blob: c0fefbca56f07338ae61f1b10e84e701f5db3263 [file] [log] [blame]
/* Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/debugfs.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/io.h>
#include <linux/ktime.h>
#include <linux/smp.h>
#include <linux/tick.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/of_platform.h>
#include <linux/cpu_pm.h>
#include <linux/remote_spinlock.h>
#include <asm/uaccess.h>
#include <asm/suspend.h>
#include <asm/cacheflush.h>
#include <asm/outercache.h>
#include <mach/remote_spinlock.h>
#include <mach/scm.h>
#include <mach/msm_bus.h>
#include <mach/jtag.h>
#include "acpuclock.h"
#include "avs.h"
#include "idle.h"
#include "pm.h"
#include "scm-boot.h"
#include "spm.h"
#include "pm-boot.h"
#include "clock.h"
#define CREATE_TRACE_POINTS
#include <mach/trace_msm_low_power.h>
#define SCM_CMD_TERMINATE_PC (0x2)
#define SCM_CMD_CORE_HOTPLUGGED (0x10)
#define GET_CPU_OF_ATTR(attr) \
(container_of(attr, struct msm_pm_kobj_attribute, ka)->cpu)
#define SCLK_HZ (32768)
#define MAX_BUF_SIZE 512
static int msm_pm_debug_mask __refdata = 1;
module_param_named(
debug_mask, msm_pm_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP
);
static bool use_acpuclk_apis;
enum {
MSM_PM_DEBUG_SUSPEND = BIT(0),
MSM_PM_DEBUG_POWER_COLLAPSE = BIT(1),
MSM_PM_DEBUG_SUSPEND_LIMITS = BIT(2),
MSM_PM_DEBUG_CLOCK = BIT(3),
MSM_PM_DEBUG_RESET_VECTOR = BIT(4),
MSM_PM_DEBUG_IDLE_CLK = BIT(5),
MSM_PM_DEBUG_IDLE = BIT(6),
MSM_PM_DEBUG_IDLE_LIMITS = BIT(7),
MSM_PM_DEBUG_HOTPLUG = BIT(8),
};
enum msm_pc_count_offsets {
MSM_PC_ENTRY_COUNTER,
MSM_PC_EXIT_COUNTER,
MSM_PC_FALLTHRU_COUNTER,
MSM_PC_NUM_COUNTERS,
};
enum {
MSM_PM_MODE_ATTR_SUSPEND,
MSM_PM_MODE_ATTR_IDLE,
MSM_PM_MODE_ATTR_NR,
};
static char *msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_NR] = {
[MSM_PM_MODE_ATTR_SUSPEND] = "suspend_enabled",
[MSM_PM_MODE_ATTR_IDLE] = "idle_enabled",
};
struct msm_pm_kobj_attribute {
unsigned int cpu;
struct kobj_attribute ka;
};
struct msm_pm_sysfs_sleep_mode {
struct kobject *kobj;
struct attribute_group attr_group;
struct attribute *attrs[MSM_PM_MODE_ATTR_NR + 1];
struct msm_pm_kobj_attribute kas[MSM_PM_MODE_ATTR_NR];
};
static char *msm_pm_sleep_mode_labels[MSM_PM_SLEEP_MODE_NR] = {
[MSM_PM_SLEEP_MODE_POWER_COLLAPSE] = "power_collapse",
[MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT] = "wfi",
[MSM_PM_SLEEP_MODE_RETENTION] = "retention",
[MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE] =
"standalone_power_collapse",
};
static bool msm_pm_ldo_retention_enabled __refdata = true;
static bool msm_no_ramp_down_pc;
static struct msm_pm_sleep_status_data *msm_pm_slp_sts;
DEFINE_PER_CPU(struct clk *, cpu_clks);
static struct clk *l2_clk;
static int cpu_count;
static __refdata DEFINE_SPINLOCK(cpu_cnt_lock);
#define SCM_HANDOFF_LOCK_ID "S:7"
static bool need_scm_handoff_lock;
static remote_spinlock_t scm_handoff_lock;
static void (*msm_pm_disable_l2_fn)(void);
static void (*msm_pm_enable_l2_fn)(void);
static void (*msm_pm_flush_l2_fn)(void);
static void __iomem *msm_pc_debug_counters;
/*
* Default the l2 flush flag to OFF so the caches are flushed during power
* collapse unless the explicitly voted by lpm driver.
