = IF_PORT_100BASEFX; |
| } |
| else { |
| *speed = IF_PORT_100BASETX; |
| dev->if_port = IF_PORT_100BASETX; |
| } |
| } |
| else { |
| *speed = IF_PORT_10BASET; |
| dev->if_port = IF_PORT_10BASET; |
| } |
| |
| } |
| else { |
| *link = 0; |
| *speed = 0; |
| dev->if_port = IF_PORT_UNKNOWN; |
| } |
| return 0; |
| } |
| |
| int ks8995m_init(struct net_device *dev, int phy_addr) |
| { |
| s16 data; |
| |
| // printk("ks8995m_init\n"); |
| /* Stop auto-negotiation */ |
| data = mdio_read(dev, phy_addr, MII_CONTROL); |
| mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); |
| |
| /* Set advertisement to 10/100 and Half/Full duplex |
| * (full capabilities) */ |
| data = mdio_read(dev, phy_addr, MII_ANADV); |
| data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; |
| mdio_write(dev, phy_addr, MII_ANADV, data); |
| |
| /* Restart auto-negotiation */ |
| data = mdio_read(dev, phy_addr, MII_CONTROL); |
| data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; |
| mdio_write(dev, phy_addr, MII_CONTROL, data); |
| |
| if (au1000_debug > 4) dump_mii(dev, phy_addr); |
| |
| return 0; |
| } |
| |
| int ks8995m_reset(struct net_device *dev, int phy_addr) |
| { |
| s16 mii_control, timeout; |
| |
| // printk("ks8995m_reset\n"); |
| mii_control = mdio_read(dev, phy_addr, MII_CONTROL); |
| mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); |
| mdelay(1); |
| for (timeout = 100; timeout > 0; --timeout) { |
| mii_control = mdio_read(dev, phy_addr, MII_CONTROL); |
| if ((mii_control & MII_CNTL_RESET) == 0) |
| break; |
| mdelay(1); |
| } |
| if (mii_control & MII_CNTL_RESET) { |
| printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); |
| return -1; |
| } |
| return 0; |
| } |
| |
| int ks8995m_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) |
| { |
| u16 mii_data; |
| struct au1000_private *aup; |
| |
| if (!dev) { |
| printk(KERN_ERR "ks8995m_status error: NULL dev\n"); |
| return -1; |
| } |
| aup = (struct au1000_private *) dev->priv; |
| |
| mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); |
| if (mii_data & MII_STAT_LINK) { |
| *link = 1; |
| mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL); |
| if (mii_data & MII_AUX_100) { |
| if (mii_data & MII_AUX_FDX) { |
| *speed = IF_PORT_100BASEFX; |
| dev->if_port = IF_PORT_100BASEFX; |
| } |
| else { |
| *speed = IF_PORT_100BASETX; |
| dev->if_port = IF_PORT_100BASETX; |
| } |
| } |
| else { |
| *speed = IF_PORT_10BASET; |
| dev->if_port = IF_PORT_10BASET; |
| } |
| |
| } |
| else { |
| *link = 0; |
| *speed = 0; |
| dev->if_port = IF_PORT_UNKNOWN; |
| } |
| return 0; |
| } |
| |
| int |
| smsc_83C185_init (struct net_device *dev, int phy_addr) |
| { |
| s16 data; |
| |
| if (au1000_debug > 4) |
| printk("smsc_83C185_init\n"); |
| |
| /* Stop auto-negotiation */ |
| data = mdio_read(dev, phy_addr, MII_CONTROL); |
| mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); |
| |
| /* Set advertisement to 10/100 and Half/Full duplex |
| * (full capabilities) */ |
| data = mdio_read(dev, phy_addr, MII_ANADV); |
| data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; |
| mdio_write(dev, phy_addr, MII_ANADV, data); |
| |
| /* Restart auto-negotiation */ |
| data = mdio_read(dev, phy_addr, MII_CONTROL); |
| data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; |
| |
| mdio_write(dev, phy_addr, MII_CONTROL, data); |
| |
| if (au1000_debug > 4) dump_mii(dev, phy_addr); |
| return 0; |
| } |
| |
| int |
| smsc_83C185_reset (struct net_device *dev, int phy_addr) |
| { |
| s16 mii_control, timeout; |
| |
| if (au1000_debug > 4) |
| printk("smsc_83C185_reset\n"); |
| |
| mii_control = mdio_read(dev, phy_addr, MII_CONTROL); |
| mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); |
| mdelay(1); |
| for (timeout = 100; timeout > 0; --timeout) { |
| mii_control = mdio_read(dev, phy_addr, MII_CONTROL); |
| if ((mii_control & MII_CNTL_RESET) == 0) |
| break; |
| mdelay(1); |
| } |
| if (mii_control & MII_CNTL_RESET) { |
| printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); |
| return -1; |
| } |
| return 0; |
| } |
| |
| int |
| smsc_83C185_status (struct net_device *dev, int phy_addr, u16 *link, u16 *speed) |
| { |
| u16 mii_data; |
| struct au1000_private *aup; |
| |
| if (!dev) { |
| printk(KERN_ERR "smsc_83C185_status error: NULL dev\n"); |
| return -1; |
| } |
| |
| aup = (struct au1000_private *) dev->priv; |
| mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); |
| |
| if (mii_data & MII_STAT_LINK) { |
| *link = 1; |
| mii_data = mdio_read(dev, aup->phy_addr, 0x1f); |
| if (mii_data & (1<<3)) { |
| if (mii_data & (1<<4)) { |
| *speed = IF_PORT_100BASEFX; |
| dev->if_port = IF_PORT_100BASEFX; |
| } |
| else { |
| *speed = IF_PORT_100BASETX; |
| dev->if_port = IF_PORT_100BASETX; |
| } |
| } |
| else { |
| *speed = IF_PORT_10BASET; |
| dev->if_port = IF_PORT_10BASET; |
| } |
| } |
| else { |
| *link = 0; |
| *speed = 0; |
| dev->if_port = IF_PORT_UNKNOWN; |
| } |
| return 0; |
| } |
| |
| |
| #ifdef CONFIG_MIPS_BOSPORUS |
| int stub_init(struct net_device *dev, int phy_addr) |
| { |
| //printk("PHY stub_init\n"); |
| return 0; |
| } |
| |
| int stub_reset(struct net_device *dev, int phy_addr) |
| { |
| //printk("PHY stub_reset\n"); |
| return 0; |
| } |
| |
| int |
| stub_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) |
| { |
| //printk("PHY stub_status\n"); |
| *link = 1; |
| /* hmmm, revisit */ |
| *speed = IF_PORT_100BASEFX; |
| dev->if_port = IF_PORT_100BASEFX; |
| return 0; |
| } |
| #endif |
| |
| struct phy_ops bcm_5201_ops = { |
| bcm_5201_init, |
| bcm_5201_reset, |
| bcm_5201_status, |
| }; |
| |
| struct phy_ops am79c874_ops = { |
| am79c874_init, |
| am79c874_reset, |
| am79c874_status, |
| }; |
| |
| struct phy_ops am79c901_ops = { |
| am79c901_init, |
| am79c901_reset, |
| am79c901_status, |
| }; |
| |
| struct phy_ops lsi_80227_ops = { |
| lsi_80227_init, |
| lsi_80227_reset, |
| lsi_80227_status, |
