blob: f42678fa62d1ec6711f0ef666a3859a366110884 [file] [log] [blame]
/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/*
* This regulatory domain control implementation is known to be incomplete
* and confusing. mac80211 regulatory domain control will be significantly
* reworked in the not-too-distant future.
*
* For now, drivers wishing to control which channels are and aren't available
* are advised as follows:
* - set the IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED flag
* - continue to include *ALL* possible channels in the modes registered
* through ieee80211_register_hwmode()
* - for each allowable ieee80211_channel structure registered in the above
* call, set the flag member to some meaningful value such as
* IEEE80211_CHAN_W_SCAN | IEEE80211_CHAN_W_ACTIVE_SCAN |
* IEEE80211_CHAN_W_IBSS.
* - leave flag as 0 for non-allowable channels
*
* The usual implementation is for a driver to read a device EEPROM to
* determine which regulatory domain it should be operating under, then
* looking up the allowable channels in a driver-local table, then performing
* the above.
*/
#include <linux/module.h>
#include <linux/netdevice.h>
#include <net/mac80211.h>
#include "ieee80211_i.h"
static int ieee80211_regdom = 0x10; /* FCC */
module_param(ieee80211_regdom, int, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain; 64=MKK");
/*
* If firmware is upgraded by the vendor, additional channels can be used based
* on the new Japanese regulatory rules. This is indicated by setting
* ieee80211_japan_5ghz module parameter to one when loading the 80211 kernel
* module.
*/
static int ieee80211_japan_5ghz /* = 0 */;
module_param(ieee80211_japan_5ghz, int, 0444);
MODULE_PARM_DESC(ieee80211_japan_5ghz, "Vendor-updated firmware for 5 GHz");
struct ieee80211_channel_range {
short start_freq;
short end_freq;
unsigned char power_level;
unsigned char antenna_max;
};
static const struct ieee80211_channel_range ieee80211_fcc_channels[] = {
{ 2412, 2462, 27, 6 } /* IEEE 802.11b/g, channels 1..11 */,
{ 5180, 5240, 17, 6 } /* IEEE 802.11a, channels 36..48 */,
{ 5260, 5320, 23, 6 } /* IEEE 802.11a, channels 52..64 */,
{ 5745, 5825, 30, 6 } /* IEEE 802.11a, channels 149..165, outdoor */,
{ 0 }
};
static const struct ieee80211_channel_range ieee80211_mkk_channels[] = {
{ 2412, 2472, 20, 6 } /* IEEE 802.11b/g, channels 1..13 */,
{ 5170, 5240, 20, 6 } /* IEEE 802.11a, channels 34..48 */,
{ 5260, 5320, 20, 6 } /* IEEE 802.11a, channels 52..64 */,
{ 0 }
};
static const struct ieee80211_channel_range *channel_range =
ieee80211_fcc_channels;
static void ieee80211_unmask_channel(int mode, struct ieee80211_channel *chan)
{
int i;
chan->flag = 0;
for (i = 0; channel_range[i].start_freq; i++) {
const struct ieee80211_channel_range *r = &channel_range[i];
if (r->start_freq <= chan->freq && r->end_freq >= chan->freq) {
if (ieee80211_regdom == 64 && !ieee80211_japan_5ghz &&
chan->freq >= 5260 && chan->freq <= 5320) {
/*
* Skip new channels in Japan since the
* firmware was not marked having been upgraded
* by the vendor.
*/
continue;
}
if (ieee80211_regdom == 0x10 &&
(chan->freq == 5190 || chan->freq == 5210 ||
chan->freq == 5230)) {
/* Skip MKK channels when in FCC domain. */
continue;
}
chan->flag |= IEEE80211_CHAN_W_SCAN |
IEEE80211_CHAN_W_ACTIVE_SCAN |
IEEE80211_CHAN_W_IBSS;
chan->power_level = r->power_level;
chan->antenna_max = r->antenna_max;
if (ieee80211_regdom == 64 &&
(chan->freq == 5170 || chan->freq == 5190 ||
chan->freq == 5210 || chan->freq == 5230)) {
/*
* New regulatory rules in Japan have backwards
* compatibility with old channels in 5.15-5.25
* GHz band, but the station is not allowed to
* use active scan on these old channels.
*/
chan->flag &= ~IEEE80211_CHAN_W_ACTIVE_SCAN;
}
if (ieee80211_regdom == 64 &&
(chan->freq == 5260 || chan->freq == 5280 ||
chan->freq == 5300 || chan->freq == 5320)) {
/*
* IBSS is not allowed on 5.25-5.35 GHz band
* due to radar detection requirements.
*/
chan->flag &= ~IEEE80211_CHAN_W_IBSS;
}
break;
}
}
}
void ieee80211_set_default_regdomain(struct ieee80211_hw_mode *mode)
{
int c;
for (c = 0; c < mode->num_channels; c++)
ieee80211_unmask_channel(mode->mode, &mode->channels[c]);
}
void ieee80211_regdomain_init(void)
{
if (ieee80211_regdom == 0x40)
channel_range = ieee80211_mkk_channels;
}