*/
static enum msm_pm_l2_scm_flag msm_pm_flush_l2_flag __refdata = MSM_SCM_L2_OFF;
void msm_pm_set_l2_flush_flag(enum msm_pm_l2_scm_flag flag)
{
msm_pm_flush_l2_flag = flag;
}
EXPORT_SYMBOL(msm_pm_set_l2_flush_flag);
static enum msm_pm_l2_scm_flag msm_pm_get_l2_flush_flag(void)
{
return msm_pm_flush_l2_flag;
}
static cpumask_t retention_cpus;
static __refdata DEFINE_SPINLOCK(retention_lock);
static int msm_pm_get_pc_mode(struct device_node *node,
const char *key, uint32_t *pc_mode_val)
{
struct pc_mode_of {
uint32_t mode;
char *mode_name;
};
int i;
struct pc_mode_of pc_modes[] = {
{MSM_PM_PC_TZ_L2_INT, "tz_l2_int"},
{MSM_PM_PC_NOTZ_L2_EXT, "no_tz_l2_ext"},
{MSM_PM_PC_TZ_L2_EXT , "tz_l2_ext"} };
int ret;
const char *pc_mode_str;
*pc_mode_val = MSM_PM_PC_TZ_L2_INT;
ret = of_property_read_string(node, key, &pc_mode_str);
if (!ret) {
ret = -EINVAL;
for (i = 0; i < ARRAY_SIZE(pc_modes); i++) {
if (!strncmp(pc_mode_str, pc_modes[i].mode_name,
strlen(pc_modes[i].mode_name))) {
*pc_mode_val = pc_modes[i].mode;
ret = 0;
break;
}
}
} else {
pr_debug("%s: Cannot read %s,defaulting to 0", __func__, key);
ret = 0;
}
return ret;
}
/*
* Write out the attribute.
*/
static ssize_t msm_pm_mode_attr_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
int ret = -EINVAL;
int i;
for (i = 0; i < MSM_PM_SLEEP_MODE_NR; i++) {
struct kernel_param kp;
unsigned int cpu;
struct msm_pm_platform_data *mode;
if (msm_pm_sleep_mode_labels[i] == NULL)
continue;
if (strcmp(kobj->name, msm_pm_sleep_mode_labels[i]))
continue;
cpu = GET_CPU_OF_ATTR(attr);
mode = &msm_pm_sleep_modes[MSM_PM_MODE(cpu, i)];
if (!strcmp(attr->attr.name,
msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_SUSPEND])) {
u32 arg = mode->suspend_enabled;
kp.arg = &arg;
ret = param_get_ulong(buf, &kp);
} else if (!strcmp(attr->attr.name,
msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_IDLE])) {
u32 arg = mode->idle_enabled;
kp.arg = &arg;
ret = param_get_ulong(buf, &kp);
}
break;
}
if (ret > 0) {
strlcat(buf, "\n", PAGE_SIZE);
ret++;
}
return ret;
}
static ssize_t msm_pm_mode_attr_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = -EINVAL;
int i;
for (i = 0; i < MSM_PM_SLEEP_MODE_NR; i++) {
struct kernel_param kp;
unsigned int cpu;
struct msm_pm_platform_data *mode;
if (msm_pm_sleep_mode_labels[i] == NULL)
continue;
if (strcmp(kobj->name, msm_pm_sleep_mode_labels[i]))
continue;
cpu = GET_CPU_OF_ATTR(attr);
mode = &msm_pm_sleep_modes[MSM_PM_MODE(cpu, i)];
if (!strcmp(attr->attr.name,
msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_SUSPEND])) {
kp.arg = &mode->suspend_enabled;
ret = param_set_byte(buf, &kp);
} else if (!strcmp(attr->attr.name,
msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_IDLE])) {
kp.arg = &mode->idle_enabled;
ret = param_set_byte(buf, &kp);
}
break;
}
return ret ? ret : count;
}
static int msm_pm_mode_sysfs_add_cpu(
unsigned int cpu, struct kobject *modes_kobj)
{
char cpu_name[8];
struct kobject *cpu_kobj;
struct msm_pm_sysfs_sleep_mode *mode = NULL;
int i, j, k;
int ret;
snprintf(cpu_name, sizeof(cpu_name), "cpu%u", cpu);
cpu_kobj = kobject_create_and_add(cpu_name, modes_kobj);
if (!cpu_kobj) {
pr_err("%s: cannot create %s kobject\n", __func__, cpu_name);
ret = -ENOMEM;
goto mode_sysfs_add_cpu_exit;
}
for (i = 0; i < MSM_PM_SLEEP_MODE_NR; i++) {
int idx = MSM_PM_MODE(cpu, i);
if ((!msm_pm_sleep_modes[idx].suspend_supported)
&& (!msm_pm_sleep_modes[idx].idle_supported))
continue;
if (!msm_pm_sleep_mode_labels[i] ||
!msm_pm_sleep_mode_labels[i][0])
continue;
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode) {
pr_err("%s: cannot allocate memory for attributes\n",
__func__);
ret = -ENOMEM;
goto mode_sysfs_add_cpu_exit;
}
mode->kobj = kobject_create_and_add(
msm_pm_sleep_mode_labels[i], cpu_kobj);
if (!mode->kobj) {
pr_err("%s: cannot create kobject\n", __func__);
ret = -ENOMEM;
goto mode_sysfs_add_cpu_exit;
}
for (k = 0, j = 0; k < MSM_PM_MODE_ATTR_NR; k++) {
