| /* |
| * linux/arch/arm/mm/mmu.c |
| * |
| * Copyright (C) 1995-2005 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/mman.h> |
| #include <linux/nodemask.h> |
| |
| #include <asm/cputype.h> |
| #include <asm/mach-types.h> |
| #include <asm/setup.h> |
| #include <asm/sizes.h> |
| #include <asm/tlb.h> |
| |
| #include <asm/mach/arch.h> |
| #include <asm/mach/map.h> |
| |
| #include "mm.h" |
| |
| DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); |
| |
| /* |
| * empty_zero_page is a special page that is used for |
| * zero-initialized data and COW. |
| */ |
| struct page *empty_zero_page; |
| EXPORT_SYMBOL(empty_zero_page); |
| |
| /* |
| * The pmd table for the upper-most set of pages. |
| */ |
| pmd_t *top_pmd; |
| |
| #define CPOLICY_UNCACHED 0 |
| #define CPOLICY_BUFFERED 1 |
| #define CPOLICY_WRITETHROUGH 2 |
| #define CPOLICY_WRITEBACK 3 |
| #define CPOLICY_WRITEALLOC 4 |
| |
| static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; |
| static unsigned int ecc_mask __initdata = 0; |
| pgprot_t pgprot_user; |
| pgprot_t pgprot_kernel; |
| |
| EXPORT_SYMBOL(pgprot_user); |
| EXPORT_SYMBOL(pgprot_kernel); |
| |
| struct cachepolicy { |
| const char policy[16]; |
| unsigned int cr_mask; |
| unsigned int pmd; |
| unsigned int pte; |
| }; |
| |
| static struct cachepolicy cache_policies[] __initdata = { |
| { |
| .policy = "uncached", |
| .cr_mask = CR_W|CR_C, |
| .pmd = PMD_SECT_UNCACHED, |
| .pte = L_PTE_MT_UNCACHED, |
| }, { |
| .policy = "buffered", |
| .cr_mask = CR_C, |
| .pmd = PMD_SECT_BUFFERED, |
| .pte = L_PTE_MT_BUFFERABLE, |
| }, { |
| .policy = "writethrough", |
| .cr_mask = 0, |
| .pmd = PMD_SECT_WT, |
| .pte = L_PTE_MT_WRITETHROUGH, |
| }, { |
| .policy = "writeback", |
| .cr_mask = 0, |
| .pmd = PMD_SECT_WB, |
| .pte = L_PTE_MT_WRITEBACK, |
| }, { |
| .policy = "writealloc", |
| .cr_mask = 0, |
| .pmd = PMD_SECT_WBWA, |
| .pte = L_PTE_MT_WRITEALLOC, |
| } |
| }; |
| |
| /* |
| * These are useful for identifying cache coherency |
| * problems by allowing the cache or the cache and |
| * writebuffer to be turned off. (Note: the write |
| * buffer should not be on and the cache off). |
| */ |
| static void __init early_cachepolicy(char **p) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { |
| int len = strlen(cache_policies[i].policy); |
| |
| if (memcmp(*p, cache_policies[i].policy, len) == 0) { |
| cachepolicy = i; |
| cr_alignment &= ~cache_policies[i].cr_mask; |
| cr_no_alignment &= ~cache_policies[i].cr_mask; |
| *p += len; |
| break; |
| } |
| } |
| if (i == ARRAY_SIZE(cache_policies)) |
| printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); |
| if (cpu_architecture() >= CPU_ARCH_ARMv6) { |
| printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n"); |
| cachepolicy = CPOLICY_WRITEBACK; |
| } |
| flush_cache_all(); |
| set_cr(cr_alignment); |
| } |
| __early_param("cachepolicy=", early_cachepolicy); |
| |
| static void __init early_nocache(char **__unused) |
| { |
| char *p = "buffered"; |
| printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); |
| early_cachepolicy(&p); |
| } |
| __early_param("nocache", early_nocache); |
| |
| static void __init early_nowrite(char **__unused) |
| { |
| char *p = "uncached"; |
| printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); |
| early_cachepolicy(&p); |
| } |
| __early_param("nowb", early_nowrite); |
| |
| static void __init early_ecc(char **p) |
| { |
| if (memcmp(*p, "on", 2) == 0) { |
| ecc_mask = PMD_PROTECTION; |
| *p += 2; |
| } else if (memcmp(*p, "off", 3) == 0) { |
| ecc_mask = 0; |
| *p += 3; |
| } |
| } |
| __early_param("ecc=", early_ecc); |
| |
| static int __init noalign_setup(char *__unused) |
| { |
| cr_alignment &= ~CR_A; |
| cr_no_alignment &= ~CR_A; |
| set_cr(cr_alignment); |
| return 1; |
| } |