| }; |
| |
| struct phy_ops lxt971a_ops = { |
| lxt971a_init, |
| lxt971a_reset, |
| lxt971a_status, |
| }; |
| |
| struct phy_ops ks8995m_ops = { |
| ks8995m_init, |
| ks8995m_reset, |
| ks8995m_status, |
| }; |
| |
| struct phy_ops smsc_83C185_ops = { |
| smsc_83C185_init, |
| smsc_83C185_reset, |
| smsc_83C185_status, |
| }; |
| |
| #ifdef CONFIG_MIPS_BOSPORUS |
| struct phy_ops stub_ops = { |
| stub_init, |
| stub_reset, |
| stub_status, |
| }; |
| #endif |
| |
| static struct mii_chip_info { |
| const char * name; |
| u16 phy_id0; |
| u16 phy_id1; |
| struct phy_ops *phy_ops; |
| int dual_phy; |
| } mii_chip_table[] = { |
| {"Broadcom BCM5201 10/100 BaseT PHY",0x0040,0x6212, &bcm_5201_ops,0}, |
| {"Broadcom BCM5221 10/100 BaseT PHY",0x0040,0x61e4, &bcm_5201_ops,0}, |
| {"Broadcom BCM5222 10/100 BaseT PHY",0x0040,0x6322, &bcm_5201_ops,1}, |
| {"NS DP83847 PHY", 0x2000, 0x5c30, &bcm_5201_ops ,0}, |
| {"AMD 79C901 HomePNA PHY",0x0000,0x35c8, &am79c901_ops,0}, |
| {"AMD 79C874 10/100 BaseT PHY",0x0022,0x561b, &am79c874_ops,0}, |
| {"LSI 80227 10/100 BaseT PHY",0x0016,0xf840, &lsi_80227_ops,0}, |
| {"Intel LXT971A Dual Speed PHY",0x0013,0x78e2, &lxt971a_ops,0}, |
| {"Kendin KS8995M 10/100 BaseT PHY",0x0022,0x1450, &ks8995m_ops,0}, |
| {"SMSC LAN83C185 10/100 BaseT PHY",0x0007,0xc0a3, &smsc_83C185_ops,0}, |
| #ifdef CONFIG_MIPS_BOSPORUS |
| {"Stub", 0x1234, 0x5678, &stub_ops }, |
| #endif |
| {0,}, |
| }; |
| |
| static int mdio_read(struct net_device *dev, int phy_id, int reg) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| volatile u32 *mii_control_reg; |
| volatile u32 *mii_data_reg; |
| u32 timedout = 20; |
| u32 mii_control; |
| |
| #ifdef CONFIG_BCM5222_DUAL_PHY |
| /* First time we probe, it's for the mac0 phy. |
| * Since we haven't determined yet that we have a dual phy, |
| * aup->mii->mii_control_reg won't be setup and we'll |
| * default to the else statement. |
| * By the time we probe for the mac1 phy, the mii_control_reg |
| * will be setup to be the address of the mac0 phy control since |
| * both phys are controlled through mac0. |
| */ |
| if (aup->mii && aup->mii->mii_control_reg) { |
| mii_control_reg = aup->mii->mii_control_reg; |
| mii_data_reg = aup->mii->mii_data_reg; |
| } |
| else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) { |
| /* assume both phys are controlled through mac0 */ |
| mii_control_reg = au_macs[0]->mii->mii_control_reg; |
| mii_data_reg = au_macs[0]->mii->mii_data_reg; |
| } |
| else |
| #endif |
| { |
| /* default control and data reg addresses */ |
| mii_control_reg = &aup->mac->mii_control; |
| mii_data_reg = &aup->mac->mii_data; |
| } |
| |
| while (*mii_control_reg & MAC_MII_BUSY) { |
| mdelay(1); |
| if (--timedout == 0) { |
| printk(KERN_ERR "%s: read_MII busy timeout!!\n", |
| dev->name); |
| return -1; |
| } |
| } |
| |
| mii_control = MAC_SET_MII_SELECT_REG(reg) | |
| MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_READ; |
| |
| *mii_control_reg = mii_control; |
| |
| timedout = 20; |
| while (*mii_control_reg & MAC_MII_BUSY) { |
| mdelay(1); |
| if (--timedout == 0) { |
| printk(KERN_ERR "%s: mdio_read busy timeout!!\n", |
| dev->name); |
| return -1; |
| } |
| } |
| return (int)*mii_data_reg; |
| } |
| |
| static void mdio_write(struct net_device *dev, int phy_id, int reg, u16 value) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| volatile u32 *mii_control_reg; |
| volatile u32 *mii_data_reg; |
| u32 timedout = 20; |
| u32 mii_control; |
| |
| #ifdef CONFIG_BCM5222_DUAL_PHY |
| if (aup->mii && aup->mii->mii_control_reg) { |
| mii_control_reg = aup->mii->mii_control_reg; |
| mii_data_reg = aup->mii->mii_data_reg; |
| } |
| else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) { |
| /* assume both phys are controlled through mac0 */ |
| mii_control_reg = au_macs[0]->mii->mii_control_reg; |
| mii_data_reg = au_macs[0]->mii->mii_data_reg; |
| } |
| else |
| #endif |
| { |
| /* default control and data reg addresses */ |
| mii_control_reg = &aup->mac->mii_control; |
| mii_data_reg = &aup->mac->mii_data; |
| } |
| |
| while (*mii_control_reg & MAC_MII_BUSY) { |
| mdelay(1); |
| if (--timedout == 0) { |
| printk(KERN_ERR "%s: mdio_write busy timeout!!\n", |
| dev->name); |
| return; |
| } |
| } |
| |
| mii_control = MAC_SET_MII_SELECT_REG(reg) | |
| MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_WRITE; |
| |
| *mii_data_reg = value; |
| *mii_control_reg = mii_control; |
| } |
| |
| |
| static void dump_mii(struct net_device *dev, int phy_id) |
| { |
| int i, val; |
| |
| for (i = 0; i < 7; i++) { |
| if ((val = mdio_read(dev, phy_id, i)) >= 0) |
| printk("%s: MII Reg %d=%x\n", dev->name, i, val); |
| } |
| for (i = 16; i < 25; i++) { |
| if ((val = mdio_read(dev, phy_id, i)) >= 0) |
| printk("%s: MII Reg %d=%x\n", dev->name, i, val); |
| } |
| } |
| |
| static int mii_probe (struct net_device * dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| int phy_addr; |
| #ifdef CONFIG_MIPS_BOSPORUS |
| int phy_found=0; |
| #endif |
| |
| /* search for total of 32 possible mii phy addresses */ |
| for (phy_addr = 0; phy_addr < 32; phy_addr++) { |
| u16 mii_status; |
| u16 phy_id0, phy_id1; |
| int i; |
| |
| #ifdef CONFIG_BCM5222_DUAL_PHY |
| /* Mask the already found phy, try next one */ |
| if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) { |
| if (au_macs[0]->phy_addr == phy_addr) |
| continue; |
| } |
| #endif |
| |
| mii_status = mdio_read(dev, phy_addr, MII_STATUS); |
| if (mii_status == 0xffff || mii_status == 0x0000) |
| /* the mii is not accessable, try next one */ |
| continue; |
| |
| phy_id0 = mdio_read(dev, phy_addr, MII_PHY_ID0); |
| phy_id1 = mdio_read(dev, phy_addr, MII_PHY_ID1); |
| |
| /* search our mii table for the current mii */ |
| for (i = 0; mii_chip_table[i].phy_id1; i++) { |
| if (phy_id0 == mii_chip_table[i].phy_id0 && |
| phy_id1 == mii_chip_table[i].phy_id1) { |
| struct mii_phy * mii_phy = aup->mii; |