if ((k == MSM_PM_MODE_ATTR_IDLE) &&
!msm_pm_sleep_modes[idx].idle_supported)
continue;
if ((k == MSM_PM_MODE_ATTR_SUSPEND) &&
!msm_pm_sleep_modes[idx].suspend_supported)
continue;
sysfs_attr_init(&mode->kas[j].ka.attr);
mode->kas[j].cpu = cpu;
mode->kas[j].ka.attr.mode = 0644;
mode->kas[j].ka.show = msm_pm_mode_attr_show;
mode->kas[j].ka.store = msm_pm_mode_attr_store;
mode->kas[j].ka.attr.name = msm_pm_mode_attr_labels[k];
mode->attrs[j] = &mode->kas[j].ka.attr;
j++;
}
mode->attrs[j] = NULL;
mode->attr_group.attrs = mode->attrs;
ret = sysfs_create_group(mode->kobj, &mode->attr_group);
if (ret) {
pr_err("%s: cannot create kobject attribute group\n",
__func__);
goto mode_sysfs_add_cpu_exit;
}
}
ret = 0;
mode_sysfs_add_cpu_exit:
if (ret) {
if (mode && mode->kobj)
kobject_del(mode->kobj);
kfree(mode);
}
return ret;
}
int msm_pm_mode_sysfs_add(void)
{
struct kobject *module_kobj;
struct kobject *modes_kobj;
unsigned int cpu;
int ret;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("%s: cannot find kobject for module %s\n",
__func__, KBUILD_MODNAME);
ret = -ENOENT;
goto mode_sysfs_add_exit;
}
modes_kobj = kobject_create_and_add("modes", module_kobj);
if (!modes_kobj) {
pr_err("%s: cannot create modes kobject\n", __func__);
ret = -ENOMEM;
goto mode_sysfs_add_exit;
}
for_each_possible_cpu(cpu) {
ret = msm_pm_mode_sysfs_add_cpu(cpu, modes_kobj);
if (ret)
goto mode_sysfs_add_exit;
}
ret = 0;
mode_sysfs_add_exit:
return ret;
}
static inline void msm_arch_idle(void)
{
mb();
wfi();
}
static bool msm_pm_is_L1_writeback(void)
{
u32 sel = 0, cache_id;
asm volatile ("mcr p15, 2, %[ccselr], c0, c0, 0\n\t"
"isb\n\t"
"mrc p15, 1, %[ccsidr], c0, c0, 0\n\t"
:[ccsidr]"=r" (cache_id)
:[ccselr]"r" (sel)
);
return cache_id & BIT(31);
}
static enum msm_pm_time_stats_id msm_pm_swfi(bool from_idle)
{
msm_arch_idle();
return MSM_PM_STAT_IDLE_WFI;
}
static enum msm_pm_time_stats_id msm_pm_retention(bool from_idle)
{
int ret = 0;
int cpu = smp_processor_id();
int saved_rate = 0;
struct clk *cpu_clk = per_cpu(cpu_clks, cpu);
spin_lock(&retention_lock);
if (!msm_pm_ldo_retention_enabled)
goto bailout;
cpumask_set_cpu(cpu, &retention_cpus);
spin_unlock(&retention_lock);
if (use_acpuclk_apis)
saved_rate = acpuclk_power_collapse();
else
clk_disable(cpu_clk);
ret = msm_spm_set_low_power_mode(MSM_SPM_MODE_POWER_RETENTION, false);
WARN_ON(ret);
msm_arch_idle();
if (use_acpuclk_apis) {
if (acpuclk_set_rate(cpu, saved_rate, SETRATE_PC))
pr_err("%s(): Error setting acpuclk_set_rate\n",
__func__);
} else {
if (clk_enable(cpu_clk))
pr_err("%s(): Error restoring cpu clk\n", __func__);
}
spin_lock(&retention_lock);
cpumask_clear_cpu(cpu, &retention_cpus);
bailout:
spin_unlock(&retention_lock);
ret = msm_spm_set_low_power_mode(MSM_SPM_MODE_CLOCK_GATING, false);
WARN_ON(ret);
return MSM_PM_STAT_RETENTION;
}
static inline void msm_pc_inc_debug_count(uint32_t cpu,
enum msm_pc_count_offsets offset)
{
uint32_t cnt;
if (!msm_pc_debug_counters)
return;
cnt = readl_relaxed(msm_pc_debug_counters + cpu * 4 * MSM_PC_NUM_COUNTERS + offset * 4);
writel_relaxed(++cnt, msm_pc_debug_counters + cpu * 4 * MSM_PC_NUM_COUNTERS + offset * 4);
mb();
}
static bool msm_pm_pc_hotplug(void)
{
uint32_t cpu = smp_processor_id();
if (msm_pm_is_L1_writeback())
flush_cache_louis();
msm_pc_inc_debug_count(cpu, MSM_PC_ENTRY_COUNTER);
scm_call_atomic1(SCM_SVC_BOOT, SCM_CMD_TERMINATE_PC,
SCM_CMD_CORE_HOTPLUGGED);
/* Should not return here */
msm_pc_inc_debug_count(cpu, MSM_PC_FALLTHRU_COUNTER);
return 0;
}
static int msm_pm_collapse(unsigned long unused)
{
uint32_t cpu = smp_processor_id();
enum msm_pm_l2_scm_flag flag = MSM_SCM_L2_ON;
spin_lock(&cpu_cnt_lock);
cpu_count++;
if (cpu_count == num_online_cpus())
flag = msm_pm_get_l2_flush_flag();
pr_debug("cpu:%d cores_in_pc:%d L2 flag: %d\n",
cpu, cpu_count, flag);
/*
* The scm_handoff_lock will be release by the secure monitor.