| __setup("noalign", noalign_setup); |
| |
| #ifndef CONFIG_SMP |
| void adjust_cr(unsigned long mask, unsigned long set) |
| { |
| unsigned long flags; |
| |
| mask &= ~CR_A; |
| |
| set &= mask; |
| |
| local_irq_save(flags); |
| |
| cr_no_alignment = (cr_no_alignment & ~mask) | set; |
| cr_alignment = (cr_alignment & ~mask) | set; |
| |
| set_cr((get_cr() & ~mask) | set); |
| |
| local_irq_restore(flags); |
| } |
| #endif |
| |
| #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE |
| #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE |
| |
| static struct mem_type mem_types[] = { |
| [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ |
| .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | |
| L_PTE_SHARED, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, |
| .domain = DOMAIN_IO, |
| }, |
| [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ |
| .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PROT_SECT_DEVICE, |
| .domain = DOMAIN_IO, |
| }, |
| [MT_DEVICE_CACHED] = { /* ioremap_cached */ |
| .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, |
| .domain = DOMAIN_IO, |
| }, |
| [MT_DEVICE_WC] = { /* ioremap_wc */ |
| .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PROT_SECT_DEVICE, |
| .domain = DOMAIN_IO, |
| }, |
| [MT_UNCACHED] = { |
| .prot_pte = PROT_PTE_DEVICE, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, |
| .domain = DOMAIN_IO, |
| }, |
| [MT_CACHECLEAN] = { |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, |
| .domain = DOMAIN_KERNEL, |
| }, |
| [MT_MINICLEAN] = { |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, |
| .domain = DOMAIN_KERNEL, |
| }, |
| [MT_LOW_VECTORS] = { |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| L_PTE_EXEC, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .domain = DOMAIN_USER, |
| }, |
| [MT_HIGH_VECTORS] = { |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| L_PTE_USER | L_PTE_EXEC, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .domain = DOMAIN_USER, |
| }, |
| [MT_MEMORY] = { |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, |
| .domain = DOMAIN_KERNEL, |
| }, |
| [MT_ROM] = { |
| .prot_sect = PMD_TYPE_SECT, |
| .domain = DOMAIN_KERNEL, |
| }, |
| }; |
| |
| const struct mem_type *get_mem_type(unsigned int type) |
| { |
| return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; |
| } |
| |
| /* |
| * Adjust the PMD section entries according to the CPU in use. |
| */ |
| static void __init build_mem_type_table(void) |
| { |
| struct cachepolicy *cp; |
| unsigned int cr = get_cr(); |
| unsigned int user_pgprot, kern_pgprot, vecs_pgprot; |
| int cpu_arch = cpu_architecture(); |
| int i; |
| |
| if (cpu_arch < CPU_ARCH_ARMv6) { |
| #if defined(CONFIG_CPU_DCACHE_DISABLE) |
| if (cachepolicy > CPOLICY_BUFFERED) |
| cachepolicy = CPOLICY_BUFFERED; |
| #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) |
| if (cachepolicy > CPOLICY_WRITETHROUGH) |
| cachepolicy = CPOLICY_WRITETHROUGH; |
| #endif |
| } |
| if (cpu_arch < CPU_ARCH_ARMv5) { |
| if (cachepolicy >= CPOLICY_WRITEALLOC) |
| cachepolicy = CPOLICY_WRITEBACK; |
| ecc_mask = 0; |
| } |
| #ifdef CONFIG_SMP |
| cachepolicy = CPOLICY_WRITEALLOC; |
| #endif |
| |
| /* |
| * Strip out features not present on earlier architectures. |
| * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those |
| * without extended page tables don't have the 'Shared' bit. |
| */ |
| if (cpu_arch < CPU_ARCH_ARMv5) |
| for (i = 0; i < ARRAY_SIZE(mem_types); i++) |
| mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); |
| if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) |
| for (i = 0; i < ARRAY_SIZE(mem_types); i++) |
| mem_types[i].prot_sect &= ~PMD_SECT_S; |
| |
| /* |
| * ARMv5 and lower, bit 4 must be set for page tables (was: cache |
| * "update-able on write" bit on ARM610). However, Xscale and |