| |
| printk(KERN_INFO "%s: %s at phy address %d\n", |
| dev->name, mii_chip_table[i].name, |
| phy_addr); |
| #ifdef CONFIG_MIPS_BOSPORUS |
| phy_found = 1; |
| #endif |
| mii_phy->chip_info = mii_chip_table+i; |
| aup->phy_addr = phy_addr; |
| aup->want_autoneg = 1; |
| aup->phy_ops = mii_chip_table[i].phy_ops; |
| aup->phy_ops->phy_init(dev,phy_addr); |
| |
| // Check for dual-phy and then store required |
| // values and set indicators. We need to do |
| // this now since mdio_{read,write} need the |
| // control and data register addresses. |
| #ifdef CONFIG_BCM5222_DUAL_PHY |
| if ( mii_chip_table[i].dual_phy) { |
| |
| /* assume both phys are controlled |
| * through MAC0. Board specific? */ |
| |
| /* sanity check */ |
| if (!au_macs[0] || !au_macs[0]->mii) |
| return -1; |
| aup->mii->mii_control_reg = (u32 *) |
| &au_macs[0]->mac->mii_control; |
| aup->mii->mii_data_reg = (u32 *) |
| &au_macs[0]->mac->mii_data; |
| } |
| #endif |
| goto found; |
| } |
| } |
| } |
| found: |
| |
| #ifdef CONFIG_MIPS_BOSPORUS |
| /* This is a workaround for the Micrel/Kendin 5 port switch |
| The second MAC doesn't see a PHY connected... so we need to |
| trick it into thinking we have one. |
| |
| If this kernel is run on another Au1500 development board |
| the stub will be found as well as the actual PHY. However, |
| the last found PHY will be used... usually at Addr 31 (Db1500). |
| */ |
| if ( (!phy_found) ) |
| { |
| u16 phy_id0, phy_id1; |
| int i; |
| |
| phy_id0 = 0x1234; |
| phy_id1 = 0x5678; |
| |
| /* search our mii table for the current mii */ |
| for (i = 0; mii_chip_table[i].phy_id1; i++) { |
| if (phy_id0 == mii_chip_table[i].phy_id0 && |
| phy_id1 == mii_chip_table[i].phy_id1) { |
| struct mii_phy * mii_phy; |
| |
| printk(KERN_INFO "%s: %s at phy address %d\n", |
| dev->name, mii_chip_table[i].name, |
| phy_addr); |
| mii_phy = kmalloc(sizeof(struct mii_phy), |
| GFP_KERNEL); |
| if (mii_phy) { |
| mii_phy->chip_info = mii_chip_table+i; |
| aup->phy_addr = phy_addr; |
| mii_phy->next = aup->mii; |
| aup->phy_ops = |
| mii_chip_table[i].phy_ops; |
| aup->mii = mii_phy; |
| aup->phy_ops->phy_init(dev,phy_addr); |
| } else { |
| printk(KERN_ERR "%s: out of memory\n", |
| dev->name); |
| return -1; |
| } |
| mii_phy->chip_info = mii_chip_table+i; |
| aup->phy_addr = phy_addr; |
| aup->phy_ops = mii_chip_table[i].phy_ops; |
| aup->phy_ops->phy_init(dev,phy_addr); |
| break; |
| } |
| } |
| } |
| if (aup->mac_id == 0) { |
| /* the Bosporus phy responds to addresses 0-5 but |
| * 5 is the correct one. |
| */ |
| aup->phy_addr = 5; |
| } |
| #endif |
| |
| if (aup->mii->chip_info == NULL) { |
| printk(KERN_ERR "%s: Au1x No known MII transceivers found!\n", |
| dev->name); |
| return -1; |
| } |
| |
| printk(KERN_INFO "%s: Using %s as default\n", |
| dev->name, aup->mii->chip_info->name); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Buffer allocation/deallocation routines. The buffer descriptor returned |
| * has the virtual and dma address of a buffer suitable for |
| * both, receive and transmit operations. |
| */ |
| static db_dest_t *GetFreeDB(struct au1000_private *aup) |
| { |
| db_dest_t *pDB; |
| pDB = aup->pDBfree; |
| |
| if (pDB) { |
| aup->pDBfree = pDB->pnext; |
| } |
| return pDB; |
| } |
| |
| void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB) |
| { |
| db_dest_t *pDBfree = aup->pDBfree; |
| if (pDBfree) |
| pDBfree->pnext = pDB; |
| aup->pDBfree = pDB; |
| } |
| |
| static void enable_rx_tx(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| |
| if (au1000_debug > 4) |
| printk(KERN_INFO "%s: enable_rx_tx\n", dev->name); |
| |
| aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE); |
| au_sync_delay(10); |
| } |
| |
| static void hard_stop(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| |
| if (au1000_debug > 4) |
| printk(KERN_INFO "%s: hard stop\n", dev->name); |
| |
| aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); |
| au_sync_delay(10); |
| } |
| |
| |
| static void reset_mac(struct net_device *dev) |
| { |
| int i; |
| u32 flags; |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| |
| if (au1000_debug > 4) |
| printk(KERN_INFO "%s: reset mac, aup %x\n", |
| dev->name, (unsigned)aup); |
| |
| spin_lock_irqsave(&aup->lock, flags); |
| if (aup->timer.function == &au1000_timer) {/* check if timer initted */ |
| del_timer(&aup->timer); |
| } |
| |
| hard_stop(dev); |
| #ifdef CONFIG_BCM5222_DUAL_PHY |
| if (aup->mac_id != 0) { |
| #endif |
| /* If BCM5222, we can't leave MAC0 in reset because then |
| * we can't access the dual phy for ETH1 */ |
| *aup->enable = MAC_EN_CLOCK_ENABLE; |
| au_sync_delay(2); |
| *aup->enable = 0; |
| au_sync_delay(2); |
| #ifdef CONFIG_BCM5222_DUAL_PHY |
| } |
| #endif |
| aup->tx_full = 0; |
| for (i = 0; i < NUM_RX_DMA; i++) { |
| /* reset control bits */ |
| aup->rx_dma_ring[i]->buff_stat &= ~0xf; |
| } |
| for (i = 0; i < NUM_TX_DMA; i++) { |
| /* reset control bits */ |
| aup->tx_dma_ring[i]->buff_stat &= ~0xf; |
| } |
| spin_unlock_irqrestore(&aup->lock, flags); |
| } |
| |
| |
| /* |
| * Setup the receive and transmit "rings". These pointers are the addresses |
| * of the rx and tx MAC DMA registers so they are fixed by the hardware -- |
| * these are not descriptors sitting in memory. |
| */ |
| static void |
| setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base) |
| { |
| int i; |
| |
| for (i = 0; i < NUM_RX_DMA; i++) { |
| aup->rx_dma_ring[i] = |
| (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i); |
| } |
| for (i = 0; i < NUM_TX_DMA; i++) { |
| aup->tx_dma_ring[i] = |
| (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i); |
| } |
| } |
| |
| static struct { |
| u32 base_addr; |
| u32 macen_addr; |
| int irq; |
| struct net_device *dev; |
| } iflist[2] = { |
| #ifdef CONFIG_SOC_AU1000 |
| {AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT}, |
