blob: ccddf444ded3afa1d7c5bcc4f1b7841e53750f67 [file] [log] [blame]
/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include <linux/input.h>
#include <linux/usb/msm_hsusb.h>
#include <linux/mhl_8334.h>
#include "mdss_fb.h"
#include "mdss_hdmi_tx.h"
#include "mdss_hdmi_edid.h"
#include "mdss.h"
#include "mdss_panel.h"
#include "mdss_io_util.h"
#include "mhl_msc.h"
#include "mdss_hdmi_mhl.h"
#define MHL_DRIVER_NAME "sii8334"
#define COMPATIBLE_NAME "qcom,mhl-sii8334"
#define MAX_CURRENT 700000
#define pr_debug_intr(...) pr_debug("\n")
#define MSC_START_BIT_MSC_CMD (0x01 << 0)
#define MSC_START_BIT_VS_CMD (0x01 << 1)
#define MSC_START_BIT_READ_REG (0x01 << 2)
#define MSC_START_BIT_WRITE_REG (0x01 << 3)
#define MSC_START_BIT_WRITE_BURST (0x01 << 4)
/* supported RCP key code */
u16 support_rcp_key_code_tbl[] = {
KEY_ENTER, /* 0x00 Select */
KEY_UP, /* 0x01 Up */
KEY_DOWN, /* 0x02 Down */
KEY_LEFT, /* 0x03 Left */
KEY_RIGHT, /* 0x04 Right */
KEY_UNKNOWN, /* 0x05 Right-up */
KEY_UNKNOWN, /* 0x06 Right-down */
KEY_UNKNOWN, /* 0x07 Left-up */
KEY_UNKNOWN, /* 0x08 Left-down */
KEY_MENU, /* 0x09 Root Menu */
KEY_OPTION, /* 0x0A Setup Menu */
KEY_UNKNOWN, /* 0x0B Contents Menu */
KEY_UNKNOWN, /* 0x0C Favorite Menu */
KEY_EXIT, /* 0x0D Exit */
KEY_RESERVED, /* 0x0E */
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED, /* 0x1F */
KEY_NUMERIC_0, /* 0x20 NUMERIC_0 */
KEY_NUMERIC_1, /* 0x21 NUMERIC_1 */
KEY_NUMERIC_2, /* 0x22 NUMERIC_2 */
KEY_NUMERIC_3, /* 0x23 NUMERIC_3 */
KEY_NUMERIC_4, /* 0x24 NUMERIC_4 */
KEY_NUMERIC_5, /* 0x25 NUMERIC_5 */
KEY_NUMERIC_6, /* 0x26 NUMERIC_6 */
KEY_NUMERIC_7, /* 0x27 NUMERIC_7 */
KEY_NUMERIC_8, /* 0x28 NUMERIC_8 */
KEY_NUMERIC_9, /* 0x29 NUMERIC_9 */
KEY_DOT, /* 0x2A Dot */
KEY_ENTER, /* 0x2B Enter */
KEY_ESC, /* 0x2C Clear */
KEY_RESERVED, /* 0x2D */
KEY_RESERVED, /* 0x2E */
KEY_RESERVED, /* 0x2F */
KEY_UNKNOWN, /* 0x30 Channel Up */
KEY_UNKNOWN, /* 0x31 Channel Down */
KEY_UNKNOWN, /* 0x32 Previous Channel */
KEY_UNKNOWN, /* 0x33 Sound Select */
KEY_UNKNOWN, /* 0x34 Input Select */
KEY_UNKNOWN, /* 0x35 Show Information */
KEY_UNKNOWN, /* 0x36 Help */
KEY_UNKNOWN, /* 0x37 Page Up */
KEY_UNKNOWN, /* 0x38 Page Down */
KEY_RESERVED, /* 0x39 */
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED, /* 0x3F */
KEY_RESERVED, /* 0x40 */
KEY_VOLUMEUP, /* 0x41 Volume Up */
KEY_VOLUMEDOWN, /* 0x42 Volume Down */
KEY_MUTE, /* 0x43 Mute */
KEY_PLAY, /* 0x44 Play */
KEY_STOP, /* 0x45 Stop */
KEY_PAUSE, /* 0x46 Pause */
KEY_UNKNOWN, /* 0x47 Record */
KEY_REWIND, /* 0x48 Rewind */
KEY_FASTFORWARD, /* 0x49 Fast Forward */
KEY_UNKNOWN, /* 0x4A Eject */
KEY_FORWARD, /* 0x4B Forward */
KEY_BACK, /* 0x4C Backward */
KEY_RESERVED, /* 0x4D */
KEY_RESERVED,
KEY_RESERVED, /* 0x4F */
KEY_UNKNOWN, /* 0x50 Angle */
KEY_UNKNOWN, /* 0x51 Subtitle */
KEY_RESERVED, /* 0x52 */
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED, /* 0x5F */
KEY_PLAYPAUSE, /* 0x60 Play Function */
KEY_PLAYPAUSE, /* 0x61 Pause_Play Function */
KEY_UNKNOWN, /* 0x62 Record Function */
KEY_PAUSE, /* 0x63 Pause Record Function */
KEY_STOP, /* 0x64 Stop Function */
KEY_MUTE, /* 0x65 Mute Function */
KEY_UNKNOWN, /* 0x66 Restore Volume Function */
KEY_UNKNOWN, /* 0x67 Tune Function */
KEY_UNKNOWN, /* 0x68 Select Media Function */
KEY_RESERVED, /* 0x69 */
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED, /* 0x70 */
KEY_BLUE, /* 0x71 F1 */
KEY_RED, /* 0x72 F2 */
KEY_GREEN, /* 0x73 F3 */
KEY_YELLOW, /* 0x74 F4 */
KEY_UNKNOWN, /* 0x75 F5 */
KEY_RESERVED, /* 0x76 */
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED,
KEY_RESERVED, /* 0x7D */
KEY_VENDOR, /* Vendor Specific */
KEY_RESERVED, /* 0x7F */
};
uint8_t slave_addrs[MAX_PAGES] = {
DEV_PAGE_TPI_0 ,
DEV_PAGE_TX_L0_0 ,
DEV_PAGE_TX_L1_0 ,
DEV_PAGE_TX_2_0 ,
DEV_PAGE_TX_3_0 ,
DEV_PAGE_CBUS ,
DEV_PAGE_DDC_EDID ,
DEV_PAGE_DDC_SEGM ,
};
static irqreturn_t mhl_tx_isr(int irq, void *dev_id);
static void switch_mode(struct mhl_tx_ctrl *mhl_ctrl,
enum mhl_st_type to_mode);
static void mhl_init_reg_settings(struct mhl_tx_ctrl *mhl_ctrl,
bool mhl_disc_en);
int mhl_i2c_reg_read(struct i2c_client *client,
uint8_t slave_addr_index, uint8_t reg_offset)
{
int rc = -1;
uint8_t buffer = 0;
rc = mdss_i2c_byte_read(client, slave_addrs[slave_addr_index],
reg_offset, &buffer);
if (rc) {
pr_err("%s: slave=%x, off=%x\n",
__func__, slave_addrs[slave_addr_index], reg_offset);
return rc;
}
return buffer;
}
int mhl_i2c_reg_write(struct i2c_client *client,
uint8_t slave_addr_index, uint8_t reg_offset,
uint8_t value)
{
return mdss_i2c_byte_write(client, slave_addrs[slave_addr_index],
reg_offset, &value);
}
void mhl_i2c_reg_modify(struct i2c_client *client,
uint8_t slave_addr_index, uint8_t reg_offset,
uint8_t mask, uint8_t val)
{
uint8_t temp;
temp = mhl_i2c_reg_read(client, slave_addr_index, reg_offset);
temp &= (~mask);
temp |= (mask & val);
mhl_i2c_reg_write(client, slave_addr_index, reg_offset, temp);
}
static int mhl_tx_get_dt_data(struct device *dev,
struct mhl_tx_platform_data *pdata)
{
int i, rc = 0;
struct device_node *of_node = NULL;
struct dss_gpio *temp_gpio = NULL;
struct platform_device *hdmi_pdev = NULL;
struct device_node *hdmi_tx_node = NULL;
int dt_gpio;
i = 0;
if (!dev || !pdata) {
pr_err("%s: invalid input\n", __func__);
return -EINVAL;
}
of_node = dev->of_node;
if (!of_node) {
pr_err("%s: invalid of_node\n", __func__);
goto error;
}
pr_debug("%s: id=%d\n", __func__, dev->id);
/* GPIOs */
temp_gpio = NULL;
temp_gpio = devm_kzalloc(dev, sizeof(struct dss_gpio), GFP_KERNEL);
pr_debug("%s: gpios allocd\n", __func__);
if (!(temp_gpio)) {
pr_err("%s: can't alloc %d gpio mem\n", __func__, i);
goto error;
}
/* RESET */
dt_gpio = of_get_named_gpio(of_node, "mhl-rst-gpio", 0);