| * Xscale3 require this bit to be cleared. |
| */ |
| if (cpu_is_xscale() || cpu_is_xsc3()) { |
| for (i = 0; i < ARRAY_SIZE(mem_types); i++) { |
| mem_types[i].prot_sect &= ~PMD_BIT4; |
| mem_types[i].prot_l1 &= ~PMD_BIT4; |
| } |
| } else if (cpu_arch < CPU_ARCH_ARMv6) { |
| for (i = 0; i < ARRAY_SIZE(mem_types); i++) { |
| if (mem_types[i].prot_l1) |
| mem_types[i].prot_l1 |= PMD_BIT4; |
| if (mem_types[i].prot_sect) |
| mem_types[i].prot_sect |= PMD_BIT4; |
| } |
| } |
| |
| /* |
| * Mark the device areas according to the CPU/architecture. |
| */ |
| if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { |
| if (!cpu_is_xsc3()) { |
| /* |
| * Mark device regions on ARMv6+ as execute-never |
| * to prevent speculative instruction fetches. |
| */ |
| mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; |
| mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; |
| mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; |
| mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; |
| } |
| if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { |
| /* |
| * For ARMv7 with TEX remapping, |
| * - shared device is SXCB=1100 |
| * - nonshared device is SXCB=0100 |
| * - write combine device mem is SXCB=0001 |
| * (Uncached Normal memory) |
| */ |
| mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); |
| mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); |
| mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; |
| } else if (cpu_is_xsc3()) { |
| /* |
| * For Xscale3, |
| * - shared device is TEXCB=00101 |
| * - nonshared device is TEXCB=01000 |
| * - write combine device mem is TEXCB=00100 |
| * (Inner/Outer Uncacheable in xsc3 parlance) |
| */ |
| mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; |
| mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); |
| mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); |
| } else { |
| /* |
| * For ARMv6 and ARMv7 without TEX remapping, |
| * - shared device is TEXCB=00001 |
| * - nonshared device is TEXCB=01000 |
| * - write combine device mem is TEXCB=00100 |
| * (Uncached Normal in ARMv6 parlance). |
| */ |
| mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; |
| mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); |
| mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); |
| } |
| } else { |
| /* |
| * On others, write combining is "Uncached/Buffered" |
| */ |
| mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; |
| } |
| |
| /* |
| * Now deal with the memory-type mappings |
| */ |
| cp = &cache_policies[cachepolicy]; |
| vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; |
| |
| #ifndef CONFIG_SMP |
| /* |
| * Only use write-through for non-SMP systems |
| */ |
| if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH) |
| vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte; |
| #endif |
| |
| /* |
| * Enable CPU-specific coherency if supported. |
| * (Only available on XSC3 at the moment.) |
| */ |
| if (arch_is_coherent() && cpu_is_xsc3()) |
| mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; |
| |
| /* |
| * ARMv6 and above have extended page tables. |
| */ |
| if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { |
| /* |
| * Mark cache clean areas and XIP ROM read only |
| * from SVC mode and no access from userspace. |
| */ |
| mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; |
| mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; |
| mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Mark memory with the "shared" attribute for SMP systems |
| */ |
| user_pgprot |= L_PTE_SHARED; |
| kern_pgprot |= L_PTE_SHARED; |
| vecs_pgprot |= L_PTE_SHARED; |
| mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; |
| #endif |
| } |
| |
| for (i = 0; i < 16; i++) { |
| unsigned long v = pgprot_val(protection_map[i]); |