* It is used to serialize power-collapses from this point on,
* so that both Linux and the secure context have a consistent
* view regarding the number of running cpus (cpu_count).
*
* It must be acquired before releasing cpu_cnt_lock.
*/
if (need_scm_handoff_lock)
remote_spin_lock_rlock_id(&scm_handoff_lock,
REMOTE_SPINLOCK_TID_START + cpu);
spin_unlock(&cpu_cnt_lock);
if (flag == MSM_SCM_L2_OFF) {
flush_cache_all();
if (msm_pm_flush_l2_fn)
msm_pm_flush_l2_fn();
} else if (msm_pm_is_L1_writeback())
flush_cache_louis();
if (msm_pm_disable_l2_fn)
msm_pm_disable_l2_fn();
msm_pc_inc_debug_count(cpu, MSM_PC_ENTRY_COUNTER);
scm_call_atomic1(SCM_SVC_BOOT, SCM_CMD_TERMINATE_PC, flag);
msm_pc_inc_debug_count(cpu, MSM_PC_FALLTHRU_COUNTER);
if (msm_pm_enable_l2_fn)
msm_pm_enable_l2_fn();
return 0;
}
static bool __ref msm_pm_spm_power_collapse(
unsigned int cpu, bool from_idle, bool notify_rpm)
{
void *entry;
bool collapsed = 0;
int ret;
bool save_cpu_regs = !cpu || from_idle;
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: notify_rpm %d\n",
cpu, __func__, (int) notify_rpm);
if (from_idle)
cpu_pm_enter();
ret = msm_spm_set_low_power_mode(
MSM_SPM_MODE_POWER_COLLAPSE, notify_rpm);
WARN_ON(ret);
entry = save_cpu_regs ? cpu_resume : msm_secondary_startup;
msm_pm_boot_config_before_pc(cpu, virt_to_phys(entry));
if (MSM_PM_DEBUG_RESET_VECTOR & msm_pm_debug_mask)
pr_info("CPU%u: %s: program vector to %p\n",
cpu, __func__, entry);
msm_jtag_save_state();
collapsed = save_cpu_regs ?
!cpu_suspend(0, msm_pm_collapse) : msm_pm_pc_hotplug();
if (save_cpu_regs) {
spin_lock(&cpu_cnt_lock);
cpu_count--;
BUG_ON(cpu_count > num_online_cpus());
spin_unlock(&cpu_cnt_lock);
}
msm_jtag_restore_state();
if (collapsed) {
cpu_init();
local_fiq_enable();
}
msm_pm_boot_config_after_pc(cpu);
if (from_idle)
cpu_pm_exit();
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: msm_pm_collapse returned, collapsed %d\n",
cpu, __func__, collapsed);
ret = msm_spm_set_low_power_mode(MSM_SPM_MODE_CLOCK_GATING, false);
WARN_ON(ret);
return collapsed;
}
static enum msm_pm_time_stats_id msm_pm_power_collapse_standalone(
bool from_idle)
{
unsigned int cpu = smp_processor_id();
unsigned int avsdscr;
unsigned int avscsr;
bool collapsed;
avsdscr = avs_get_avsdscr();
avscsr = avs_get_avscsr();
avs_set_avscsr(0); /* Disable AVS */
collapsed = msm_pm_spm_power_collapse(cpu, from_idle, false);
avs_set_avsdscr(avsdscr);
avs_set_avscsr(avscsr);
return collapsed ? MSM_PM_STAT_IDLE_STANDALONE_POWER_COLLAPSE :
MSM_PM_STAT_IDLE_FAILED_STANDALONE_POWER_COLLAPSE;
}
static int ramp_down_last_cpu(int cpu)
{
struct clk *cpu_clk = per_cpu(cpu_clks, cpu);
int ret = 0;
if (use_acpuclk_apis) {
ret = acpuclk_power_collapse();
if (MSM_PM_DEBUG_CLOCK & msm_pm_debug_mask)
pr_info("CPU%u: %s: change clk rate(old rate = %d)\n",
cpu, __func__, ret);
} else {
clk_disable(cpu_clk);
clk_disable(l2_clk);
}
return ret;
}
static int ramp_up_first_cpu(int cpu, int saved_rate)
{
struct clk *cpu_clk = per_cpu(cpu_clks, cpu);
int rc = 0;
if (MSM_PM_DEBUG_CLOCK & msm_pm_debug_mask)
pr_info("CPU%u: %s: restore clock rate\n",
cpu, __func__);
if (use_acpuclk_apis) {
rc = acpuclk_set_rate(cpu, saved_rate, SETRATE_PC);
if (rc)
pr_err("CPU:%u: Error restoring cpu clk\n", cpu);
} else {
if (l2_clk) {
rc = clk_enable(l2_clk);
if (rc)
pr_err("%s(): Error restoring l2 clk\n",
__func__);
}
if (cpu_clk) {
int ret = clk_enable(cpu_clk);
if (ret) {
pr_err("%s(): Error restoring cpu clk\n",
__func__);
return ret;
}
}
}
return rc;
}
static enum msm_pm_time_stats_id msm_pm_power_collapse(bool from_idle)
{
unsigned int cpu = smp_processor_id();
unsigned long saved_acpuclk_rate = 0;
unsigned int avsdscr;
unsigned int avscsr;
bool collapsed;
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: idle %d\n",
cpu, __func__, (int)from_idle);
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: pre power down\n", cpu, __func__);
/* This spews a lot of messages when a core is hotplugged. This
