blob: c6d3e194b6b4c2d42a4904c0d887e387cc0a50a7 [file] [log] [blame]
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright SUSE Linux Products GmbH 2009
*
* Authors: Alexander Graf <agraf@suse.de>
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
/* #define DEBUG_MMU */
#ifdef DEBUG_MMU
#define dprintk(X...) printk(KERN_INFO X)
#else
#define dprintk(X...) do { } while(0)
#endif
static void kvmppc_mmu_book3s_64_reset_msr(struct kvm_vcpu *vcpu)
{
kvmppc_set_msr(vcpu, MSR_SF);
}
static struct kvmppc_slb *kvmppc_mmu_book3s_64_find_slbe(
struct kvm_vcpu *vcpu,
gva_t eaddr)
{
int i;
u64 esid = GET_ESID(eaddr);
u64 esid_1t = GET_ESID_1T(eaddr);
for (i = 0; i < vcpu->arch.slb_nr; i++) {
u64 cmp_esid = esid;
if (!vcpu->arch.slb[i].valid)
continue;
if (vcpu->arch.slb[i].tb)
cmp_esid = esid_1t;
if (vcpu->arch.slb[i].esid == cmp_esid)
return &vcpu->arch.slb[i];
}
dprintk("KVM: No SLB entry found for 0x%lx [%llx | %llx]\n",
eaddr, esid, esid_1t);
for (i = 0; i < vcpu->arch.slb_nr; i++) {
if (vcpu->arch.slb[i].vsid)
dprintk(" %d: %c%c%c %llx %llx\n", i,
vcpu->arch.slb[i].valid ? 'v' : ' ',
vcpu->arch.slb[i].large ? 'l' : ' ',
vcpu->arch.slb[i].tb ? 't' : ' ',
vcpu->arch.slb[i].esid,
vcpu->arch.slb[i].vsid);
}
return NULL;
}
static u64 kvmppc_mmu_book3s_64_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr,
bool data)
{
struct kvmppc_slb *slb;
slb = kvmppc_mmu_book3s_64_find_slbe(vcpu, eaddr);
if (!slb)
return 0;
if (slb->tb)
return (((u64)eaddr >> 12) & 0xfffffff) |
(((u64)slb->vsid) << 28);
return (((u64)eaddr >> 12) & 0xffff) | (((u64)slb->vsid) << 16);
}
static int kvmppc_mmu_book3s_64_get_pagesize(struct kvmppc_slb *slbe)
{
return slbe->large ? 24 : 12;
}
static u32 kvmppc_mmu_book3s_64_get_page(struct kvmppc_slb *slbe, gva_t eaddr)
{
int p = kvmppc_mmu_book3s_64_get_pagesize(slbe);
return ((eaddr & 0xfffffff) >> p);
}
static hva_t kvmppc_mmu_book3s_64_get_pteg(
struct kvmppc_vcpu_book3s *vcpu_book3s,
struct kvmppc_slb *slbe, gva_t eaddr,
bool second)
{
u64 hash, pteg, htabsize;
u32 page;
hva_t r;
page = kvmppc_mmu_book3s_64_get_page(slbe, eaddr);
htabsize = ((1 << ((vcpu_book3s->sdr1 & 0x1f) + 11)) - 1);
hash = slbe->vsid ^ page;
if (second)
hash = ~hash;
hash &= ((1ULL << 39ULL) - 1ULL);
hash &= htabsize;
hash <<= 7ULL;
pteg = vcpu_book3s->sdr1 & 0xfffffffffffc0000ULL;
pteg |= hash;
dprintk("MMU: page=0x%x sdr1=0x%llx pteg=0x%llx vsid=0x%llx\n",
page, vcpu_book3s->sdr1, pteg, slbe->vsid);
r = gfn_to_hva(vcpu_book3s->vcpu.kvm, pteg >> PAGE_SHIFT);
if (kvm_is_error_hva(r))
return r;
return r | (pteg & ~PAGE_MASK);
}
static u64 kvmppc_mmu_book3s_64_get_avpn(struct kvmppc_slb *slbe, gva_t eaddr)