if (dt_gpio < 0) {
pr_err("%s: Can't get mhl-rst-gpio\n", __func__);
goto error;
}
temp_gpio->gpio = dt_gpio;
snprintf(temp_gpio->gpio_name, 32, "%s", "mhl-rst-gpio");
pr_debug("%s: rst gpio=[%d]\n", __func__,
temp_gpio->gpio);
pdata->gpios[MHL_TX_RESET_GPIO] = temp_gpio;
/* PWR */
temp_gpio = NULL;
temp_gpio = devm_kzalloc(dev, sizeof(struct dss_gpio), GFP_KERNEL);
pr_debug("%s: gpios allocd\n", __func__);
if (!(temp_gpio)) {
pr_err("%s: can't alloc %d gpio mem\n", __func__, i);
goto error;
}
dt_gpio = of_get_named_gpio(of_node, "mhl-pwr-gpio", 0);
if (dt_gpio < 0) {
pr_err("%s: Can't get mhl-pwr-gpio\n", __func__);
goto error;
}
temp_gpio->gpio = dt_gpio;
snprintf(temp_gpio->gpio_name, 32, "%s", "mhl-pwr-gpio");
pr_debug("%s: pmic gpio=[%d]\n", __func__,
temp_gpio->gpio);
pdata->gpios[MHL_TX_PMIC_PWR_GPIO] = temp_gpio;
/* INTR */
temp_gpio = NULL;
temp_gpio = devm_kzalloc(dev, sizeof(struct dss_gpio), GFP_KERNEL);
pr_debug("%s: gpios allocd\n", __func__);
if (!(temp_gpio)) {
pr_err("%s: can't alloc %d gpio mem\n", __func__, i);
goto error;
}
dt_gpio = of_get_named_gpio(of_node, "mhl-intr-gpio", 0);
if (dt_gpio < 0) {
pr_err("%s: Can't get mhl-intr-gpio\n", __func__);
goto error;
}
temp_gpio->gpio = dt_gpio;
snprintf(temp_gpio->gpio_name, 32, "%s", "mhl-intr-gpio");
pr_debug("%s: intr gpio=[%d]\n", __func__,
temp_gpio->gpio);
pdata->gpios[MHL_TX_INTR_GPIO] = temp_gpio;
/* parse phandle for hdmi tx */
hdmi_tx_node = of_parse_phandle(of_node, "qcom,hdmi-tx-map", 0);
if (!hdmi_tx_node) {
pr_err("%s: can't find hdmi phandle\n", __func__);
goto error;
}
hdmi_pdev = of_find_device_by_node(hdmi_tx_node);
if (!hdmi_pdev) {
pr_err("%s: can't find the device by node\n", __func__);
goto error;
}
pr_debug("%s: hdmi_pdev [0X%x] to pdata->pdev\n",
__func__, (unsigned int)hdmi_pdev);
pdata->hdmi_pdev = hdmi_pdev;
return 0;
error:
pr_err("%s: ret due to err\n", __func__);
for (i = 0; i < MHL_TX_MAX_GPIO; i++)
if (pdata->gpios[i])
devm_kfree(dev, pdata->gpios[i]);
return rc;
} /* mhl_tx_get_dt_data */
static int mhl_sii_reset_pin(struct mhl_tx_ctrl *mhl_ctrl, int on)
{
if (mhl_ctrl->pdata->gpios[MHL_TX_RESET_GPIO]) {
gpio_set_value(
mhl_ctrl->pdata->gpios[MHL_TX_RESET_GPIO]->gpio,
on);
}
return 0;
}
static int mhl_sii_wait_for_rgnd(struct mhl_tx_ctrl *mhl_ctrl)
{
int timeout;
/* let isr handle RGND interrupt */
pr_debug("%s:%u\n", __func__, __LINE__);
INIT_COMPLETION(mhl_ctrl->rgnd_done);
timeout = wait_for_completion_interruptible_timeout
(&mhl_ctrl->rgnd_done, HZ/2);
if (!timeout) {
/* most likely nothing plugged in USB */
/* USB HOST connected or already in USB mode */
pr_warn("%s:%u timedout\n", __func__, __LINE__);
return -ENODEV;
}
return mhl_ctrl->mhl_mode ? 0 : 1;
}
/* USB_HANDSHAKING FUNCTIONS */
static int mhl_sii_device_discovery(void *data, int id,
void (*usb_notify_cb)(int online))
{
int rc;
struct mhl_tx_ctrl *mhl_ctrl = data;
if (id) {
/* When MHL cable is disconnected we get a sii8334
* mhl_disconnect interrupt which is handled separately.
*/
pr_debug("%s: USB ID pin high\n", __func__);
return id;
}
if (!mhl_ctrl || !usb_notify_cb) {
pr_warn("%s: cb || ctrl is NULL\n", __func__);
/* return "USB" so caller can proceed */
return -EINVAL;
}
if (!mhl_ctrl->notify_usb_online)
mhl_ctrl->notify_usb_online = usb_notify_cb;
if (!mhl_ctrl->disc_enabled) {
mhl_sii_reset_pin(mhl_ctrl, 0);
msleep(50);
mhl_sii_reset_pin(mhl_ctrl, 1);
/* TX PR-guide requires a 100 ms wait here */
msleep(100);
mhl_init_reg_settings(mhl_ctrl, true);
rc = mhl_sii_wait_for_rgnd(mhl_ctrl);
} else {
if (mhl_ctrl->cur_state == POWER_STATE_D3) {
rc = mhl_sii_wait_for_rgnd(mhl_ctrl);
} else {
/* in MHL mode */
pr_debug("%s:%u\n", __func__, __LINE__);
rc = 0;
}
}
pr_debug("%s: ret result: %s\n", __func__, rc ? "usb" : " mhl");
return rc;
}
static int mhl_power_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct mhl_tx_ctrl *mhl_ctrl =
container_of(psy, struct mhl_tx_ctrl, mhl_psy);
switch (psp) {
case POWER_SUPPLY_PROP_CURRENT_MAX:
val->intval = mhl_ctrl->current_val;
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = mhl_ctrl->vbus_active;
break;
case POWER_SUPPLY_PROP_ONLINE:
val->intval = mhl_ctrl->vbus_active && mhl_ctrl->mhl_mode;
break;
default:
return -EINVAL;
}
return 0;
}
static int mhl_power_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct mhl_tx_ctrl *mhl_ctrl =
container_of(psy, struct mhl_tx_ctrl, mhl_psy);
switch (psp) {
case POWER_SUPPLY_PROP_PRESENT:
mhl_ctrl->vbus_active = val->intval;
if (mhl_ctrl->vbus_active)
mhl_ctrl->current_val = MAX_CURRENT;
else
mhl_ctrl->current_val = 0;
power_supply_changed(psy);
break;
case POWER_SUPPLY_PROP_ONLINE:
case POWER_SUPPLY_PROP_CURRENT_MAX:
break;
default:
return -EINVAL;
}
return 0;
}
static char *mhl_pm_power_supplied_to[] = {
"usb",
};
static enum power_supply_property mhl_pm_power_props[] = {
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_ONLINE,
POWER_SUPPLY_PROP_CURRENT_MAX,
};
static void cbus_reset(struct i2c_client *client)
{
uint8_t i;
/*
* REG_SRST
*/
MHL_SII_REG_NAME_MOD(REG_SRST, BIT3, BIT3);
msleep(20);
MHL_SII_REG_NAME_MOD(REG_SRST, BIT3, 0x00);
/*
* REG_INTR1 and REG_INTR4
*/
MHL_SII_REG_NAME_WR(REG_INTR1_MASK, BIT6);
MHL_SII_REG_NAME_WR(REG_INTR4_MASK,
BIT0 | BIT2 | BIT3 | BIT4 | BIT5 | BIT6);
MHL_SII_REG_NAME_WR(REG_INTR5_MASK, 0x00);
/* Unmask CBUS1 Intrs */
MHL_SII_REG_NAME_WR(REG_CBUS_INTR_ENABLE,
BIT2 | BIT3 | BIT4 | BIT5 | BIT6);
/* Unmask CBUS2 Intrs */
MHL_SII_REG_NAME_WR(REG_CBUS_MSC_INT2_ENABLE, BIT2 | BIT3);
for (i = 0; i < 4; i++) {
/*
* Enable WRITE_STAT interrupt for writes to
* all 4 MSC Status registers.
*/
MHL_SII_CBUS_WR((0xE0 + i), 0xFF);
/*
* Enable SET_INT interrupt for writes to
* all 4 MSC Interrupt registers.