* information is most useful from last core going down during
* power collapse
*/
if ((!from_idle && cpu_online(cpu))
|| (MSM_PM_DEBUG_IDLE_CLK & msm_pm_debug_mask))
clock_debug_print_enabled();
avsdscr = avs_get_avsdscr();
avscsr = avs_get_avscsr();
avs_set_avscsr(0); /* Disable AVS */
if (cpu_online(cpu) && !msm_no_ramp_down_pc)
saved_acpuclk_rate = ramp_down_last_cpu(cpu);
collapsed = msm_pm_spm_power_collapse(cpu, from_idle, true);
if (cpu_online(cpu) && !msm_no_ramp_down_pc)
ramp_up_first_cpu(cpu, saved_acpuclk_rate);
avs_set_avsdscr(avsdscr);
avs_set_avscsr(avscsr);
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: post power up\n", cpu, __func__);
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: return\n", cpu, __func__);
return collapsed ? MSM_PM_STAT_IDLE_POWER_COLLAPSE :
MSM_PM_STAT_IDLE_FAILED_POWER_COLLAPSE;
}
/******************************************************************************
* External Idle/Suspend Functions
*****************************************************************************/
void arch_idle(void)
{
return;
}
static inline void msm_pm_ftrace_lpm_enter(unsigned int cpu,
uint32_t latency, uint32_t sleep_us,
uint32_t wake_up,
enum msm_pm_sleep_mode mode)
{
switch (mode) {
case MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT:
trace_msm_pm_enter_wfi(cpu, latency, sleep_us, wake_up);
break;
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE:
trace_msm_pm_enter_spc(cpu, latency, sleep_us, wake_up);
break;
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE:
trace_msm_pm_enter_pc(cpu, latency, sleep_us, wake_up);
break;
case MSM_PM_SLEEP_MODE_RETENTION:
trace_msm_pm_enter_ret(cpu, latency, sleep_us, wake_up);
break;
default:
break;
}
}
static inline void msm_pm_ftrace_lpm_exit(unsigned int cpu,
enum msm_pm_sleep_mode mode,
bool success)
{
switch (mode) {
case MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT:
trace_msm_pm_exit_wfi(cpu, success);
break;
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE:
trace_msm_pm_exit_spc(cpu, success);
break;
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE:
trace_msm_pm_exit_pc(cpu, success);
break;
case MSM_PM_SLEEP_MODE_RETENTION:
trace_msm_pm_exit_ret(cpu, success);
break;
default:
break;
}
}
static enum msm_pm_time_stats_id (*execute[MSM_PM_SLEEP_MODE_NR])(bool idle) = {
[MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT] = msm_pm_swfi,
[MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE] =
msm_pm_power_collapse_standalone,
[MSM_PM_SLEEP_MODE_RETENTION] = msm_pm_retention,
[MSM_PM_SLEEP_MODE_POWER_COLLAPSE] = msm_pm_power_collapse,
};
bool msm_cpu_pm_check_mode(unsigned int cpu, enum msm_pm_sleep_mode mode,
bool from_idle)
{
int idx = MSM_PM_MODE(cpu, mode);
struct msm_pm_platform_data *d = &msm_pm_sleep_modes[idx];
if ((mode == MSM_PM_SLEEP_MODE_RETENTION)
&& !msm_pm_ldo_retention_enabled)
return false;
if (from_idle)
return d->idle_enabled && d->idle_supported;
else
return d->suspend_enabled && d->suspend_supported;
}
int msm_cpu_pm_enter_sleep(enum msm_pm_sleep_mode mode, bool from_idle)
{
int64_t time;
bool collapsed = 1;
int exit_stat = -1;
if (MSM_PM_DEBUG_IDLE & msm_pm_debug_mask)
pr_info("CPU%u: %s: mode %d\n",
smp_processor_id(), __func__, mode);
if (!from_idle)
pr_info("CPU%u: %s mode:%d\n",
smp_processor_id(), __func__, mode);
if (from_idle)
time = sched_clock();
if (execute[mode])
exit_stat = execute[mode](from_idle);
if (from_idle) {
time = sched_clock() - time;
msm_pm_ftrace_lpm_exit(smp_processor_id(), mode, collapsed);
if (exit_stat >= 0)
msm_pm_add_stat(exit_stat, time);
}
return collapsed;
}
int msm_pm_wait_cpu_shutdown(unsigned int cpu)
{
int timeout = 10;
if (!msm_pm_slp_sts)
return 0;
if (!msm_pm_slp_sts[cpu].base_addr)
return 0;
while (1) {
/*
* Check for the SPM of the core being hotplugged to set
* its sleep state.The SPM sleep state indicates that the
* core has been power collapsed.