| protection_map[i] = __pgprot(v | user_pgprot); |
| } |
| |
| mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; |
| mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; |
| |
| pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); |
| pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | |
| L_PTE_DIRTY | L_PTE_WRITE | |
| L_PTE_EXEC | kern_pgprot); |
| |
| mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; |
| mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; |
| mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd; |
| mem_types[MT_ROM].prot_sect |= cp->pmd; |
| |
| switch (cp->pmd) { |
| case PMD_SECT_WT: |
| mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; |
| break; |
| case PMD_SECT_WB: |
| case PMD_SECT_WBWA: |
| mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; |
| break; |
| } |
| printk("Memory policy: ECC %sabled, Data cache %s\n", |
| ecc_mask ? "en" : "dis", cp->policy); |
| |
| for (i = 0; i < ARRAY_SIZE(mem_types); i++) { |
| struct mem_type *t = &mem_types[i]; |
| if (t->prot_l1) |
| t->prot_l1 |= PMD_DOMAIN(t->domain); |
| if (t->prot_sect) |
| t->prot_sect |= PMD_DOMAIN(t->domain); |
| } |
| } |
| |
| #define vectors_base() (vectors_high() ? 0xffff0000 : 0) |
| |
| static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, |
| unsigned long end, unsigned long pfn, |
| const struct mem_type *type) |
| { |
| pte_t *pte; |
| |
| if (pmd_none(*pmd)) { |
| pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t)); |
| __pmd_populate(pmd, __pa(pte) | type->prot_l1); |
| } |
| |
| pte = pte_offset_kernel(pmd, addr); |
| do { |
| set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0); |
| pfn++; |
| } while (pte++, addr += PAGE_SIZE, addr != end); |
| } |
| |
| static void __init alloc_init_section(pgd_t *pgd, unsigned long addr, |
| unsigned long end, unsigned long phys, |
| const struct mem_type *type) |
| { |
| pmd_t *pmd = pmd_offset(pgd, addr); |
| |
| /* |
| * Try a section mapping - end, addr and phys must all be aligned |
| * to a section boundary. Note that PMDs refer to the individual |
| * L1 entries, whereas PGDs refer to a group of L1 entries making |
| * up one logical pointer to an L2 table. |
| */ |
| if (((addr | end | phys) & ~SECTION_MASK) == 0) { |
| pmd_t *p = pmd; |
| |
| if (addr & SECTION_SIZE) |
| pmd++; |
| |
| do { |
| *pmd = __pmd(phys | type->prot_sect); |
| phys += SECTION_SIZE; |
| } while (pmd++, addr += SECTION_SIZE, addr != end); |
| |
| flush_pmd_entry(p); |
| } else { |
| /* |
| * No need to loop; pte's aren't interested in the |
| * individual L1 entries. |
| */ |
| alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type); |
| } |
| } |
| |
| static void __init create_36bit_mapping(struct map_desc *md, |
| const struct mem_type *type) |
| { |
| unsigned long phys, addr, length, end; |
| pgd_t *pgd; |
| |
| addr = md->virtual; |
| phys = (unsigned long)__pfn_to_phys(md->pfn); |
| length = PAGE_ALIGN(md->length); |
| |
| if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { |
| printk(KERN_ERR "MM: CPU does not support supersection " |
| "mapping for 0x%08llx at 0x%08lx\n", |
| __pfn_to_phys((u64)md->pfn), addr); |
| return; |
| } |
| |
| /* N.B. ARMv6 supersections are only defined to work with domain 0. |
| * Since domain assignments can in fact be arbitrary, the |
| * 'domain == 0' check below is required to insure that ARMv6 |
| * supersections are only allocated for domain 0 regardless |
| * of the actual domain assignments in use. |
| */ |
| if (type->domain) { |
| printk(KERN_ERR "MM: invalid domain in supersection " |
| "mapping for 0x%08llx at 0x%08lx\n", |
| __pfn_to_phys((u64)md->pfn), addr); |
| return; |
| } |
| |
| if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { |
| printk(KERN_ERR "MM: cannot create mapping for " |