*/
MHL_SII_CBUS_WR((0xF0 + i), 0xFF);
}
}
static void init_cbus_regs(struct i2c_client *client)
{
uint8_t regval;
/* Increase DDC translation layer timer*/
MHL_SII_CBUS_WR(0x0007, 0xF2);
/* Drive High Time */
MHL_SII_CBUS_WR(0x0036, 0x03);
/* Use programmed timing */
MHL_SII_CBUS_WR(0x0039, 0x30);
/* CBUS Drive Strength */
MHL_SII_CBUS_WR(0x0040, 0x03);
/*
* Write initial default settings
* to devcap regs: default settings
*/
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_DEV_STATE, DEVCAP_VAL_DEV_STATE);
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_MHL_VERSION, DEVCAP_VAL_MHL_VERSION);
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_DEV_CAT, DEVCAP_VAL_DEV_CAT);
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_ADOPTER_ID_H, DEVCAP_VAL_ADOPTER_ID_H);
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_ADOPTER_ID_L, DEVCAP_VAL_ADOPTER_ID_L);
MHL_SII_CBUS_WR(0x0080 | DEVCAP_OFFSET_VID_LINK_MODE,
DEVCAP_VAL_VID_LINK_MODE);
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_AUD_LINK_MODE,
DEVCAP_VAL_AUD_LINK_MODE);
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_VIDEO_TYPE, DEVCAP_VAL_VIDEO_TYPE);
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_LOG_DEV_MAP, DEVCAP_VAL_LOG_DEV_MAP);
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_BANDWIDTH, DEVCAP_VAL_BANDWIDTH);
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_FEATURE_FLAG, DEVCAP_VAL_FEATURE_FLAG);
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_DEVICE_ID_H, DEVCAP_VAL_DEVICE_ID_H);
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_DEVICE_ID_L, DEVCAP_VAL_DEVICE_ID_L);
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_SCRATCHPAD_SIZE,
DEVCAP_VAL_SCRATCHPAD_SIZE);
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_INT_STAT_SIZE,
DEVCAP_VAL_INT_STAT_SIZE);
MHL_SII_CBUS_WR(0x0080 |
DEVCAP_OFFSET_RESERVED, DEVCAP_VAL_RESERVED);
/* Make bits 2,3 (initiator timeout) to 1,1
* for register CBUS_LINK_CONTROL_2
* REG_CBUS_LINK_CONTROL_2
*/
regval = MHL_SII_CBUS_RD(0x0031);
regval = (regval | 0x0C);
/* REG_CBUS_LINK_CONTROL_2 */
MHL_SII_CBUS_WR(0x0031, regval);
/* REG_MSC_TIMEOUT_LIMIT */
MHL_SII_CBUS_WR(0x0022, 0x0F);
/* REG_CBUS_LINK_CONTROL_1 */
MHL_SII_CBUS_WR(0x0030, 0x01);
/* disallow vendor specific commands */
MHL_SII_CBUS_MOD(0x002E, BIT4, BIT4);
}
/*
* Configure the initial reg settings
*/
static void mhl_init_reg_settings(struct mhl_tx_ctrl *mhl_ctrl,
bool mhl_disc_en)
{
/*
* ============================================
* POWER UP
* ============================================
*/
struct i2c_client *client = mhl_ctrl->i2c_handle;
/* Power up 1.2V core */
MHL_SII_PAGE1_WR(0x003D, 0x3F);
/*
* Wait for the source power to be enabled
* before enabling pll clocks.
*/
msleep(50);
/* Enable Tx PLL Clock */
MHL_SII_PAGE2_WR(0x0011, 0x01);
/* Enable Tx Clock Path and Equalizer */
MHL_SII_PAGE2_WR(0x0012, 0x11);
/* Tx Source Termination ON */
MHL_SII_REG_NAME_WR(REG_MHLTX_CTL1, 0x10);
/* Enable 1X MHL Clock output */
MHL_SII_REG_NAME_WR(REG_MHLTX_CTL6, 0xAC);
/* Tx Differential Driver Config */
MHL_SII_REG_NAME_WR(REG_MHLTX_CTL2, 0x3C);
MHL_SII_REG_NAME_WR(REG_MHLTX_CTL4, 0xD9);
/* PLL Bandwidth Control */
MHL_SII_REG_NAME_WR(REG_MHLTX_CTL8, 0x02);
/*
* ============================================
* Analog PLL Control
* ============================================
*/
/* Enable Rx PLL clock */
MHL_SII_REG_NAME_WR(REG_TMDS_CCTRL, 0x00);
MHL_SII_PAGE0_WR(0x00F8, 0x0C);
MHL_SII_PAGE0_WR(0x0085, 0x02);
MHL_SII_PAGE2_WR(0x0000, 0x00);
MHL_SII_PAGE2_WR(0x0013, 0x60);
/* PLL Cal ref sel */
MHL_SII_PAGE2_WR(0x0017, 0x03);
/* VCO Cal */
MHL_SII_PAGE2_WR(0x001A, 0x20);
/* Auto EQ */
MHL_SII_PAGE2_WR(0x0022, 0xE0);
MHL_SII_PAGE2_WR(0x0023, 0xC0);
MHL_SII_PAGE2_WR(0x0024, 0xA0);
MHL_SII_PAGE2_WR(0x0025, 0x80);
MHL_SII_PAGE2_WR(0x0026, 0x60);
MHL_SII_PAGE2_WR(0x0027, 0x40);
MHL_SII_PAGE2_WR(0x0028, 0x20);
MHL_SII_PAGE2_WR(0x0029, 0x00);
/* Rx PLL Bandwidth 4MHz */
MHL_SII_PAGE2_WR(0x0031, 0x0A);
/* Rx PLL Bandwidth value from I2C */
MHL_SII_PAGE2_WR(0x0045, 0x06);
MHL_SII_PAGE2_WR(0x004B, 0x06);
/* Manual zone control */
MHL_SII_PAGE2_WR(0x004C, 0xE0);
/* PLL Mode value */
MHL_SII_PAGE2_WR(0x004D, 0x00);
MHL_SII_PAGE0_WR(0x0008, 0x35);
/*
* Discovery Control and Status regs
* Setting De-glitch time to 50 ms (default)
* Switch Control Disabled
*/
MHL_SII_REG_NAME_WR(REG_DISC_CTRL2, 0xAD);
/* 1.8V CBUS VTH */
MHL_SII_REG_NAME_WR(REG_DISC_CTRL5, 0x55);
/* RGND and single Discovery attempt */
MHL_SII_REG_NAME_WR(REG_DISC_CTRL6, 0x11);
/* Ignore VBUS */
MHL_SII_REG_NAME_WR(REG_DISC_CTRL8, 0x82);
MHL_SII_REG_NAME_WR(REG_DISC_CTRL9, 0x24);
/* Enable CBUS Discovery */
if (mhl_disc_en) {
/* Enable MHL Discovery */
MHL_SII_REG_NAME_WR(REG_DISC_CTRL1, 0x27);
/* Pull-up resistance off for IDLE state */
MHL_SII_REG_NAME_WR(REG_DISC_CTRL4, 0x8C);
} else {
/* Disable MHL Discovery */
MHL_SII_REG_NAME_WR(REG_DISC_CTRL1, 0x26);
MHL_SII_REG_NAME_WR(REG_DISC_CTRL4, 0x8C);
}
MHL_SII_REG_NAME_WR(REG_DISC_CTRL7, 0x20);
/* MHL CBUS Discovery - immediate comm. */
MHL_SII_REG_NAME_WR(REG_DISC_CTRL3, 0x86);
MHL_SII_PAGE3_WR(0x3C, 0x80);
if (mhl_ctrl->cur_state != POWER_STATE_D3)
MHL_SII_REG_NAME_MOD(REG_INT_CTRL, BIT5 | BIT4, BIT4);
/* Enable Auto Soft RESET */
MHL_SII_REG_NAME_WR(REG_SRST, 0x084);
/* HDMI Transcode mode enable */
MHL_SII_PAGE0_WR(0x000D, 0x1C);
cbus_reset(client);
init_cbus_regs(client);
}
static void switch_mode(struct mhl_tx_ctrl *mhl_ctrl, enum mhl_st_type to_mode)
{
struct i2c_client *client = mhl_ctrl->i2c_handle;
switch (to_mode) {
case POWER_STATE_D0_NO_MHL:
mhl_ctrl->cur_state = to_mode;
mhl_init_reg_settings(mhl_ctrl, true);
/* REG_DISC_CTRL1 */
MHL_SII_REG_NAME_MOD(REG_DISC_CTRL1, BIT1 | BIT0, BIT0);
/* TPI_DEVICE_POWER_STATE_CTRL_REG */
mhl_i2c_reg_modify(client, TX_PAGE_TPI, 0x001E, BIT1 | BIT0,
0x00);
break;
case POWER_STATE_D0_MHL:
mhl_ctrl->cur_state = to_mode;
break;
case POWER_STATE_D3:
if (mhl_ctrl->cur_state == POWER_STATE_D3)
break;
/* Force HPD to 0 when not in MHL mode. */
mhl_drive_hpd(mhl_ctrl, HPD_DOWN);
mhl_tmds_ctrl(mhl_ctrl, TMDS_DISABLE);
/*
* Change TMDS termination to high impedance
* on disconnection.