*/
int acc_sts = __raw_readl(msm_pm_slp_sts[cpu].base_addr);
if (acc_sts & msm_pm_slp_sts[cpu].mask)
return 0;
udelay(100);
WARN(++timeout == 20, "CPU%u didn't collapse in 2 ms\n", cpu);
}
return -EBUSY;
}
void msm_pm_cpu_enter_lowpower(unsigned int cpu)
{
int i;
bool allow[MSM_PM_SLEEP_MODE_NR];
for (i = 0; i < MSM_PM_SLEEP_MODE_NR; i++) {
struct msm_pm_platform_data *mode;
mode = &msm_pm_sleep_modes[MSM_PM_MODE(cpu, i)];
allow[i] = mode->suspend_supported && mode->suspend_enabled;
}
if (MSM_PM_DEBUG_HOTPLUG & msm_pm_debug_mask)
pr_notice("CPU%u: %s: shutting down cpu\n", cpu, __func__);
if (allow[MSM_PM_SLEEP_MODE_POWER_COLLAPSE])
msm_pm_power_collapse(false);
else if (allow[MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE])
msm_pm_power_collapse_standalone(false);
else if (allow[MSM_PM_SLEEP_MODE_RETENTION])
msm_pm_retention(false);
else
msm_pm_swfi(false);
}
static void msm_pm_ack_retention_disable(void *data)
{
/*
* This is a NULL function to ensure that the core has woken up
* and is safe to disable retention.
*/
}
/**
* msm_pm_enable_retention() - Disable/Enable retention on all cores
* @enable: Enable/Disable retention
*
*/
void msm_pm_enable_retention(bool enable)
{
if (enable == msm_pm_ldo_retention_enabled)
return;
msm_pm_ldo_retention_enabled = enable;
/*
* If retention is being disabled, wakeup all online core to ensure
* that it isn't executing retention. Offlined cores need not be woken
* up as they enter the deepest sleep mode, namely RPM assited power
* collapse
*/
if (!enable) {
preempt_disable();
smp_call_function_many(&retention_cpus,
msm_pm_ack_retention_disable,
NULL, true);
preempt_enable();
}
}
EXPORT_SYMBOL(msm_pm_enable_retention);
static int msm_pm_snoc_client_probe(struct platform_device *pdev)
{
int rc = 0;
static struct msm_bus_scale_pdata *msm_pm_bus_pdata;
static uint32_t msm_pm_bus_client;
msm_pm_bus_pdata = msm_bus_cl_get_pdata(pdev);
if (msm_pm_bus_pdata) {
msm_pm_bus_client =
msm_bus_scale_register_client(msm_pm_bus_pdata);
if (!msm_pm_bus_client) {
pr_err("%s: Failed to register SNOC client", __func__);
rc = -ENXIO;
goto snoc_cl_probe_done;
}
rc = msm_bus_scale_client_update_request(msm_pm_bus_client, 1);
if (rc)
pr_err("%s: Error setting bus rate", __func__);
}
snoc_cl_probe_done:
return rc;
}
static int msm_cpu_status_probe(struct platform_device *pdev)
{
struct msm_pm_sleep_status_data *pdata;
char *key;
u32 cpu;
if (!pdev)
return -EFAULT;
msm_pm_slp_sts = devm_kzalloc(&pdev->dev,
sizeof(*msm_pm_slp_sts) * num_possible_cpus(),
GFP_KERNEL);
if (!msm_pm_slp_sts)
return -ENOMEM;
if (pdev->dev.of_node) {
struct resource *res;
u32 offset;
int rc;
u32 mask;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
key = "qcom,cpu-alias-addr";
rc = of_property_read_u32(pdev->dev.of_node, key, &offset);
if (rc)
return -ENODEV;
key = "qcom,sleep-status-mask";
rc = of_property_read_u32(pdev->dev.of_node, key, &mask);
if (rc)
return -ENODEV;
for_each_possible_cpu(cpu) {
phys_addr_t base_c = res->start + cpu * offset;
msm_pm_slp_sts[cpu].base_addr =
devm_ioremap(&pdev->dev, base_c,
resource_size(res));
msm_pm_slp_sts[cpu].mask = mask;
if (!msm_pm_slp_sts[cpu].base_addr)
return -ENOMEM;
}
} else {
pdata = pdev->dev.platform_data;
if (!pdev->dev.platform_data)
return -EINVAL;
for_each_possible_cpu(cpu) {
msm_pm_slp_sts[cpu].base_addr =
pdata->base_addr + cpu * pdata->cpu_offset;
msm_pm_slp_sts[cpu].mask = pdata->mask;