| "0x%08llx at 0x%08lx invalid alignment\n", |
| __pfn_to_phys((u64)md->pfn), addr); |
| return; |
| } |
| |
| /* |
| * Shift bits [35:32] of address into bits [23:20] of PMD |
| * (See ARMv6 spec). |
| */ |
| phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); |
| |
| pgd = pgd_offset_k(addr); |
| end = addr + length; |
| do { |
| pmd_t *pmd = pmd_offset(pgd, addr); |
| int i; |
| |
| for (i = 0; i < 16; i++) |
| *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER); |
| |
| addr += SUPERSECTION_SIZE; |
| phys += SUPERSECTION_SIZE; |
| pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; |
| } while (addr != end); |
| } |
| |
| /* |
| * Create the page directory entries and any necessary |
| * page tables for the mapping specified by `md'. We |
| * are able to cope here with varying sizes and address |
| * offsets, and we take full advantage of sections and |
| * supersections. |
| */ |
| void __init create_mapping(struct map_desc *md) |
| { |
| unsigned long phys, addr, length, end; |
| const struct mem_type *type; |
| pgd_t *pgd; |
| |
| if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { |
| printk(KERN_WARNING "BUG: not creating mapping for " |
| "0x%08llx at 0x%08lx in user region\n", |
| __pfn_to_phys((u64)md->pfn), md->virtual); |
| return; |
| } |
| |
| if ((md->type == MT_DEVICE || md->type == MT_ROM) && |
| md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { |
| printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx " |
| "overlaps vmalloc space\n", |
| __pfn_to_phys((u64)md->pfn), md->virtual); |
| } |
| |
| type = &mem_types[md->type]; |
| |
| /* |
| * Catch 36-bit addresses |
| */ |
| if (md->pfn >= 0x100000) { |
| create_36bit_mapping(md, type); |
| return; |
| } |
| |
| addr = md->virtual & PAGE_MASK; |
| phys = (unsigned long)__pfn_to_phys(md->pfn); |
| length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); |
| |
| if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { |
| printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " |
| "be mapped using pages, ignoring.\n", |
| __pfn_to_phys(md->pfn), addr); |
| return; |
| } |
| |
| pgd = pgd_offset_k(addr); |
| end = addr + length; |
| do { |
| unsigned long next = pgd_addr_end(addr, end); |
| |
| alloc_init_section(pgd, addr, next, phys, type); |
| |
| phys += next - addr; |
| addr = next; |
| } while (pgd++, addr != end); |
| } |
| |
| /* |
| * Create the architecture specific mappings |
| */ |
| void __init iotable_init(struct map_desc *io_desc, int nr) |
| { |
| int i; |
| |
| for (i = 0; i < nr; i++) |
| create_mapping(io_desc + i); |
| } |
| |
| static unsigned long __initdata vmalloc_reserve = SZ_128M; |
| |
| /* |
| * vmalloc=size forces the vmalloc area to be exactly 'size' |
| * bytes. This can be used to increase (or decrease) the vmalloc |
| * area - the default is 128m. |
| */ |
| static void __init early_vmalloc(char **arg) |
| { |
| vmalloc_reserve = memparse(*arg, arg); |
| |
| if (vmalloc_reserve < SZ_16M) { |
| vmalloc_reserve = SZ_16M; |
| printk(KERN_WARNING |
| "vmalloc area too small, limiting to %luMB\n", |
| vmalloc_reserve >> 20); |
| } |
| } |
| __early_param("vmalloc=", early_vmalloc); |
| |
| #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve) |
| |
| static int __init check_membank_valid(struct membank *mb) |
| { |
| /* |
| * Check whether this memory region has non-zero size or |
| * invalid node number. |
| */ |
| if (mb->size == 0 || mb->node >= MAX_NUMNODES) |
| return 0; |
| |
| /* |
| * Check whether this memory region would entirely overlap |
| * the vmalloc area. |
| */ |
| if (phys_to_virt(mb->start) >= VMALLOC_MIN) { |
| printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx " |
| "(vmalloc region overlap).\n", |
| mb->start, mb->start + mb->size - 1); |
| return 0; |
| } |
| |