| {AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT} |
| #endif |
| #ifdef CONFIG_SOC_AU1100 |
| {AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT} |
| #endif |
| #ifdef CONFIG_SOC_AU1500 |
| {AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT}, |
| {AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT} |
| #endif |
| #ifdef CONFIG_SOC_AU1550 |
| {AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT}, |
| {AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT} |
| #endif |
| }; |
| |
| static int num_ifs; |
| |
| /* |
| * Setup the base address and interupt of the Au1xxx ethernet macs |
| * based on cpu type and whether the interface is enabled in sys_pinfunc |
| * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0. |
| */ |
| static int __init au1000_init_module(void) |
| { |
| int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4); |
| struct net_device *dev; |
| int i, found_one = 0; |
| |
| num_ifs = NUM_ETH_INTERFACES - ni; |
| |
| for(i = 0; i < num_ifs; i++) { |
| dev = au1000_probe(i); |
| iflist[i].dev = dev; |
| if (dev) |
| found_one++; |
| } |
| if (!found_one) |
| return -ENODEV; |
| return 0; |
| } |
| |
| static int au1000_setup_aneg(struct net_device *dev, u32 advertise) |
| { |
| struct au1000_private *aup = (struct au1000_private *)dev->priv; |
| u16 ctl, adv; |
| |
| /* Setup standard advertise */ |
| adv = mdio_read(dev, aup->phy_addr, MII_ADVERTISE); |
| adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); |
| if (advertise & ADVERTISED_10baseT_Half) |
| adv |= ADVERTISE_10HALF; |
| if (advertise & ADVERTISED_10baseT_Full) |
| adv |= ADVERTISE_10FULL; |
| if (advertise & ADVERTISED_100baseT_Half) |
| adv |= ADVERTISE_100HALF; |
| if (advertise & ADVERTISED_100baseT_Full) |
| adv |= ADVERTISE_100FULL; |
| mdio_write(dev, aup->phy_addr, MII_ADVERTISE, adv); |
| |
| /* Start/Restart aneg */ |
| ctl = mdio_read(dev, aup->phy_addr, MII_BMCR); |
| ctl |= (BMCR_ANENABLE | BMCR_ANRESTART); |
| mdio_write(dev, aup->phy_addr, MII_BMCR, ctl); |
| |
| return 0; |
| } |
| |
| static int au1000_setup_forced(struct net_device *dev, int speed, int fd) |
| { |
| struct au1000_private *aup = (struct au1000_private *)dev->priv; |
| u16 ctl; |
| |
| ctl = mdio_read(dev, aup->phy_addr, MII_BMCR); |
| ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | BMCR_ANENABLE); |
| |
| /* First reset the PHY */ |
| mdio_write(dev, aup->phy_addr, MII_BMCR, ctl | BMCR_RESET); |
| |
| /* Select speed & duplex */ |
| switch (speed) { |
| case SPEED_10: |
| break; |
| case SPEED_100: |
| ctl |= BMCR_SPEED100; |
| break; |
| case SPEED_1000: |
| default: |
| return -EINVAL; |
| } |
| if (fd == DUPLEX_FULL) |
| ctl |= BMCR_FULLDPLX; |
| mdio_write(dev, aup->phy_addr, MII_BMCR, ctl); |
| |
| return 0; |
| } |
| |
| |
| static void |
| au1000_start_link(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct au1000_private *aup = (struct au1000_private *)dev->priv; |
| u32 advertise; |
| int autoneg; |
| int forced_speed; |
| int forced_duplex; |
| |
| /* Default advertise */ |
| advertise = GENMII_DEFAULT_ADVERTISE; |
| autoneg = aup->want_autoneg; |
| forced_speed = SPEED_100; |
| forced_duplex = DUPLEX_FULL; |
| |
| /* Setup link parameters */ |
| if (cmd) { |
| if (cmd->autoneg == AUTONEG_ENABLE) { |
| advertise = cmd->advertising; |
| autoneg = 1; |
| } else { |
| autoneg = 0; |
| |
| forced_speed = cmd->speed; |
| forced_duplex = cmd->duplex; |
| } |
| } |
| |
| /* Configure PHY & start aneg */ |
| aup->want_autoneg = autoneg; |
| if (autoneg) |
| au1000_setup_aneg(dev, advertise); |
| else |
| au1000_setup_forced(dev, forced_speed, forced_duplex); |
| mod_timer(&aup->timer, jiffies + HZ); |
| } |
| |
| static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct au1000_private *aup = (struct au1000_private *)dev->priv; |
| u16 link, speed; |
| |
| cmd->supported = GENMII_DEFAULT_FEATURES; |
| cmd->advertising = GENMII_DEFAULT_ADVERTISE; |
| cmd->port = PORT_MII; |
| cmd->transceiver = XCVR_EXTERNAL; |
| cmd->phy_address = aup->phy_addr; |
| spin_lock_irq(&aup->lock); |
| cmd->autoneg = aup->want_autoneg; |
| aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed); |
| if ((speed == IF_PORT_100BASETX) || (speed == IF_PORT_100BASEFX)) |
| cmd->speed = SPEED_100; |
| else if (speed == IF_PORT_10BASET) |
| cmd->speed = SPEED_10; |
| if (link && (dev->if_port == IF_PORT_100BASEFX)) |
| cmd->duplex = DUPLEX_FULL; |
| else |
| cmd->duplex = DUPLEX_HALF; |
| spin_unlock_irq(&aup->lock); |
| return 0; |
| } |
| |
| static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct au1000_private *aup = (struct au1000_private *)dev->priv; |
| unsigned long features = GENMII_DEFAULT_FEATURES; |
| |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| |
| if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) |
| return -EINVAL; |
| if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0) |
| return -EINVAL; |
| if (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) |
| return -EINVAL; |
| if (cmd->autoneg == AUTONEG_DISABLE) |
| switch (cmd->speed) { |
| case SPEED_10: |
| if (cmd->duplex == DUPLEX_HALF && |
| (features & SUPPORTED_10baseT_Half) == 0) |
| return -EINVAL; |
| if (cmd->duplex == DUPLEX_FULL && |
| (features & SUPPORTED_10baseT_Full) == 0) |
| return -EINVAL; |
| break; |
| case SPEED_100: |
| if (cmd->duplex == DUPLEX_HALF && |
| (features & SUPPORTED_100baseT_Half) == 0) |
| return -EINVAL; |
| if (cmd->duplex == DUPLEX_FULL && |
| (features & SUPPORTED_100baseT_Full) == 0) |
| return -EINVAL; |
| break; |
| default: |
| return -EINVAL; |
| } |
| else if ((features & SUPPORTED_Autoneg) == 0) |
| return -EINVAL; |
| |
| spin_lock_irq(&aup->lock); |
| au1000_start_link(dev, cmd); |
| spin_unlock_irq(&aup->lock); |
| return 0; |
| } |
| |
| static int au1000_nway_reset(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *)dev->priv; |
| |
| if (!aup->want_autoneg) |
| return -EINVAL; |