*/
MHL_SII_REG_NAME_WR(REG_MHLTX_CTL1, 0xD0);
msleep(50);
if (!mhl_ctrl->disc_enabled)
MHL_SII_REG_NAME_MOD(REG_DISC_CTRL1, BIT1 | BIT0, 0x00);
MHL_SII_PAGE3_MOD(0x003D, BIT0, 0x00);
mhl_ctrl->cur_state = POWER_STATE_D3;
break;
default:
break;
}
}
void mhl_tmds_ctrl(struct mhl_tx_ctrl *mhl_ctrl, uint8_t on)
{
struct i2c_client *client = mhl_ctrl->i2c_handle;
if (on) {
MHL_SII_REG_NAME_MOD(REG_TMDS_CCTRL, BIT4, BIT4);
mhl_drive_hpd(mhl_ctrl, HPD_UP);
} else {
MHL_SII_REG_NAME_MOD(REG_TMDS_CCTRL, BIT4, 0x00);
}
}
void mhl_drive_hpd(struct mhl_tx_ctrl *mhl_ctrl, uint8_t to_state)
{
struct i2c_client *client = mhl_ctrl->i2c_handle;
pr_debug("%s: To state=[0x%x]\n", __func__, to_state);
if (to_state == HPD_UP) {
/*
* Drive HPD to UP state
* Set HPD_OUT_OVR_EN = HPD State
* EDID read and Un-force HPD (from low)
* propogate to src let HPD float by clearing
* HPD OUT OVRRD EN
*/
MHL_SII_REG_NAME_MOD(REG_INT_CTRL, BIT4, 0x00);
} else {
/* Drive HPD to DOWN state */
MHL_SII_REG_NAME_MOD(REG_INT_CTRL, BIT4, BIT4);
}
}
static void mhl_msm_connection(struct mhl_tx_ctrl *mhl_ctrl)
{
uint8_t val;
struct i2c_client *client = mhl_ctrl->i2c_handle;
pr_debug("%s: cur st [0x%x]\n", __func__,
mhl_ctrl->cur_state);
if (mhl_ctrl->cur_state == POWER_STATE_D0_MHL) {
/* Already in D0 - MHL power state */
pr_err("%s: cur st not D0\n", __func__);
return;
}
/* spin_lock_irqsave(&mhl_state_lock, flags); */
switch_mode(mhl_ctrl, POWER_STATE_D0_MHL);
/* spin_unlock_irqrestore(&mhl_state_lock, flags); */
MHL_SII_REG_NAME_WR(REG_MHLTX_CTL1, 0x10);
MHL_SII_CBUS_WR(0x07, 0xF2);
/*
* Keep the discovery enabled. Need RGND interrupt
* Possibly chip disables discovery after MHL_EST??
* Need to re-enable here
*/
val = MHL_SII_PAGE3_RD(0x10);
MHL_SII_PAGE3_WR(0x10, val | BIT0);
/*
* indicate DCAP_RDY and DCAP_CHG
* to the peer only after
* msm conn has been established
*/
mhl_msc_send_write_stat(mhl_ctrl,
MHL_STATUS_REG_CONNECTED_RDY,
MHL_STATUS_DCAP_RDY);
mhl_msc_send_set_int(mhl_ctrl,
MHL_RCHANGE_INT,
MHL_INT_DCAP_CHG,
MSC_PRIORITY_SEND);
}
static void mhl_msm_disconnection(struct mhl_tx_ctrl *mhl_ctrl)
{
struct i2c_client *client = mhl_ctrl->i2c_handle;
/*
* MHL TX CTL1
* Disabling Tx termination
*/
MHL_SII_PAGE3_WR(0x30, 0xD0);
switch_mode(mhl_ctrl, POWER_STATE_D3);
}
static int mhl_msm_read_rgnd_int(struct mhl_tx_ctrl *mhl_ctrl)
{
uint8_t rgnd_imp;
struct i2c_client *client = mhl_ctrl->i2c_handle;
/* DISC STATUS REG 2 */
rgnd_imp = (mhl_i2c_reg_read(client, TX_PAGE_3, 0x001C) &
(BIT1 | BIT0));
pr_debug("imp range read=%02X\n", (int)rgnd_imp);
if (0x02 == rgnd_imp) {
pr_debug("%s: mhl sink\n", __func__);
mhl_ctrl->mhl_mode = 1;
power_supply_changed(&mhl_ctrl->mhl_psy);
if (mhl_ctrl->notify_usb_online)
mhl_ctrl->notify_usb_online(1);
} else {
pr_debug("%s: non-mhl sink\n", __func__);
mhl_ctrl->mhl_mode = 0;
switch_mode(mhl_ctrl, POWER_STATE_D3);
}
complete(&mhl_ctrl->rgnd_done);
return mhl_ctrl->mhl_mode ?
MHL_DISCOVERY_RESULT_MHL : MHL_DISCOVERY_RESULT_USB;
}
static void force_usb_switch_open(struct mhl_tx_ctrl *mhl_ctrl)
{
struct i2c_client *client = mhl_ctrl->i2c_handle;
/*disable discovery*/
MHL_SII_REG_NAME_MOD(REG_DISC_CTRL1, BIT0, 0);
/* force USB ID switch to open*/
MHL_SII_REG_NAME_MOD(REG_DISC_CTRL6, BIT6, BIT6);
MHL_SII_REG_NAME_WR(REG_DISC_CTRL3, 0x86);
/* force HPD to 0 when not in mhl mode. */
MHL_SII_REG_NAME_MOD(REG_INT_CTRL, BIT5 | BIT4, BIT4);
}
static void release_usb_switch_open(struct mhl_tx_ctrl *mhl_ctrl)
{
struct i2c_client *client = mhl_ctrl->i2c_handle;
msleep(50);
MHL_SII_REG_NAME_MOD(REG_DISC_CTRL6, BIT6, 0x00);
MHL_SII_REG_NAME_MOD(REG_DISC_CTRL1, BIT0, BIT0);
}
static void scdt_st_chg(struct i2c_client *client)
{
uint8_t tmds_cstat;
uint8_t mhl_fifo_status;
/* tmds cstat */
tmds_cstat = MHL_SII_PAGE3_RD(0x0040);
pr_debug("%s: tmds cstat: 0x%02x\n", __func__,
tmds_cstat);
if (!(tmds_cstat & BIT1))
return;
mhl_fifo_status = MHL_SII_REG_NAME_RD(REG_INTR5);
pr_debug("%s: mhl fifo st: 0x%02x\n", __func__,
mhl_fifo_status);
if (mhl_fifo_status & 0x0C) {
MHL_SII_REG_NAME_WR(REG_INTR5, 0x0C);
pr_debug("%s: mhl fifo rst\n", __func__);
MHL_SII_REG_NAME_WR(REG_SRST, 0x94);
MHL_SII_REG_NAME_WR(REG_SRST, 0x84);
}
}
static void dev_detect_isr(struct mhl_tx_ctrl *mhl_ctrl)
{
uint8_t status, reg ;
struct i2c_client *client = mhl_ctrl->i2c_handle;
/* INTR_STATUS4 */
status = MHL_SII_REG_NAME_RD(REG_INTR4);
pr_debug("%s: reg int4 st=%02X\n", __func__, status);
if ((0x00 == status) &&\
(mhl_ctrl->cur_state == POWER_STATE_D3)) {
pr_err("%s: invalid intr\n", __func__);
return;
}
if (0xFF == status) {
pr_debug("%s: invalid intr 0xff\n", __func__);
MHL_SII_REG_NAME_WR(REG_INTR4, status);
return;
}
if ((status & BIT0) && (mhl_ctrl->chip_rev_id < 1)) {
pr_debug("%s: scdt intr\n", __func__);
scdt_st_chg(client);
}
if (status & BIT1)
pr_debug("mhl: int4 bit1 set\n");
/* mhl_est interrupt */
if (status & BIT2) {
pr_debug("%s: mhl_est st=%02X\n", __func__,
(int) status);
mhl_msm_connection(mhl_ctrl);
} else if (status & BIT3) {
pr_debug("%s: uUSB-a type dev detct\n", __func__);
/* Short RGND */
MHL_SII_REG_NAME_MOD(REG_DISC_STAT2, BIT0 | BIT1, 0x00);
mhl_msm_disconnection(mhl_ctrl);
power_supply_changed(&mhl_ctrl->mhl_psy);
if (mhl_ctrl->notify_usb_online)
mhl_ctrl->notify_usb_online(0);
}
if (status & BIT5) {
/* clr intr - reg int4 */
pr_debug("%s: mhl discon: int4 st=%02X\n", __func__,
(int)status);
reg = MHL_SII_REG_NAME_RD(REG_INTR4);
MHL_SII_REG_NAME_WR(REG_INTR4, reg);
mhl_msm_disconnection(mhl_ctrl);
power_supply_changed(&mhl_ctrl->mhl_psy);
if (mhl_ctrl->notify_usb_online)
mhl_ctrl->notify_usb_online(0);
}
if ((mhl_ctrl->cur_state != POWER_STATE_D0_NO_MHL) &&\
(status & BIT6)) {
/* rgnd rdy Intr */
pr_debug("%s: rgnd ready intr\n", __func__);
switch_mode(mhl_ctrl, POWER_STATE_D0_NO_MHL);
mhl_msm_read_rgnd_int(mhl_ctrl);
}
/* Can't succeed at these in D3 */
if ((mhl_ctrl->cur_state != POWER_STATE_D3) &&\
(status & BIT4)) {
/* cbus lockout interrupt?