}
}
return 0;
};
static struct of_device_id msm_slp_sts_match_tbl[] __initdata= {
{.compatible = "qcom,cpu-sleep-status"},
{},
};
static struct platform_driver msm_cpu_status_driver = {
.probe = msm_cpu_status_probe,
.driver = {
.name = "cpu_slp_status",
.owner = THIS_MODULE,
.of_match_table = msm_slp_sts_match_tbl,
},
};
static struct of_device_id msm_snoc_clnt_match_tbl[] __initdata = {
{.compatible = "qcom,pm-snoc-client"},
{},
};
static struct platform_driver msm_cpu_pm_snoc_client_driver = {
.probe = msm_pm_snoc_client_probe,
.driver = {
.name = "pm_snoc_client",
.owner = THIS_MODULE,
.of_match_table = msm_snoc_clnt_match_tbl,
},
};
static int msm_pm_init(void)
{
enum msm_pm_time_stats_id enable_stats[] = {
MSM_PM_STAT_IDLE_WFI,
MSM_PM_STAT_RETENTION,
MSM_PM_STAT_IDLE_STANDALONE_POWER_COLLAPSE,
MSM_PM_STAT_IDLE_FAILED_STANDALONE_POWER_COLLAPSE,
MSM_PM_STAT_IDLE_POWER_COLLAPSE,
MSM_PM_STAT_IDLE_FAILED_POWER_COLLAPSE,
MSM_PM_STAT_SUSPEND,
};
msm_pm_mode_sysfs_add();
msm_pm_add_stats(enable_stats, ARRAY_SIZE(enable_stats));
return 0;
}
static void msm_pm_set_flush_fn(uint32_t pc_mode)
{
msm_pm_disable_l2_fn = NULL;
msm_pm_enable_l2_fn = NULL;
msm_pm_flush_l2_fn = outer_flush_all;
if (pc_mode == MSM_PM_PC_NOTZ_L2_EXT) {
msm_pm_disable_l2_fn = outer_disable;
msm_pm_enable_l2_fn = outer_resume;
}
}
struct msm_pc_debug_counters_buffer {
void __iomem *reg;
u32 len;
char buf[MAX_BUF_SIZE];
};
static inline u32 msm_pc_debug_counters_read_register(
void __iomem *reg, int index , int offset)
{
return readl_relaxed(reg + (index * 4 + offset) * 4);
}
static char *counter_name[] = {
"PC Entry Counter",
"Warmboot Entry Counter",
"PC Bailout Counter"
};
static int msm_pc_debug_counters_copy(
struct msm_pc_debug_counters_buffer *data)
{
int j;
u32 stat;
unsigned int cpu;
for_each_possible_cpu(cpu) {
data->len += scnprintf(data->buf + data->len,
sizeof(data->buf)-data->len,
"CPU%d\n", cpu);
for (j = 0; j < MSM_PC_NUM_COUNTERS; j++) {
stat = msm_pc_debug_counters_read_register(
data->reg, cpu, j);
data->len += scnprintf(data->buf + data->len,
sizeof(data->buf)-data->len,
"\t%s : %d\n", counter_name[j],
stat);
}
}
return data->len;
}
static int msm_pc_debug_counters_file_read(struct file *file,
char __user *bufu, size_t count, loff_t *ppos)
{
struct msm_pc_debug_counters_buffer *data;
data = file->private_data;
if (!data)
return -EINVAL;
if (!bufu || count < 0)
return -EINVAL;
if (!access_ok(VERIFY_WRITE, bufu, count))
return -EFAULT;
if (*ppos >= data->len && data->len == 0)
data->len = msm_pc_debug_counters_copy(data);
return simple_read_from_buffer(bufu, count, ppos,
data->buf, data->len);
}
static int msm_pc_debug_counters_file_open(struct inode *inode,
struct file *file)
{
struct msm_pc_debug_counters_buffer *buf;
void __iomem *msm_pc_debug_counters_reg;
msm_pc_debug_counters_reg = inode->i_private;
if (!msm_pc_debug_counters_reg)
return -EINVAL;
file->private_data = kzalloc(
sizeof(struct msm_pc_debug_counters_buffer), GFP_KERNEL);
if (!file->private_data) {
pr_err("%s: ERROR kmalloc failed to allocate %d bytes\n",
__func__, sizeof(struct msm_pc_debug_counters_buffer));
return -ENOMEM;
}
buf = file->private_data;
buf->reg = msm_pc_debug_counters_reg;
return 0;
}
static int msm_pc_debug_counters_file_close(struct inode *inode,
struct file *file)
{
kfree(file->private_data);
return 0;
}
static const struct file_operations msm_pc_debug_counters_fops = {