| spin_lock_irq(&aup->lock); |
| au1000_start_link(dev, NULL); |
| spin_unlock_irq(&aup->lock); |
| return 0; |
| } |
| |
| static void |
| au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
| { |
| struct au1000_private *aup = (struct au1000_private *)dev->priv; |
| |
| strcpy(info->driver, DRV_NAME); |
| strcpy(info->version, DRV_VERSION); |
| info->fw_version[0] = '\0'; |
| sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id); |
| info->regdump_len = 0; |
| } |
| |
| static u32 au1000_get_link(struct net_device *dev) |
| { |
| return netif_carrier_ok(dev); |
| } |
| |
| static struct ethtool_ops au1000_ethtool_ops = { |
| .get_settings = au1000_get_settings, |
| .set_settings = au1000_set_settings, |
| .get_drvinfo = au1000_get_drvinfo, |
| .nway_reset = au1000_nway_reset, |
| .get_link = au1000_get_link |
| }; |
| |
| static struct net_device * au1000_probe(int port_num) |
| { |
| static unsigned version_printed = 0; |
| struct au1000_private *aup = NULL; |
| struct net_device *dev = NULL; |
| db_dest_t *pDB, *pDBfree; |
| char *pmac, *argptr; |
| char ethaddr[6]; |
| int irq, i, err; |
| u32 base, macen; |
| |
| if (port_num >= NUM_ETH_INTERFACES) |
| return NULL; |
| |
| base = CPHYSADDR(iflist[port_num].base_addr ); |
| macen = CPHYSADDR(iflist[port_num].macen_addr); |
| irq = iflist[port_num].irq; |
| |
| if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") || |
| !request_mem_region(macen, 4, "Au1x00 ENET")) |
| return NULL; |
| |
| if (version_printed++ == 0) |
| printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR); |
| |
| dev = alloc_etherdev(sizeof(struct au1000_private)); |
| if (!dev) { |
| printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME); |
| return NULL; |
| } |
| |
| if ((err = register_netdev(dev)) != 0) { |
| printk(KERN_ERR "%s: Cannot register net device, error %d\n", |
| DRV_NAME, err); |
| free_netdev(dev); |
| return NULL; |
| } |
| |
| printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n", |
| dev->name, base, irq); |
| |
| aup = dev->priv; |
| |
| /* Allocate the data buffers */ |
| /* Snooping works fine with eth on all au1xxx */ |
| aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE * |
| (NUM_TX_BUFFS + NUM_RX_BUFFS), |
| &aup->dma_addr, 0); |
| if (!aup->vaddr) { |
| free_netdev(dev); |
| release_mem_region( base, MAC_IOSIZE); |
| release_mem_region(macen, 4); |
| return NULL; |
| } |
| |
| /* aup->mac is the base address of the MAC's registers */ |
| aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr; |
| |
| /* Setup some variables for quick register address access */ |
| aup->enable = (volatile u32 *)iflist[port_num].macen_addr; |
| aup->mac_id = port_num; |
| au_macs[port_num] = aup; |
| |
| if (port_num == 0) { |
| /* Check the environment variables first */ |
| if (get_ethernet_addr(ethaddr) == 0) |
| memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr)); |
| else { |
| /* Check command line */ |
| argptr = prom_getcmdline(); |
| if ((pmac = strstr(argptr, "ethaddr=")) == NULL) |
| printk(KERN_INFO "%s: No MAC address found\n", |
| dev->name); |
| /* Use the hard coded MAC addresses */ |
| else { |
| str2eaddr(ethaddr, pmac + strlen("ethaddr=")); |
| memcpy(au1000_mac_addr, ethaddr, |
| sizeof(au1000_mac_addr)); |
| } |
| } |
| |
| setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR); |
| } else if (port_num == 1) |
| setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR); |
| |
| /* |
| * Assign to the Ethernet ports two consecutive MAC addresses |
| * to match those that are printed on their stickers |
| */ |
| memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr)); |
| dev->dev_addr[5] += port_num; |
| |
| /* Bring the device out of reset, otherwise probing the MII will hang */ |
| *aup->enable = MAC_EN_CLOCK_ENABLE; |
| au_sync_delay(2); |
| *aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 | |
| MAC_EN_CLOCK_ENABLE; |
| au_sync_delay(2); |
| |
| aup->mii = kmalloc(sizeof(struct mii_phy), GFP_KERNEL); |
| if (!aup->mii) { |
| printk(KERN_ERR "%s: out of memory\n", dev->name); |
| goto err_out; |
| } |
| aup->mii->next = NULL; |
| aup->mii->chip_info = NULL; |
| aup->mii->status = 0; |
| aup->mii->mii_control_reg = 0; |
| aup->mii->mii_data_reg = 0; |
| |
| if (mii_probe(dev) != 0) { |
| goto err_out; |
| } |
| |
| pDBfree = NULL; |
| /* setup the data buffer descriptors and attach a buffer to each one */ |
| pDB = aup->db; |
| for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { |
| pDB->pnext = pDBfree; |
| pDBfree = pDB; |
| pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i); |
| pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); |
| pDB++; |
| } |
| aup->pDBfree = pDBfree; |
| |
| for (i = 0; i < NUM_RX_DMA; i++) { |
| pDB = GetFreeDB(aup); |
| if (!pDB) { |
| goto err_out; |
| } |
| aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; |
| aup->rx_db_inuse[i] = pDB; |
| } |
| for (i = 0; i < NUM_TX_DMA; i++) { |
| pDB = GetFreeDB(aup); |
| if (!pDB) { |
| goto err_out; |
| } |
| aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; |
| aup->tx_dma_ring[i]->len = 0; |
| aup->tx_db_inuse[i] = pDB; |
| } |
| |
| spin_lock_init(&aup->lock); |
| dev->base_addr = base; |
| dev->irq = irq; |
| dev->open = au1000_open; |
| dev->hard_start_xmit = au1000_tx; |
| dev->stop = au1000_close; |
| dev->get_stats = au1000_get_stats; |
| dev->set_multicast_list = &set_rx_mode; |
| dev->do_ioctl = &au1000_ioctl; |
| SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops); |
| dev->set_config = &au1000_set_config; |
| dev->tx_timeout = au1000_tx_timeout; |
| dev->watchdog_timeo = ETH_TX_TIMEOUT; |
| |
| /* |
| * The boot code uses the ethernet controller, so reset it to start |
| * fresh. au1000_init() expects that the device is in reset state. |
| */ |
| reset_mac(dev); |
| |
| return dev; |
| |
| err_out: |
| /* here we should have a valid dev plus aup-> register addresses |