| /* |
| * Check whether this memory region would partially overlap |
| * the vmalloc area. |
| */ |
| if (phys_to_virt(mb->start + mb->size) < phys_to_virt(mb->start) || |
| phys_to_virt(mb->start + mb->size) > VMALLOC_MIN) { |
| unsigned long newsize = VMALLOC_MIN - phys_to_virt(mb->start); |
| |
| printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx " |
| "to -%.8lx (vmalloc region overlap).\n", |
| mb->start, mb->start + mb->size - 1, |
| mb->start + newsize - 1); |
| mb->size = newsize; |
| } |
| |
| return 1; |
| } |
| |
| static void __init sanity_check_meminfo(struct meminfo *mi) |
| { |
| int i, j; |
| |
| for (i = 0, j = 0; i < mi->nr_banks; i++) { |
| if (check_membank_valid(&mi->bank[i])) |
| mi->bank[j++] = mi->bank[i]; |
| } |
| mi->nr_banks = j; |
| } |
| |
| static inline void prepare_page_table(struct meminfo *mi) |
| { |
| unsigned long addr; |
| |
| /* |
| * Clear out all the mappings below the kernel image. |
| */ |
| for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| |
| #ifdef CONFIG_XIP_KERNEL |
| /* The XIP kernel is mapped in the module area -- skip over it */ |
| addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK; |
| #endif |
| for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| |
| /* |
| * Clear out all the kernel space mappings, except for the first |
| * memory bank, up to the end of the vmalloc region. |
| */ |
| for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size); |
| addr < VMALLOC_END; addr += PGDIR_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| } |
| |
| /* |
| * Reserve the various regions of node 0 |
| */ |
| void __init reserve_node_zero(pg_data_t *pgdat) |
| { |
| unsigned long res_size = 0; |
| |
| /* |
| * Register the kernel text and data with bootmem. |
| * Note that this can only be in node 0. |
| */ |
| #ifdef CONFIG_XIP_KERNEL |
| reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start, |
| BOOTMEM_DEFAULT); |
| #else |
| reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext, |
| BOOTMEM_DEFAULT); |
| #endif |
| |
| /* |
| * Reserve the page tables. These are already in use, |
| * and can only be in node 0. |
| */ |
| reserve_bootmem_node(pgdat, __pa(swapper_pg_dir), |
| PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT); |
| |
| /* |
| * Hmm... This should go elsewhere, but we really really need to |
| * stop things allocating the low memory; ideally we need a better |
| * implementation of GFP_DMA which does not assume that DMA-able |
| * memory starts at zero. |
| */ |
| if (machine_is_integrator() || machine_is_cintegrator()) |
| res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; |
| |
| /* |
| * These should likewise go elsewhere. They pre-reserve the |
| * screen memory region at the start of main system memory. |
| */ |
| if (machine_is_edb7211()) |
| res_size = 0x00020000; |
| if (machine_is_p720t()) |
| res_size = 0x00014000; |
| |
| /* H1940 and RX3715 need to reserve this for suspend */ |
| |
| if (machine_is_h1940() || machine_is_rx3715()) { |
| reserve_bootmem_node(pgdat, 0x30003000, 0x1000, |
| BOOTMEM_DEFAULT); |
| reserve_bootmem_node(pgdat, 0x30081000, 0x1000, |
| BOOTMEM_DEFAULT); |
| } |
| |
| #ifdef CONFIG_SA1111 |
| /* |
| * Because of the SA1111 DMA bug, we want to preserve our |
| * precious DMA-able memory... |
| */ |
| res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; |
| #endif |
| if (res_size) |
| reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size, |
| BOOTMEM_DEFAULT); |
| } |
| |
| /* |
| * Set up device the mappings. Since we clear out the page tables for all |
| * mappings above VMALLOC_END, we will remove any debug device mappings. |
| * This means you have to be careful how you debug this function, or any |
| * called function. This means you can't use any function or debugging |