* Hardware detection mechanism figures that
* CBUS line is latched and raises this intr
* where we force usb switch open and release
*/
pr_warn("%s: cbus locked out!\n", __func__);
force_usb_switch_open(mhl_ctrl);
release_usb_switch_open(mhl_ctrl);
}
MHL_SII_REG_NAME_WR(REG_INTR4, status);
}
static void mhl_misc_isr(struct mhl_tx_ctrl *mhl_ctrl)
{
uint8_t intr_5_stat;
struct i2c_client *client = mhl_ctrl->i2c_handle;
/*
* Clear INT 5
* INTR5 is related to FIFO underflow/overflow reset
* which is handled in 8334 by auto FIFO reset
*/
intr_5_stat = MHL_SII_REG_NAME_RD(REG_INTR5);
MHL_SII_REG_NAME_WR(REG_INTR5, intr_5_stat);
}
static void mhl_hpd_stat_isr(struct mhl_tx_ctrl *mhl_ctrl)
{
uint8_t intr_1_stat;
uint8_t cbus_stat;
struct i2c_client *client = mhl_ctrl->i2c_handle;
/* INTR STATUS 1 */
intr_1_stat = MHL_SII_PAGE0_RD(0x0071);
if (!intr_1_stat)
return;
/* Clear interrupts */
MHL_SII_PAGE0_WR(0x0071, intr_1_stat);
if (BIT6 & intr_1_stat) {
/*
* HPD status change event is pending
* Read CBUS HPD status for this info
* MSC REQ ABRT REASON
*/
cbus_stat = MHL_SII_CBUS_RD(0x0D);
if (BIT6 & cbus_stat)
mhl_drive_hpd(mhl_ctrl, HPD_UP);
else
mhl_drive_hpd(mhl_ctrl, HPD_DOWN);
}
}
static void mhl_sii_cbus_process_errors(struct i2c_client *client,
u8 int_status)
{
u8 abort_reason = 0;
if (int_status & BIT2) {
abort_reason = MHL_SII_REG_NAME_RD(REG_DDC_ABORT_REASON);
pr_debug("%s: CBUS DDC Abort Reason(0x%02x)\n",
__func__, abort_reason);
}
if (int_status & BIT5) {
abort_reason = MHL_SII_REG_NAME_RD(REG_PRI_XFR_ABORT_REASON);
pr_debug("%s: CBUS MSC Requestor Abort Reason(0x%02x)\n",
__func__, abort_reason);
MHL_SII_REG_NAME_WR(REG_PRI_XFR_ABORT_REASON, 0xFF);
}
if (int_status & BIT6) {
abort_reason = MHL_SII_REG_NAME_RD(
REG_CBUS_PRI_FWR_ABORT_REASON);
pr_debug("%s: CBUS MSC Responder Abort Reason(0x%02x)\n",
__func__, abort_reason);
MHL_SII_REG_NAME_WR(REG_CBUS_PRI_FWR_ABORT_REASON, 0xFF);
}
}
int mhl_send_msc_command(struct mhl_tx_ctrl *mhl_ctrl,
struct msc_command_struct *req)
{
int timeout;
u8 start_bit = 0x00;
u8 *burst_data;
int i;
struct i2c_client *client = mhl_ctrl->i2c_handle;
if (mhl_ctrl->cur_state != POWER_STATE_D0_MHL) {
pr_debug("%s: power_state:%02x CBUS(0x0A):%02x\n",
__func__,
mhl_ctrl->cur_state,
MHL_SII_REG_NAME_RD(REG_CBUS_BUS_STATUS));
return -EFAULT;
}
if (!req)
return -EFAULT;
pr_debug("%s: command=0x%02x offset=0x%02x %02x %02x",
__func__,
req->command,
req->offset,
req->payload.data[0],
req->payload.data[1]);
/* REG_CBUS_PRI_ADDR_CMD = REQ CBUS CMD or OFFSET */
MHL_SII_REG_NAME_WR(REG_CBUS_PRI_ADDR_CMD, req->offset);
MHL_SII_REG_NAME_WR(REG_CBUS_PRI_WR_DATA_1ST,
req->payload.data[0]);
switch (req->command) {
case MHL_SET_INT:
case MHL_WRITE_STAT:
start_bit = MSC_START_BIT_WRITE_REG;
break;
case MHL_READ_DEVCAP:
start_bit = MSC_START_BIT_READ_REG;
break;
case MHL_GET_STATE:
case MHL_GET_VENDOR_ID:
case MHL_SET_HPD:
case MHL_CLR_HPD:
case MHL_GET_SC1_ERRORCODE:
case MHL_GET_DDC_ERRORCODE:
case MHL_GET_MSC_ERRORCODE:
case MHL_GET_SC3_ERRORCODE:
start_bit = MSC_START_BIT_MSC_CMD;
MHL_SII_REG_NAME_WR(REG_CBUS_PRI_ADDR_CMD, req->command);
break;
case MHL_MSC_MSG:
start_bit = MSC_START_BIT_VS_CMD;
MHL_SII_REG_NAME_WR(REG_CBUS_PRI_WR_DATA_2ND,
req->payload.data[1]);
MHL_SII_REG_NAME_WR(REG_CBUS_PRI_ADDR_CMD, req->command);
break;
case MHL_WRITE_BURST:
start_bit = MSC_START_BIT_WRITE_BURST;
MHL_SII_REG_NAME_WR(REG_MSC_WRITE_BURST_LEN, req->length - 1);
if (!(req->payload.burst_data)) {
pr_err("%s: burst data is null!\n", __func__);
goto cbus_send_fail;
}
burst_data = req->payload.burst_data;
for (i = 0; i < req->length; i++, burst_data++)
MHL_SII_REG_NAME_WR(REG_CBUS_SCRATCHPAD_0 + i,
*burst_data);
break;
default:
pr_err("%s: unknown command! (%02x)\n",
__func__, req->command);
goto cbus_send_fail;
}
INIT_COMPLETION(mhl_ctrl->msc_cmd_done);
MHL_SII_REG_NAME_WR(REG_CBUS_PRI_START, start_bit);
timeout = wait_for_completion_interruptible_timeout
(&mhl_ctrl->msc_cmd_done, msecs_to_jiffies(T_ABORT_NEXT));
if (!timeout) {
pr_err("%s: cbus_command_send timed out!\n", __func__);
goto cbus_send_fail;
}
switch (req->command) {
case MHL_READ_DEVCAP:
req->retval = MHL_SII_REG_NAME_RD(REG_CBUS_PRI_RD_DATA_1ST);
break;
case MHL_MSC_MSG:
/* check if MSC_MSG NACKed */
if (MHL_SII_REG_NAME_RD(REG_MSC_WRITE_BURST_LEN) & BIT6)
return -EAGAIN;
default:
req->retval = 0;
break;
}
mhl_msc_command_done(mhl_ctrl, req);
pr_debug("%s: msc cmd done\n", __func__);
return 0;
cbus_send_fail:
return -EFAULT;
}
/* read scratchpad */
void mhl_read_scratchpad(struct mhl_tx_ctrl *mhl_ctrl)
{
struct i2c_client *client = mhl_ctrl->i2c_handle;
int i;
for (i = 0; i < MHL_SCRATCHPAD_SIZE; i++) {
mhl_ctrl->scrpd.data[i] = MHL_SII_REG_NAME_RD(
REG_CBUS_SCRATCHPAD_0 + i);
}
}
static void mhl_cbus_isr(struct mhl_tx_ctrl *mhl_ctrl)
{
uint8_t regval;
int req_done = 0;
uint8_t sub_cmd = 0x0;
uint8_t cmd_data = 0x0;
int msc_msg_recved = 0;
int rc = -1;
struct i2c_client *client = mhl_ctrl->i2c_handle;
regval = MHL_SII_REG_NAME_RD(REG_CBUS_INTR_STATUS);
if (regval == 0xff)
return;
if (regval)
MHL_SII_REG_NAME_WR(REG_CBUS_INTR_STATUS, regval);
pr_debug("%s: CBUS_INT = %02x\n", __func__, regval);
/* MSC_MSG (RCP/RAP) */
if (regval & BIT3) {
sub_cmd = MHL_SII_REG_NAME_RD(REG_CBUS_PRI_VS_CMD);
cmd_data = MHL_SII_REG_NAME_RD(REG_CBUS_PRI_VS_DATA);
msc_msg_recved = 1;
}
/* MSC_MT_ABRT/MSC_MR_ABRT/DDC_ABORT */
if (regval & (BIT6 | BIT5 | BIT2))
mhl_sii_cbus_process_errors(client, regval);
/* MSC_REQ_DONE */
if (regval & BIT4)
req_done = 1;
/* look for interrupts on CBUS_MSC_INT2 */
regval = MHL_SII_REG_NAME_RD(REG_CBUS_MSC_INT2_STATUS);
/* clear all interrupts */
if (regval)
MHL_SII_REG_NAME_WR(REG_CBUS_MSC_INT2_STATUS, regval);