{
int p = kvmppc_mmu_book3s_64_get_pagesize(slbe);
u64 avpn;
avpn = kvmppc_mmu_book3s_64_get_page(slbe, eaddr);
avpn |= slbe->vsid << (28 - p);
if (p < 24)
avpn >>= ((80 - p) - 56) - 8;
else
avpn <<= 8;
return avpn;
}
static int kvmppc_mmu_book3s_64_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *gpte, bool data)
{
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
struct kvmppc_slb *slbe;
hva_t ptegp;
u64 pteg[16];
u64 avpn = 0;
int i;
u8 key = 0;
bool found = false;
bool perm_err = false;
int second = 0;
ulong mp_ea = vcpu->arch.magic_page_ea;
/* Magic page override */
if (unlikely(mp_ea) &&
unlikely((eaddr & ~0xfffULL) == (mp_ea & ~0xfffULL)) &&
!(vcpu->arch.shared->msr & MSR_PR)) {
gpte->eaddr = eaddr;
gpte->vpage = kvmppc_mmu_book3s_64_ea_to_vp(vcpu, eaddr, data);
gpte->raddr = vcpu->arch.magic_page_pa | (gpte->raddr & 0xfff);
gpte->raddr &= KVM_PAM;
gpte->may_execute = true;
gpte->may_read = true;
gpte->may_write = true;
return 0;
}
slbe = kvmppc_mmu_book3s_64_find_slbe(vcpu, eaddr);
if (!slbe)
goto no_seg_found;
do_second:
ptegp = kvmppc_mmu_book3s_64_get_pteg(vcpu_book3s, slbe, eaddr, second);
if (kvm_is_error_hva(ptegp))
goto no_page_found;
avpn = kvmppc_mmu_book3s_64_get_avpn(slbe, eaddr);
if(copy_from_user(pteg, (void __user *)ptegp, sizeof(pteg))) {
printk(KERN_ERR "KVM can't copy data from 0x%lx!\n", ptegp);
goto no_page_found;
}
if ((vcpu->arch.shared->msr & MSR_PR) && slbe->Kp)
key = 4;
else if (!(vcpu->arch.shared->msr & MSR_PR) && slbe->Ks)
key = 4;
for (i=0; i<16; i+=2) {
u64 v = pteg[i];
u64 r = pteg[i+1];
/* Valid check */
if (!(v & HPTE_V_VALID))
continue;
/* Hash check */
if ((v & HPTE_V_SECONDARY) != second)
continue;
/* AVPN compare */
if (HPTE_V_AVPN_VAL(avpn) == HPTE_V_AVPN_VAL(v)) {
u8 pp = (r & HPTE_R_PP) | key;
int eaddr_mask = 0xFFF;
gpte->eaddr = eaddr;
gpte->vpage = kvmppc_mmu_book3s_64_ea_to_vp(vcpu,
eaddr,
data);
if (slbe->large)
eaddr_mask = 0xFFFFFF;
gpte->raddr = (r & HPTE_R_RPN) | (eaddr & eaddr_mask);
gpte->may_execute = ((r & HPTE_R_N) ? false : true);
gpte->may_read = false;
gpte->may_write = false;
switch (pp) {
case 0:
case 1:
case 2:
case 6:
gpte->may_write = true;
/* fall through */
case 3:
case 5:
case 7:
gpte->may_read = true;
break;
}
if (!gpte->may_read) {
perm_err = true;
continue;
}
dprintk("KVM MMU: Translated 0x%lx [0x%llx] -> 0x%llx "
"-> 0x%lx\n",
eaddr, avpn, gpte->vpage, gpte->raddr);
found = true;
break;
}
}
/* Update PTE R and C bits, so the guest's swapper knows we used the
* page */
if (found) {
u32 oldr = pteg[i+1];
if (gpte->may_read) {
/* Set the accessed flag */