| * so we can reset the mac properly.*/ |
| reset_mac(dev); |
| kfree(aup->mii); |
| for (i = 0; i < NUM_RX_DMA; i++) { |
| if (aup->rx_db_inuse[i]) |
| ReleaseDB(aup, aup->rx_db_inuse[i]); |
| } |
| for (i = 0; i < NUM_TX_DMA; i++) { |
| if (aup->tx_db_inuse[i]) |
| ReleaseDB(aup, aup->tx_db_inuse[i]); |
| } |
| dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), |
| (void *)aup->vaddr, aup->dma_addr); |
| unregister_netdev(dev); |
| free_netdev(dev); |
| release_mem_region( base, MAC_IOSIZE); |
| release_mem_region(macen, 4); |
| return NULL; |
| } |
| |
| /* |
| * Initialize the interface. |
| * |
| * When the device powers up, the clocks are disabled and the |
| * mac is in reset state. When the interface is closed, we |
| * do the same -- reset the device and disable the clocks to |
| * conserve power. Thus, whenever au1000_init() is called, |
| * the device should already be in reset state. |
| */ |
| static int au1000_init(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| u32 flags; |
| int i; |
| u32 control; |
| u16 link, speed; |
| |
| if (au1000_debug > 4) |
| printk("%s: au1000_init\n", dev->name); |
| |
| spin_lock_irqsave(&aup->lock, flags); |
| |
| /* bring the device out of reset */ |
| *aup->enable = MAC_EN_CLOCK_ENABLE; |
| au_sync_delay(2); |
| *aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | |
| MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE; |
| au_sync_delay(20); |
| |
| aup->mac->control = 0; |
| aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; |
| aup->tx_tail = aup->tx_head; |
| aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; |
| |
| aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4]; |
| aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | |
| dev->dev_addr[1]<<8 | dev->dev_addr[0]; |
| |
| for (i = 0; i < NUM_RX_DMA; i++) { |
| aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; |
| } |
| au_sync(); |
| |
| aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed); |
| control = MAC_DISABLE_RX_OWN | MAC_RX_ENABLE | MAC_TX_ENABLE; |
| #ifndef CONFIG_CPU_LITTLE_ENDIAN |
| control |= MAC_BIG_ENDIAN; |
| #endif |
| if (link && (dev->if_port == IF_PORT_100BASEFX)) { |
| control |= MAC_FULL_DUPLEX; |
| } |
| |
| aup->mac->control = control; |
| aup->mac->vlan1_tag = 0x8100; /* activate vlan support */ |
| au_sync(); |
| |
| spin_unlock_irqrestore(&aup->lock, flags); |
| return 0; |
| } |
| |
| static void au1000_timer(unsigned long data) |
| { |
| struct net_device *dev = (struct net_device *)data; |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| unsigned char if_port; |
| u16 link, speed; |
| |
| if (!dev) { |
| /* fatal error, don't restart the timer */ |
| printk(KERN_ERR "au1000_timer error: NULL dev\n"); |
| return; |
| } |
| |
| if_port = dev->if_port; |
| if (aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed) == 0) { |
| if (link) { |
| if (!netif_carrier_ok(dev)) { |
| netif_carrier_on(dev); |
| printk(KERN_INFO "%s: link up\n", dev->name); |
| } |
| } |
| else { |
| if (netif_carrier_ok(dev)) { |
| netif_carrier_off(dev); |
| dev->if_port = 0; |
| printk(KERN_INFO "%s: link down\n", dev->name); |
| } |
| } |
| } |
| |
| if (link && (dev->if_port != if_port) && |
| (dev->if_port != IF_PORT_UNKNOWN)) { |
| hard_stop(dev); |
| if (dev->if_port == IF_PORT_100BASEFX) { |
| printk(KERN_INFO "%s: going to full duplex\n", |
| dev->name); |
| aup->mac->control |= MAC_FULL_DUPLEX; |
| au_sync_delay(1); |
| } |
| else { |
| aup->mac->control &= ~MAC_FULL_DUPLEX; |
| au_sync_delay(1); |
| } |
| enable_rx_tx(dev); |
| } |
| |
| aup->timer.expires = RUN_AT((1*HZ)); |
| aup->timer.data = (unsigned long)dev; |
| aup->timer.function = &au1000_timer; /* timer handler */ |
| add_timer(&aup->timer); |
| |
| } |
| |
| static int au1000_open(struct net_device *dev) |
| { |
| int retval; |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| |
| if (au1000_debug > 4) |
| printk("%s: open: dev=%p\n", dev->name, dev); |
| |
| if ((retval = au1000_init(dev))) { |
| printk(KERN_ERR "%s: error in au1000_init\n", dev->name); |
| free_irq(dev->irq, dev); |
| return retval; |
| } |
| netif_start_queue(dev); |
| |
| if ((retval = request_irq(dev->irq, &au1000_interrupt, 0, |
| dev->name, dev))) { |
| printk(KERN_ERR "%s: unable to get IRQ %d\n", |
| dev->name, dev->irq); |
| return retval; |
| } |
| |
| init_timer(&aup->timer); /* used in ioctl() */ |
| aup->timer.expires = RUN_AT((3*HZ)); |
| aup->timer.data = (unsigned long)dev; |
| aup->timer.function = &au1000_timer; /* timer handler */ |
| add_timer(&aup->timer); |
| |
| if (au1000_debug > 4) |
| printk("%s: open: Initialization done.\n", dev->name); |
| |
| return 0; |
| } |
| |
| static int au1000_close(struct net_device *dev) |
| { |
| u32 flags; |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| |
| if (au1000_debug > 4) |
| printk("%s: close: dev=%p\n", dev->name, dev); |
| |
| reset_mac(dev); |
| |
| spin_lock_irqsave(&aup->lock, flags); |
| |
| /* stop the device */ |
| netif_stop_queue(dev); |
| |
| /* disable the interrupt */ |
| free_irq(dev->irq, dev); |
| spin_unlock_irqrestore(&aup->lock, flags); |
| |
| return 0; |
| } |
| |
| static void __exit au1000_cleanup_module(void) |
| { |
| int i, j; |
| struct net_device *dev; |
| struct au1000_private *aup; |
| |
| for (i = 0; i < num_ifs; i++) { |
| dev = iflist[i].dev; |
| if (dev) { |
| aup = (struct au1000_private *) dev->priv; |
| unregister_netdev(dev); |
| kfree(aup->mii); |
| for (j = 0; j < NUM_RX_DMA; j++) |
| if (aup->rx_db_inuse[j]) |
| ReleaseDB(aup, aup->rx_db_inuse[j]); |
| for (j = 0; j < NUM_TX_DMA; j++) |
| if (aup->tx_db_inuse[j]) |
| ReleaseDB(aup, aup->tx_db_inuse[j]); |
| dma_free_noncoherent(NULL, MAX_BUF_SIZE * |
| (NUM_TX_BUFFS + NUM_RX_BUFFS), |
| (void *)aup->vaddr, aup->dma_addr); |
| release_mem_region(dev->base_addr, MAC_IOSIZE); |
| release_mem_region(CPHYSADDR(iflist[i].macen_addr), 4); |
| free_netdev(dev); |