| * method which may touch any device, otherwise the kernel _will_ crash. |
| */ |
| static void __init devicemaps_init(struct machine_desc *mdesc) |
| { |
| struct map_desc map; |
| unsigned long addr; |
| void *vectors; |
| |
| /* |
| * Allocate the vector page early. |
| */ |
| vectors = alloc_bootmem_low_pages(PAGE_SIZE); |
| BUG_ON(!vectors); |
| |
| for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| |
| /* |
| * Map the kernel if it is XIP. |
| * It is always first in the modulearea. |
| */ |
| #ifdef CONFIG_XIP_KERNEL |
| map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); |
| map.virtual = MODULES_VADDR; |
| map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK; |
| map.type = MT_ROM; |
| create_mapping(&map); |
| #endif |
| |
| /* |
| * Map the cache flushing regions. |
| */ |
| #ifdef FLUSH_BASE |
| map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); |
| map.virtual = FLUSH_BASE; |
| map.length = SZ_1M; |
| map.type = MT_CACHECLEAN; |
| create_mapping(&map); |
| #endif |
| #ifdef FLUSH_BASE_MINICACHE |
| map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); |
| map.virtual = FLUSH_BASE_MINICACHE; |
| map.length = SZ_1M; |
| map.type = MT_MINICLEAN; |
| create_mapping(&map); |
| #endif |
| |
| /* |
| * Create a mapping for the machine vectors at the high-vectors |
| * location (0xffff0000). If we aren't using high-vectors, also |
| * create a mapping at the low-vectors virtual address. |
| */ |
| map.pfn = __phys_to_pfn(virt_to_phys(vectors)); |
| map.virtual = 0xffff0000; |
| map.length = PAGE_SIZE; |
| map.type = MT_HIGH_VECTORS; |
| create_mapping(&map); |
| |
| if (!vectors_high()) { |
| map.virtual = 0; |
| map.type = MT_LOW_VECTORS; |
| create_mapping(&map); |
| } |
| |
| /* |
| * Ask the machine support to map in the statically mapped devices. |
| */ |
| if (mdesc->map_io) |
| mdesc->map_io(); |
| |
| /* |
| * Finally flush the caches and tlb to ensure that we're in a |
| * consistent state wrt the writebuffer. This also ensures that |
| * any write-allocated cache lines in the vector page are written |
| * back. After this point, we can start to touch devices again. |
| */ |
| local_flush_tlb_all(); |
| flush_cache_all(); |
| } |
| |
| /* |
| * paging_init() sets up the page tables, initialises the zone memory |
| * maps, and sets up the zero page, bad page and bad page tables. |
| */ |
| void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc) |
| { |
| void *zero_page; |
| |
| build_mem_type_table(); |
| sanity_check_meminfo(mi); |
| prepare_page_table(mi); |
| bootmem_init(mi); |
| devicemaps_init(mdesc); |
| |
| top_pmd = pmd_off_k(0xffff0000); |
| |
| /* |
| * allocate the zero page. Note that we count on this going ok. |
| */ |
| zero_page = alloc_bootmem_low_pages(PAGE_SIZE); |
| memzero(zero_page, PAGE_SIZE); |
| empty_zero_page = virt_to_page(zero_page); |
| flush_dcache_page(empty_zero_page); |
| } |
| |
| /* |
| * In order to soft-boot, we need to insert a 1:1 mapping in place of |
| * the user-mode pages. This will then ensure that we have predictable |
| * results when turning the mmu off |
| */ |
| void setup_mm_for_reboot(char mode) |
| { |
| unsigned long base_pmdval; |
| pgd_t *pgd; |
| int i; |
| |
| if (current->mm && current->mm->pgd) |
| pgd = current->mm->pgd; |
| else |
| pgd = init_mm.pgd; |
| |
| base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT; |
| if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale()) |
| base_pmdval |= PMD_BIT4; |
| |
| for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) { |
| unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval; |
| pmd_t *pmd; |
| |
| pmd = pmd_off(pgd, i << PGDIR_SHIFT); |
| pmd[0] = __pmd(pmdval); |
| pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1))); |
| flush_pmd_entry(pmd); |
| } |
| } |