pr_debug("%s: CBUS_MSC_INT2 = %02x\n", __func__, regval);
/* received SET_INT */
if (regval & BIT2) {
uint8_t intr;
intr = MHL_SII_REG_NAME_RD(REG_CBUS_SET_INT_0);
MHL_SII_REG_NAME_WR(REG_CBUS_SET_INT_0, intr);
mhl_msc_recv_set_int(mhl_ctrl, 0, intr);
pr_debug("%s: MHL_INT_0 = %02x\n", __func__, intr);
intr = MHL_SII_REG_NAME_RD(REG_CBUS_SET_INT_1);
MHL_SII_REG_NAME_WR(REG_CBUS_SET_INT_1, intr);
mhl_msc_recv_set_int(mhl_ctrl, 1, intr);
pr_debug("%s: MHL_INT_1 = %02x\n", __func__, intr);
MHL_SII_REG_NAME_WR(REG_CBUS_SET_INT_2, 0xFF);
MHL_SII_REG_NAME_WR(REG_CBUS_SET_INT_3, 0xFF);
}
/* received WRITE_STAT */
if (regval & BIT3) {
uint8_t stat;
stat = MHL_SII_REG_NAME_RD(REG_CBUS_WRITE_STAT_0);
mhl_msc_recv_write_stat(mhl_ctrl, 0, stat);
pr_debug("%s: MHL_STATUS_0 = %02x\n", __func__, stat);
stat = MHL_SII_REG_NAME_RD(REG_CBUS_WRITE_STAT_1);
mhl_msc_recv_write_stat(mhl_ctrl, 1, stat);
pr_debug("%s: MHL_STATUS_1 = %02x\n", __func__, stat);
MHL_SII_REG_NAME_WR(REG_CBUS_WRITE_STAT_0, 0xFF);
MHL_SII_REG_NAME_WR(REG_CBUS_WRITE_STAT_1, 0xFF);
MHL_SII_REG_NAME_WR(REG_CBUS_WRITE_STAT_2, 0xFF);
MHL_SII_REG_NAME_WR(REG_CBUS_WRITE_STAT_3, 0xFF);
}
/* received MSC_MSG */
if (msc_msg_recved) {
/*mhl msc recv msc msg*/
rc = mhl_msc_recv_msc_msg(mhl_ctrl, sub_cmd, cmd_data);
if (rc)
pr_err("MHL: mhl msc recv msc msg failed(%d)!\n", rc);
}
/* complete last command */
if (req_done)
complete_all(&mhl_ctrl->msc_cmd_done);
}
static void clear_all_intrs(struct i2c_client *client)
{
uint8_t regval = 0x00;
pr_debug_intr("********* exiting isr mask check ?? *************\n");
pr_debug_intr("int1 mask = %02X\n",
(int) MHL_SII_REG_NAME_RD(REG_INTR1));
pr_debug_intr("int3 mask = %02X\n",
(int) MHL_SII_PAGE0_RD(0x0077));
pr_debug_intr("int4 mask = %02X\n",
(int) MHL_SII_REG_NAME_RD(REG_INTR4));
pr_debug_intr("int5 mask = %02X\n",
(int) MHL_SII_REG_NAME_RD(REG_INTR5));
pr_debug_intr("cbus1 mask = %02X\n",
(int) MHL_SII_CBUS_RD(0x0009));
pr_debug_intr("cbus2 mask = %02X\n",
(int) MHL_SII_CBUS_RD(0x001F));
pr_debug_intr("********* end of isr mask check *************\n");
regval = MHL_SII_REG_NAME_RD(REG_INTR1);
pr_debug_intr("int1 st = %02X\n", (int)regval);
MHL_SII_REG_NAME_WR(REG_INTR1, regval);
regval = MHL_SII_REG_NAME_RD(REG_INTR2);
pr_debug_intr("int2 st = %02X\n", (int)regval);
MHL_SII_REG_NAME_WR(REG_INTR2, regval);
regval = MHL_SII_PAGE0_RD(0x0073);
pr_debug_intr("int3 st = %02X\n", (int)regval);
MHL_SII_PAGE0_WR(0x0073, regval);
regval = MHL_SII_REG_NAME_RD(REG_INTR4);
pr_debug_intr("int4 st = %02X\n", (int)regval);
MHL_SII_REG_NAME_WR(REG_INTR4, regval);
regval = MHL_SII_REG_NAME_RD(REG_INTR5);
pr_debug_intr("int5 st = %02X\n", (int)regval);
MHL_SII_REG_NAME_WR(REG_INTR5, regval);
regval = MHL_SII_CBUS_RD(0x0008);
pr_debug_intr("cbusInt st = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x0008, regval);
regval = MHL_SII_CBUS_RD(0x001E);
pr_debug_intr("CBUS intR_2: %d\n", (int)regval);
MHL_SII_CBUS_WR(0x001E, regval);
regval = MHL_SII_CBUS_RD(0x00A0);
pr_debug_intr("A0 int set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00A0, regval);
regval = MHL_SII_CBUS_RD(0x00A1);
pr_debug_intr("A1 int set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00A1, regval);
regval = MHL_SII_CBUS_RD(0x00A2);
pr_debug_intr("A2 int set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00A2, regval);
regval = MHL_SII_CBUS_RD(0x00A3);
pr_debug_intr("A3 int set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00A3, regval);
regval = MHL_SII_CBUS_RD(0x00B0);
pr_debug_intr("B0 st set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00B0, regval);
regval = MHL_SII_CBUS_RD(0x00B1);
pr_debug_intr("B1 st set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00B1, regval);
regval = MHL_SII_CBUS_RD(0x00B2);
pr_debug_intr("B2 st set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00B2, regval);
regval = MHL_SII_CBUS_RD(0x00B3);
pr_debug_intr("B3 st set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00B3, regval);
regval = MHL_SII_CBUS_RD(0x00E0);
pr_debug_intr("E0 st set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00E0, regval);
regval = MHL_SII_CBUS_RD(0x00E1);
pr_debug_intr("E1 st set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00E1, regval);
regval = MHL_SII_CBUS_RD(0x00E2);
pr_debug_intr("E2 st set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00E2, regval);
regval = MHL_SII_CBUS_RD(0x00E3);
pr_debug_intr("E3 st set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00E3, regval);
regval = MHL_SII_CBUS_RD(0x00F0);
pr_debug_intr("F0 int set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00F0, regval);
regval = MHL_SII_CBUS_RD(0x00F1);
pr_debug_intr("F1 int set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00F1, regval);
regval = MHL_SII_CBUS_RD(0x00F2);
pr_debug_intr("F2 int set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00F2, regval);
regval = MHL_SII_CBUS_RD(0x00F3);
pr_debug_intr("F3 int set = %02X\n", (int)regval);
MHL_SII_CBUS_WR(0x00F3, regval);
pr_debug_intr("********* end of exiting in isr *************\n");
}
static irqreturn_t mhl_tx_isr(int irq, void *data)
{
struct mhl_tx_ctrl *mhl_ctrl = (struct mhl_tx_ctrl *)data;
pr_debug("%s: Getting Interrupts\n", __func__);
/*
* Check RGND, MHL_EST, CBUS_LOCKOUT, SCDT
* interrupts. In D3, we get only RGND
*/
dev_detect_isr(mhl_ctrl);
pr_debug("%s: cur pwr state is [0x%x]\n",
__func__, mhl_ctrl->cur_state);
if (mhl_ctrl->cur_state == POWER_STATE_D0_MHL) {
/*
* If dev_detect_isr() didn't move the tx to D3
* on disconnect, continue to check other
* interrupt sources.
*/
mhl_misc_isr(mhl_ctrl);
/*
* Check for any peer messages for DCAP_CHG, MSC etc
* Dispatch to have the CBUS module working only
* once connected.