| } |
| } |
| } |
| |
| static void update_tx_stats(struct net_device *dev, u32 status) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| struct net_device_stats *ps = &aup->stats; |
| |
| if (status & TX_FRAME_ABORTED) { |
| if (dev->if_port == IF_PORT_100BASEFX) { |
| if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { |
| /* any other tx errors are only valid |
| * in half duplex mode */ |
| ps->tx_errors++; |
| ps->tx_aborted_errors++; |
| } |
| } |
| else { |
| ps->tx_errors++; |
| ps->tx_aborted_errors++; |
| if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) |
| ps->tx_carrier_errors++; |
| } |
| } |
| } |
| |
| |
| /* |
| * Called from the interrupt service routine to acknowledge |
| * the TX DONE bits. This is a must if the irq is setup as |
| * edge triggered. |
| */ |
| static void au1000_tx_ack(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| volatile tx_dma_t *ptxd; |
| |
| ptxd = aup->tx_dma_ring[aup->tx_tail]; |
| |
| while (ptxd->buff_stat & TX_T_DONE) { |
| update_tx_stats(dev, ptxd->status); |
| ptxd->buff_stat &= ~TX_T_DONE; |
| ptxd->len = 0; |
| au_sync(); |
| |
| aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); |
| ptxd = aup->tx_dma_ring[aup->tx_tail]; |
| |
| if (aup->tx_full) { |
| aup->tx_full = 0; |
| netif_wake_queue(dev); |
| } |
| } |
| } |
| |
| |
| /* |
| * Au1000 transmit routine. |
| */ |
| static int au1000_tx(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| struct net_device_stats *ps = &aup->stats; |
| volatile tx_dma_t *ptxd; |
| u32 buff_stat; |
| db_dest_t *pDB; |
| int i; |
| |
| if (au1000_debug > 5) |
| printk("%s: tx: aup %x len=%d, data=%p, head %d\n", |
| dev->name, (unsigned)aup, skb->len, |
| skb->data, aup->tx_head); |
| |
| ptxd = aup->tx_dma_ring[aup->tx_head]; |
| buff_stat = ptxd->buff_stat; |
| if (buff_stat & TX_DMA_ENABLE) { |
| /* We've wrapped around and the transmitter is still busy */ |
| netif_stop_queue(dev); |
| aup->tx_full = 1; |
| return 1; |
| } |
| else if (buff_stat & TX_T_DONE) { |
| update_tx_stats(dev, ptxd->status); |
| ptxd->len = 0; |
| } |
| |
| if (aup->tx_full) { |
| aup->tx_full = 0; |
| netif_wake_queue(dev); |
| } |
| |
| pDB = aup->tx_db_inuse[aup->tx_head]; |
| memcpy((void *)pDB->vaddr, skb->data, skb->len); |
| if (skb->len < ETH_ZLEN) { |
| for (i=skb->len; i<ETH_ZLEN; i++) { |
| ((char *)pDB->vaddr)[i] = 0; |
| } |
| ptxd->len = ETH_ZLEN; |
| } |
| else |
| ptxd->len = skb->len; |
| |
| ps->tx_packets++; |
| ps->tx_bytes += ptxd->len; |
| |
| ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE; |
| au_sync(); |
| dev_kfree_skb(skb); |
| aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); |
| dev->trans_start = jiffies; |
| return 0; |
| } |
| |
| static inline void update_rx_stats(struct net_device *dev, u32 status) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| struct net_device_stats *ps = &aup->stats; |
| |
| ps->rx_packets++; |
| if (status & RX_MCAST_FRAME) |
| ps->multicast++; |
| |
| if (status & RX_ERROR) { |
| ps->rx_errors++; |
| if (status & RX_MISSED_FRAME) |
| ps->rx_missed_errors++; |
| if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR)) |
| ps->rx_length_errors++; |
| if (status & RX_CRC_ERROR) |
| ps->rx_crc_errors++; |
| if (status & RX_COLL) |
| ps->collisions++; |
| } |
| else |
| ps->rx_bytes += status & RX_FRAME_LEN_MASK; |
| |
| } |
| |
| /* |
| * Au1000 receive routine. |
| */ |
| static int au1000_rx(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| struct sk_buff *skb; |
| volatile rx_dma_t *prxd; |
| u32 buff_stat, status; |
| db_dest_t *pDB; |
| u32 frmlen; |
| |
| if (au1000_debug > 5) |
| printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head); |
| |
| prxd = aup->rx_dma_ring[aup->rx_head]; |
| buff_stat = prxd->buff_stat; |
| while (buff_stat & RX_T_DONE) { |
| status = prxd->status; |
| pDB = aup->rx_db_inuse[aup->rx_head]; |
| update_rx_stats(dev, status); |
| if (!(status & RX_ERROR)) { |
| |
| /* good frame */ |
| frmlen = (status & RX_FRAME_LEN_MASK); |
| frmlen -= 4; /* Remove FCS */ |
| skb = dev_alloc_skb(frmlen + 2); |
| if (skb == NULL) { |
| printk(KERN_ERR |
| "%s: Memory squeeze, dropping packet.\n", |
| dev->name); |
| aup->stats.rx_dropped++; |
| continue; |
| } |
| skb->dev = dev; |
| skb_reserve(skb, 2); /* 16 byte IP header align */ |
| eth_copy_and_sum(skb, |
| (unsigned char *)pDB->vaddr, frmlen, 0); |
| skb_put(skb, frmlen); |
| skb->protocol = eth_type_trans(skb, dev); |
| netif_rx(skb); /* pass the packet to upper layers */ |
| } |
| else { |
| if (au1000_debug > 4) { |
| if (status & RX_MISSED_FRAME) |
| printk("rx miss\n"); |
| if (status & RX_WDOG_TIMER) |
| printk("rx wdog\n"); |
| if (status & RX_RUNT) |
| printk("rx runt\n"); |
| if (status & RX_OVERLEN) |
| printk("rx overlen\n"); |
| if (status & RX_COLL) |
| printk("rx coll\n"); |
| if (status & RX_MII_ERROR) |
| printk("rx mii error\n"); |
| if (status & RX_CRC_ERROR) |
| printk("rx crc error\n"); |
| if (status & RX_LEN_ERROR) |
| printk("rx len error\n"); |
| if (status & RX_U_CNTRL_FRAME) |
| printk("rx u control frame\n"); |
| if (status & RX_MISSED_FRAME) |
| printk("rx miss\n"); |
| } |
| } |
| prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE); |
| aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); |
| au_sync(); |
| |
| /* next descriptor */ |
| prxd = aup->rx_dma_ring[aup->rx_head]; |
| buff_stat = prxd->buff_stat; |
| dev->last_rx = jiffies; |
| } |
| return 0; |
| } |
| |
| |
| /* |
| * Au1000 interrupt service routine. |
| */ |
| static irqreturn_t au1000_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct net_device *dev = (struct net_device *) dev_id; |
| |
| if (dev == NULL) { |
| printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name); |
| return IRQ_RETVAL(1); |
| } |
| |
| /* Handle RX interrupts first to minimize chance of overrun */ |
| |
| au1000_rx(dev); |
| au1000_tx_ack(dev); |
| return IRQ_RETVAL(1); |