.open = msm_pc_debug_counters_file_open,
.read = msm_pc_debug_counters_file_read,
.release = msm_pc_debug_counters_file_close,
.llseek = no_llseek,
};
static int msm_pm_clk_init(struct platform_device *pdev)
{
bool synced_clocks;
u32 cpu;
char clk_name[] = "cpu??_clk";
bool cpu_as_clocks;
char *key;
key = "qcom,cpus-as-clocks";
cpu_as_clocks = of_property_read_bool(pdev->dev.of_node, key);
if (!cpu_as_clocks) {
use_acpuclk_apis = true;
return 0;
}
key = "qcom,synced-clocks";
synced_clocks = of_property_read_bool(pdev->dev.of_node, key);
for_each_possible_cpu(cpu) {
struct clk *clk;
snprintf(clk_name, sizeof(clk_name), "cpu%d_clk", cpu);
clk = devm_clk_get(&pdev->dev, clk_name);
if (IS_ERR(clk)) {
if (cpu && synced_clocks)
return 0;
else
return PTR_ERR(clk);
}
per_cpu(cpu_clks, cpu) = clk;
}
if (synced_clocks)
return 0;
l2_clk = devm_clk_get(&pdev->dev, "l2_clk");
return PTR_RET(l2_clk);
}
static int msm_cpu_pm_probe(struct platform_device *pdev)
{
char *key = NULL;
struct dentry *dent = NULL;
struct resource *res = NULL;
int i;
struct msm_pm_init_data_type pdata_local;
struct device_node *lpm_node;
int ret = 0;
memset(&pdata_local, 0, sizeof(struct msm_pm_init_data_type));
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return 0;
msm_pc_debug_counters_phys = res->start;
WARN_ON(resource_size(res) < SZ_64);
msm_pc_debug_counters = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (msm_pc_debug_counters) {
for (i = 0; i < resource_size(res)/4; i++)
__raw_writel(0, msm_pc_debug_counters + i * 4);
dent = debugfs_create_file("pc_debug_counter", S_IRUGO, NULL,
msm_pc_debug_counters,
&msm_pc_debug_counters_fops);
if (!dent)
pr_err("%s: ERROR debugfs_create_file failed\n",
__func__);
} else {
msm_pc_debug_counters = 0;
msm_pc_debug_counters_phys = 0;
}
lpm_node = of_parse_phandle(pdev->dev.of_node, "qcom,lpm-levels", 0);
if (!lpm_node) {
pr_warn("Could not get qcom,lpm-levels handle\n");
return -EINVAL;
}
need_scm_handoff_lock = of_property_read_bool(lpm_node,
"qcom,allow-synced-levels");
if (need_scm_handoff_lock) {
ret = remote_spin_lock_init(&scm_handoff_lock,
SCM_HANDOFF_LOCK_ID);
if (ret) {
pr_err("%s: Failed initializing scm_handoff_lock (%d)\n",
__func__, ret);
return ret;
}
}
if (pdev->dev.of_node) {
enum msm_pm_pc_mode_type pc_mode;
ret = msm_pm_clk_init(pdev);
if (ret) {
pr_info("msm_pm_clk_init returned error\n");
return ret;
}
key = "qcom,pc-mode";
ret = msm_pm_get_pc_mode(pdev->dev.of_node, key, &pc_mode);
if (ret) {
pr_debug("%s: Error reading key %s", __func__, key);
return -EINVAL;
}
msm_pm_set_flush_fn(pc_mode);
}
msm_pm_init();
if (pdev->dev.of_node)
of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
return ret;
}
static struct of_device_id msm_cpu_pm_table[] __initdata = {
{.compatible = "qcom,pm-8x60"},
{},
};
static struct platform_driver msm_cpu_pm_driver = {
.probe = msm_cpu_pm_probe,
.driver = {
.name = "pm-8x60",
.owner = THIS_MODULE,
.of_match_table = msm_cpu_pm_table,
},
};
static int __init msm_cpu_pm_init(void)
{
int rc;
cpumask_clear(&retention_cpus);
rc = platform_driver_register(&msm_cpu_pm_snoc_client_driver);
if (rc) {
pr_err("%s(): failed to register driver %s\n", __func__,
msm_cpu_pm_snoc_client_driver.driver.name);
return rc;
}
return platform_driver_register(&msm_cpu_pm_driver);
}
device_initcall(msm_cpu_pm_init);
void __init msm_pm_sleep_status_init(void)
{
platform_driver_register(&msm_cpu_status_driver);
}