*/
mhl_cbus_isr(mhl_ctrl);
mhl_hpd_stat_isr(mhl_ctrl);
}
clear_all_intrs(mhl_ctrl->i2c_handle);
return IRQ_HANDLED;
}
static int mhl_tx_chip_init(struct mhl_tx_ctrl *mhl_ctrl)
{
uint8_t chip_rev_id = 0x00;
struct i2c_client *client = mhl_ctrl->i2c_handle;
/* Reset the TX chip */
mhl_sii_reset_pin(mhl_ctrl, 0);
msleep(20);
mhl_sii_reset_pin(mhl_ctrl, 1);
/* TX PR-guide requires a 100 ms wait here */
msleep(100);
/* Read the chip rev ID */
chip_rev_id = MHL_SII_PAGE0_RD(0x04);
pr_debug("MHL: chip rev ID read=[%x]\n", chip_rev_id);
mhl_ctrl->chip_rev_id = chip_rev_id;
/*
* Need to disable MHL discovery if
* MHL-USB handshake is implemented
*/
mhl_init_reg_settings(mhl_ctrl, true);
switch_mode(mhl_ctrl, POWER_STATE_D3);
return 0;
}
static int mhl_sii_reg_config(struct i2c_client *client, bool enable)
{
static struct regulator *reg_8941_l24;
static struct regulator *reg_8941_l02;
static struct regulator *reg_8941_smps3a;
static struct regulator *reg_8941_vdda;
int rc;
pr_debug("%s\n", __func__);
if (!reg_8941_l24) {
reg_8941_l24 = regulator_get(&client->dev,
"avcc_18");
if (IS_ERR(reg_8941_l24)) {
pr_err("could not get 8941 l24, rc = %ld\n",
PTR_ERR(reg_8941_l24));
return -ENODEV;
}
if (enable)
rc = regulator_enable(reg_8941_l24);
else
rc = regulator_disable(reg_8941_l24);
if (rc) {
pr_err("'%s' regulator config[%u] failed, rc=%d\n",
"avcc_1.8V", enable, rc);
goto l24_fail;
} else {
pr_debug("%s: vreg L24 %s\n",
__func__, (enable ? "enabled" : "disabled"));
}
}
if (!reg_8941_l02) {
reg_8941_l02 = regulator_get(&client->dev,
"avcc_12");
if (IS_ERR(reg_8941_l02)) {
pr_err("could not get reg_8941_l02, rc = %ld\n",
PTR_ERR(reg_8941_l02));
goto l24_fail;
}
if (enable)
rc = regulator_enable(reg_8941_l02);
else
rc = regulator_disable(reg_8941_l02);
if (rc) {
pr_debug("'%s' regulator configure[%u] failed, rc=%d\n",
"avcc_1.2V", enable, rc);
goto l02_fail;
} else {
pr_debug("%s: vreg L02 %s\n",
__func__, (enable ? "enabled" : "disabled"));
}
}
if (!reg_8941_smps3a) {
reg_8941_smps3a = regulator_get(&client->dev,
"smps3a");
if (IS_ERR(reg_8941_smps3a)) {
pr_err("could not get vreg smps3a, rc = %ld\n",
PTR_ERR(reg_8941_smps3a));
goto l02_fail;
}
if (enable)
rc = regulator_enable(reg_8941_smps3a);
else
rc = regulator_disable(reg_8941_smps3a);
if (rc) {
pr_err("'%s' regulator config[%u] failed, rc=%d\n",
"SMPS3A", enable, rc);
goto smps3a_fail;
} else {
pr_debug("%s: vreg SMPS3A %s\n",
__func__, (enable ? "enabled" : "disabled"));
}
}
if (!reg_8941_vdda) {
reg_8941_vdda = regulator_get(&client->dev,
"vdda");
if (IS_ERR(reg_8941_vdda)) {
pr_err("could not get vreg vdda, rc = %ld\n",
PTR_ERR(reg_8941_vdda));
goto smps3a_fail;
}
if (enable)
rc = regulator_enable(reg_8941_vdda);
else
rc = regulator_disable(reg_8941_vdda);
if (rc) {
pr_err("'%s' regulator config[%u] failed, rc=%d\n",
"VDDA", enable, rc);
goto vdda_fail;
} else {
pr_debug("%s: vreg VDDA %s\n",
__func__, (enable ? "enabled" : "disabled"));
}
}
return rc;
vdda_fail:
regulator_disable(reg_8941_vdda);
regulator_put(reg_8941_vdda);
smps3a_fail:
regulator_disable(reg_8941_smps3a);
regulator_put(reg_8941_smps3a);
l02_fail:
regulator_disable(reg_8941_l02);
regulator_put(reg_8941_l02);
l24_fail:
regulator_disable(reg_8941_l24);
regulator_put(reg_8941_l24);
return -EINVAL;
}
static int mhl_vreg_config(struct mhl_tx_ctrl *mhl_ctrl, uint8_t on)
{
int ret;
struct i2c_client *client = mhl_ctrl->i2c_handle;
int pwr_gpio = mhl_ctrl->pdata->gpios[MHL_TX_PMIC_PWR_GPIO]->gpio;
pr_debug("%s\n", __func__);
if (on) {
ret = gpio_request(pwr_gpio,
mhl_ctrl->pdata->gpios[MHL_TX_PMIC_PWR_GPIO]->gpio_name);
if (ret < 0) {
pr_err("%s: mhl pwr gpio req failed: %d\n",
__func__, ret);
return ret;
}
ret = gpio_direction_output(pwr_gpio, 1);
if (ret < 0) {
pr_err("%s: set gpio MHL_PWR_EN dircn failed: %d\n",
__func__, ret);
goto vreg_config_failed;
}
ret = mhl_sii_reg_config(client, true);
if (ret) {
pr_err("%s: regulator enable failed\n", __func__);
goto vreg_config_failed;
}
pr_debug("%s: mhl sii power on successful\n", __func__);
} else {
pr_warn("%s: turning off pwr controls\n", __func__);
mhl_sii_reg_config(client, false);
gpio_free(pwr_gpio);
}
pr_debug("%s: successful\n", __func__);
return 0;
vreg_config_failed:
gpio_free(pwr_gpio);
return -EINVAL;
}
/*
* Request for GPIO allocations
* Set appropriate GPIO directions
*/
static int mhl_gpio_config(struct mhl_tx_ctrl *mhl_ctrl, int on)
{
int ret;
struct dss_gpio *temp_reset_gpio, *temp_intr_gpio;
/* caused too many line spills */
temp_reset_gpio = mhl_ctrl->pdata->gpios[MHL_TX_RESET_GPIO];
temp_intr_gpio = mhl_ctrl->pdata->gpios[MHL_TX_INTR_GPIO];
if (on) {
if (gpio_is_valid(temp_reset_gpio->gpio)) {
ret = gpio_request(temp_reset_gpio->gpio,
temp_reset_gpio->gpio_name);
if (ret < 0) {
pr_err("%s:rst_gpio=[%d] req failed:%d\n",
__func__, temp_reset_gpio->gpio, ret);
return -EBUSY;
}
ret = gpio_direction_output(temp_reset_gpio->gpio, 0);
if (ret < 0) {
pr_err("%s: set dirn rst failed: %d\n",
__func__, ret);
return -EBUSY;
}
}
if (gpio_is_valid(temp_intr_gpio->gpio)) {
ret = gpio_request(temp_intr_gpio->gpio,
temp_intr_gpio->gpio_name);
if (ret < 0) {
pr_err("%s: intr_gpio req failed: %d\n",
__func__, ret);
return -EBUSY;
}
ret = gpio_direction_input(temp_intr_gpio->gpio);
if (ret < 0) {
pr_err("%s: set dirn intr failed: %d\n",
__func__, ret);
return -EBUSY;
}
mhl_ctrl->i2c_handle->irq = gpio_to_irq(
temp_intr_gpio->gpio);
pr_debug("%s: gpio_to_irq=%d\n",
__func__, mhl_ctrl->i2c_handle->irq);
}
} else {
pr_warn("%s: freeing gpios\n", __func__);
gpio_free(temp_intr_gpio->gpio);
gpio_free(temp_reset_gpio->gpio);
}
pr_debug("%s: successful\n", __func__);
return 0;
}
static int mhl_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int rc = 0;
struct mhl_tx_platform_data *pdata = NULL;
struct mhl_tx_ctrl *mhl_ctrl;
struct usb_ext_notification *mhl_info = NULL;
struct msm_hdmi_mhl_ops *hdmi_mhl_ops = NULL;
mhl_ctrl = devm_kzalloc(&client->dev, sizeof(*mhl_ctrl), GFP_KERNEL);
if (!mhl_ctrl) {
pr_err("%s: FAILED: cannot alloc hdmi tx ctrl\n", __func__);
rc = -ENOMEM;
goto failed_no_mem;
}
if (client->dev.of_node) {
pdata = devm_kzalloc(&client->dev,
sizeof(struct mhl_tx_platform_data), GFP_KERNEL);
if (!pdata) {