| } |
| |
| |
| /* |
| * The Tx ring has been full longer than the watchdog timeout |
| * value. The transmitter must be hung? |
| */ |
| static void au1000_tx_timeout(struct net_device *dev) |
| { |
| printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev); |
| reset_mac(dev); |
| au1000_init(dev); |
| dev->trans_start = jiffies; |
| netif_wake_queue(dev); |
| } |
| |
| |
| static unsigned const ethernet_polynomial = 0x04c11db7U; |
| static inline u32 ether_crc(int length, unsigned char *data) |
| { |
| int crc = -1; |
| |
| while(--length >= 0) { |
| unsigned char current_octet = *data++; |
| int bit; |
| for (bit = 0; bit < 8; bit++, current_octet >>= 1) |
| crc = (crc << 1) ^ |
| ((crc < 0) ^ (current_octet & 1) ? |
| ethernet_polynomial : 0); |
| } |
| return crc; |
| } |
| |
| static void set_rx_mode(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| |
| if (au1000_debug > 4) |
| printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags); |
| |
| if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ |
| aup->mac->control |= MAC_PROMISCUOUS; |
| printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name); |
| } else if ((dev->flags & IFF_ALLMULTI) || |
| dev->mc_count > MULTICAST_FILTER_LIMIT) { |
| aup->mac->control |= MAC_PASS_ALL_MULTI; |
| aup->mac->control &= ~MAC_PROMISCUOUS; |
| printk(KERN_INFO "%s: Pass all multicast\n", dev->name); |
| } else { |
| int i; |
| struct dev_mc_list *mclist; |
| u32 mc_filter[2]; /* Multicast hash filter */ |
| |
| mc_filter[1] = mc_filter[0] = 0; |
| for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; |
| i++, mclist = mclist->next) { |
| set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26, |
| (long *)mc_filter); |
| } |
| aup->mac->multi_hash_high = mc_filter[1]; |
| aup->mac->multi_hash_low = mc_filter[0]; |
| aup->mac->control &= ~MAC_PROMISCUOUS; |
| aup->mac->control |= MAC_HASH_MODE; |
| } |
| } |
| |
| |
| static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| struct au1000_private *aup = (struct au1000_private *)dev->priv; |
| u16 *data = (u16 *)&rq->ifr_ifru; |
| |
| switch(cmd) { |
| case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */ |
| case SIOCGMIIPHY: |
| if (!netif_running(dev)) return -EINVAL; |
| data[0] = aup->phy_addr; |
| case SIOCDEVPRIVATE+1: /* Read the specified MII register. */ |
| case SIOCGMIIREG: |
| data[3] = mdio_read(dev, data[0], data[1]); |
| return 0; |
| case SIOCDEVPRIVATE+2: /* Write the specified MII register */ |
| case SIOCSMIIREG: |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| mdio_write(dev, data[0], data[1],data[2]); |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| } |
| |
| |
| static int au1000_set_config(struct net_device *dev, struct ifmap *map) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| u16 control; |
| |
| if (au1000_debug > 4) { |
| printk("%s: set_config called: dev->if_port %d map->port %x\n", |
| dev->name, dev->if_port, map->port); |
| } |
| |
| switch(map->port){ |
| case IF_PORT_UNKNOWN: /* use auto here */ |
| printk(KERN_INFO "%s: config phy for aneg\n", |
| dev->name); |
| dev->if_port = map->port; |
| /* Link Down: the timer will bring it up */ |
| netif_carrier_off(dev); |
| |
| /* read current control */ |
| control = mdio_read(dev, aup->phy_addr, MII_CONTROL); |
| control &= ~(MII_CNTL_FDX | MII_CNTL_F100); |
| |
| /* enable auto negotiation and reset the negotiation */ |
| mdio_write(dev, aup->phy_addr, MII_CONTROL, |
| control | MII_CNTL_AUTO | |
| MII_CNTL_RST_AUTO); |
| |
| break; |
| |
| case IF_PORT_10BASET: /* 10BaseT */ |
| printk(KERN_INFO "%s: config phy for 10BaseT\n", |
| dev->name); |
| dev->if_port = map->port; |
| |
| /* Link Down: the timer will bring it up */ |
| netif_carrier_off(dev); |
| |
| /* set Speed to 10Mbps, Half Duplex */ |
| control = mdio_read(dev, aup->phy_addr, MII_CONTROL); |
| control &= ~(MII_CNTL_F100 | MII_CNTL_AUTO | |
| MII_CNTL_FDX); |
| |
| /* disable auto negotiation and force 10M/HD mode*/ |
| mdio_write(dev, aup->phy_addr, MII_CONTROL, control); |
| break; |
| |
| case IF_PORT_100BASET: /* 100BaseT */ |
| case IF_PORT_100BASETX: /* 100BaseTx */ |
| printk(KERN_INFO "%s: config phy for 100BaseTX\n", |
| dev->name); |
| dev->if_port = map->port; |
| |
| /* Link Down: the timer will bring it up */ |
| netif_carrier_off(dev); |
| |
| /* set Speed to 100Mbps, Half Duplex */ |
| /* disable auto negotiation and enable 100MBit Mode */ |
| control = mdio_read(dev, aup->phy_addr, MII_CONTROL); |
| control &= ~(MII_CNTL_AUTO | MII_CNTL_FDX); |
| control |= MII_CNTL_F100; |
| mdio_write(dev, aup->phy_addr, MII_CONTROL, control); |
| break; |
| |
| case IF_PORT_100BASEFX: /* 100BaseFx */ |
| printk(KERN_INFO "%s: config phy for 100BaseFX\n", |
| dev->name); |
| dev->if_port = map->port; |
| |
| /* Link Down: the timer will bring it up */ |
| netif_carrier_off(dev); |
| |
| /* set Speed to 100Mbps, Full Duplex */ |
| /* disable auto negotiation and enable 100MBit Mode */ |
| control = mdio_read(dev, aup->phy_addr, MII_CONTROL); |
| control &= ~MII_CNTL_AUTO; |
| control |= MII_CNTL_F100 | MII_CNTL_FDX; |
| mdio_write(dev, aup->phy_addr, MII_CONTROL, control); |
| break; |
| case IF_PORT_10BASE2: /* 10Base2 */ |
| case IF_PORT_AUI: /* AUI */ |
| /* These Modes are not supported (are they?)*/ |
| printk(KERN_ERR "%s: 10Base2/AUI not supported", |
| dev->name); |
| return -EOPNOTSUPP; |
| break; |
| |
| default: |
| printk(KERN_ERR "%s: Invalid media selected", |
| dev->name); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static struct net_device_stats *au1000_get_stats(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| |
| if (au1000_debug > 4) |
| printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev); |
| |
| if (netif_device_present(dev)) { |
| return &aup->stats; |
| } |
| return 0; |
| } |
| |
| module_init(au1000_init_module); |
| module_exit(au1000_cleanup_module); |