dev_err(&client->dev, "Failed to allocate memory\n");
rc = -ENOMEM;
goto failed_no_mem;
}
rc = mhl_tx_get_dt_data(&client->dev, pdata);
if (rc) {
pr_err("%s: FAILED: parsing device tree data; rc=%d\n",
__func__, rc);
goto failed_dt_data;
}
mhl_ctrl->i2c_handle = client;
mhl_ctrl->pdata = pdata;
i2c_set_clientdata(client, mhl_ctrl);
}
/*
* Regulator init
*/
rc = mhl_vreg_config(mhl_ctrl, 1);
if (rc) {
pr_err("%s: vreg init failed [%d]\n",
__func__, rc);
goto failed_probe;
}
/*
* GPIO init
*/
rc = mhl_gpio_config(mhl_ctrl, 1);
if (rc) {
pr_err("%s: gpio init failed [%d]\n",
__func__, rc);
goto failed_probe;
}
/*
* Other initializations
* such tx specific
*/
mhl_ctrl->disc_enabled = false;
INIT_WORK(&mhl_ctrl->mhl_msc_send_work, mhl_msc_send_work);
mhl_ctrl->cur_state = POWER_STATE_D0_MHL;
INIT_LIST_HEAD(&mhl_ctrl->list_cmd);
init_completion(&mhl_ctrl->msc_cmd_done);
mhl_ctrl->msc_send_workqueue = create_singlethread_workqueue
("mhl_msc_cmd_queue");
mhl_ctrl->input = input_allocate_device();
if (mhl_ctrl->input) {
int i;
struct input_dev *input = mhl_ctrl->input;
mhl_ctrl->rcp_key_code_tbl = vmalloc(
sizeof(support_rcp_key_code_tbl));
if (!mhl_ctrl->rcp_key_code_tbl) {
pr_err("%s: no alloc mem for rcp keycode tbl\n",
__func__);
return -ENOMEM;
}
mhl_ctrl->rcp_key_code_tbl_len = sizeof(
support_rcp_key_code_tbl);
memcpy(mhl_ctrl->rcp_key_code_tbl,
&support_rcp_key_code_tbl[0],
mhl_ctrl->rcp_key_code_tbl_len);
input->phys = "cbus/input0";
input->id.bustype = BUS_VIRTUAL;
input->id.vendor = 0x1095;
input->id.product = 0x8334;
input->id.version = 0xA;
input->name = "mhl-rcp";
input->keycode = support_rcp_key_code_tbl;
input->keycodesize = sizeof(u16);
input->keycodemax = ARRAY_SIZE(support_rcp_key_code_tbl);
input->evbit[0] = EV_KEY;
for (i = 0; i < ARRAY_SIZE(support_rcp_key_code_tbl); i++) {
if (support_rcp_key_code_tbl[i] > 1)
input_set_capability(input, EV_KEY,
support_rcp_key_code_tbl[i]);
}
if (input_register_device(input) < 0) {
pr_warn("%s: failed to register input device\n",
__func__);
input_free_device(input);
mhl_ctrl->input = NULL;
}
}
rc = mhl_tx_chip_init(mhl_ctrl);
if (rc) {
pr_err("%s: tx chip init failed [%d]\n",
__func__, rc);
goto failed_probe;
}
init_completion(&mhl_ctrl->rgnd_done);
pr_debug("%s: IRQ from GPIO INTR = %d\n",
__func__, mhl_ctrl->i2c_handle->irq);
pr_debug("%s: Driver name = [%s]\n", __func__,
client->dev.driver->name);
rc = request_threaded_irq(mhl_ctrl->i2c_handle->irq, NULL,
&mhl_tx_isr,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
client->dev.driver->name, mhl_ctrl);
if (rc) {
pr_err("request_threaded_irq failed, status: %d\n",
rc);
goto failed_probe;
} else {
pr_debug("request_threaded_irq succeeded\n");
}
mhl_ctrl->mhl_psy.name = "ext-vbus";
mhl_ctrl->mhl_psy.type = POWER_SUPPLY_TYPE_USB_DCP;
mhl_ctrl->mhl_psy.supplied_to = mhl_pm_power_supplied_to;
mhl_ctrl->mhl_psy.num_supplicants = ARRAY_SIZE(
mhl_pm_power_supplied_to);
mhl_ctrl->mhl_psy.properties = mhl_pm_power_props;
mhl_ctrl->mhl_psy.num_properties = ARRAY_SIZE(mhl_pm_power_props);
mhl_ctrl->mhl_psy.get_property = mhl_power_get_property;
mhl_ctrl->mhl_psy.set_property = mhl_power_set_property;
rc = power_supply_register(&client->dev, &mhl_ctrl->mhl_psy);
if (rc < 0) {
dev_err(&client->dev, "%s:power_supply_register ext_vbus_psy failed\n",
__func__);
goto failed_probe;
}
hdmi_mhl_ops = devm_kzalloc(&client->dev,
sizeof(struct msm_hdmi_mhl_ops),
GFP_KERNEL);
if (!hdmi_mhl_ops) {
pr_err("%s: alloc hdmi mhl ops failed\n", __func__);
rc = -ENOMEM;
goto failed_probe_pwr;
}
pr_debug("%s: i2c client addr is [%x]\n", __func__, client->addr);
if (mhl_ctrl->pdata->hdmi_pdev) {
rc = msm_hdmi_register_mhl(mhl_ctrl->pdata->hdmi_pdev,
hdmi_mhl_ops);
if (rc) {
pr_err("%s: register with hdmi failed\n", __func__);
rc = -EPROBE_DEFER;
goto failed_probe_pwr;
}
}
if (!hdmi_mhl_ops || !hdmi_mhl_ops->tmds_enabled ||
!hdmi_mhl_ops->set_mhl_max_pclk) {
pr_err("%s: func ptr is NULL\n", __func__);
rc = -EINVAL;
goto failed_probe_pwr;
}
mhl_ctrl->hdmi_mhl_ops = hdmi_mhl_ops;
rc = hdmi_mhl_ops->set_mhl_max_pclk(
mhl_ctrl->pdata->hdmi_pdev, MAX_MHL_PCLK);
if (rc) {
pr_err("%s: can't set max mhl pclk\n", __func__);
goto failed_probe_pwr;
}
mhl_info = devm_kzalloc(&client->dev, sizeof(*mhl_info), GFP_KERNEL);
if (!mhl_info) {
pr_err("%s: alloc mhl info failed\n", __func__);
rc = -ENOMEM;
goto failed_probe_pwr;
}
mhl_info->ctxt = mhl_ctrl;
mhl_info->notify = mhl_sii_device_discovery;
if (msm_register_usb_ext_notification(mhl_info)) {
pr_err("%s: register for usb notifcn failed\n", __func__);
rc = -EPROBE_DEFER;
goto failed_probe_pwr;
}
mhl_ctrl->mhl_info = mhl_info;
mhl_register_msc(mhl_ctrl);
return 0;
failed_probe_pwr:
power_supply_unregister(&mhl_ctrl->mhl_psy);
failed_probe:
free_irq(mhl_ctrl->i2c_handle->irq, mhl_ctrl);
mhl_gpio_config(mhl_ctrl, 0);
mhl_vreg_config(mhl_ctrl, 0);
/* do not deep-free */
if (mhl_info)
devm_kfree(&client->dev, mhl_info);
failed_dt_data:
if (pdata)
devm_kfree(&client->dev, pdata);
failed_no_mem:
if (mhl_ctrl)
devm_kfree(&client->dev, mhl_ctrl);
mhl_info = NULL;
pdata = NULL;
mhl_ctrl = NULL;
pr_err("%s: PROBE FAILED, rc=%d\n", __func__, rc);
return rc;
}
static int mhl_i2c_remove(struct i2c_client *client)
{
struct mhl_tx_ctrl *mhl_ctrl = i2c_get_clientdata(client);
if (!mhl_ctrl) {
pr_warn("%s: i2c get client data failed\n", __func__);
return -EINVAL;
}
free_irq(mhl_ctrl->i2c_handle->irq, mhl_ctrl);
mhl_gpio_config(mhl_ctrl, 0);
mhl_vreg_config(mhl_ctrl, 0);
if (mhl_ctrl->mhl_info)
devm_kfree(&client->dev, mhl_ctrl->mhl_info);
if (mhl_ctrl->pdata)
devm_kfree(&client->dev, mhl_ctrl->pdata);
devm_kfree(&client->dev, mhl_ctrl);
return 0;
}
static struct i2c_device_id mhl_sii_i2c_id[] = {
{ MHL_DRIVER_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, mhl_sii_i2c_id);
static struct of_device_id mhl_match_table[] = {
{.compatible = COMPATIBLE_NAME,},
{ },
};
static struct i2c_driver mhl_sii_i2c_driver = {
.driver = {
.name = MHL_DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = mhl_match_table,
},
.probe = mhl_i2c_probe,
.remove = mhl_i2c_remove,
.id_table = mhl_sii_i2c_id,
};
module_i2c_driver(mhl_sii_i2c_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MHL SII 8334 TX Driver");