pteg[i+1] |= HPTE_R_R;
}
if (gpte->may_write) {
/* Set the dirty flag */
pteg[i+1] |= HPTE_R_C;
} else {
dprintk("KVM: Mapping read-only page!\n");
}
/* Write back into the PTEG */
if (pteg[i+1] != oldr)
copy_to_user((void __user *)ptegp, pteg, sizeof(pteg));
return 0;
} else {
dprintk("KVM MMU: No PTE found (ea=0x%lx sdr1=0x%llx "
"ptegp=0x%lx)\n",
eaddr, to_book3s(vcpu)->sdr1, ptegp);
for (i = 0; i < 16; i += 2)
dprintk(" %02d: 0x%llx - 0x%llx (0x%llx)\n",
i, pteg[i], pteg[i+1], avpn);
if (!second) {
second = HPTE_V_SECONDARY;
goto do_second;
}
}
no_page_found:
if (perm_err)
return -EPERM;
return -ENOENT;
no_seg_found:
dprintk("KVM MMU: Trigger segment fault\n");
return -EINVAL;
}
static void kvmppc_mmu_book3s_64_slbmte(struct kvm_vcpu *vcpu, u64 rs, u64 rb)
{
struct kvmppc_vcpu_book3s *vcpu_book3s;
u64 esid, esid_1t;
int slb_nr;
struct kvmppc_slb *slbe;
dprintk("KVM MMU: slbmte(0x%llx, 0x%llx)\n", rs, rb);
vcpu_book3s = to_book3s(vcpu);
esid = GET_ESID(rb);
esid_1t = GET_ESID_1T(rb);
slb_nr = rb & 0xfff;
if (slb_nr > vcpu->arch.slb_nr)
return;
slbe = &vcpu->arch.slb[slb_nr];
slbe->large = (rs & SLB_VSID_L) ? 1 : 0;
slbe->tb = (rs & SLB_VSID_B_1T) ? 1 : 0;
slbe->esid = slbe->tb ? esid_1t : esid;
slbe->vsid = rs >> 12;
slbe->valid = (rb & SLB_ESID_V) ? 1 : 0;
slbe->Ks = (rs & SLB_VSID_KS) ? 1 : 0;
slbe->Kp = (rs & SLB_VSID_KP) ? 1 : 0;
slbe->nx = (rs & SLB_VSID_N) ? 1 : 0;
slbe->class = (rs & SLB_VSID_C) ? 1 : 0;
slbe->orige = rb & (ESID_MASK | SLB_ESID_V);
slbe->origv = rs;
/* Map the new segment */
kvmppc_mmu_map_segment(vcpu, esid << SID_SHIFT);
}
static u64 kvmppc_mmu_book3s_64_slbmfee(struct kvm_vcpu *vcpu, u64 slb_nr)
{
struct kvmppc_slb *slbe;
if (slb_nr > vcpu->arch.slb_nr)
return 0;
slbe = &vcpu->arch.slb[slb_nr];
return slbe->orige;
}
static u64 kvmppc_mmu_book3s_64_slbmfev(struct kvm_vcpu *vcpu, u64 slb_nr)
{
struct kvmppc_slb *slbe;
if (slb_nr > vcpu->arch.slb_nr)
return 0;
slbe = &vcpu->arch.slb[slb_nr];
return slbe->origv;
}
static void kvmppc_mmu_book3s_64_slbie(struct kvm_vcpu *vcpu, u64 ea)
{
struct kvmppc_slb *slbe;
dprintk("KVM MMU: slbie(0x%llx)\n", ea);
slbe = kvmppc_mmu_book3s_64_find_slbe(vcpu, ea);
if (!slbe)
return;
dprintk("KVM MMU: slbie(0x%llx, 0x%llx)\n", ea, slbe->esid);
slbe->valid = false;
kvmppc_mmu_map_segment(vcpu, ea);
}
static void kvmppc_mmu_book3s_64_slbia(struct kvm_vcpu *vcpu)
{
int i;
dprintk("KVM MMU: slbia()\n");
for (i = 1; i < vcpu->arch.slb_nr; i++)
vcpu->arch.slb[i].valid = false;
if (vcpu->arch.shared->msr & MSR_IR) {
kvmppc_mmu_flush_segments(vcpu);
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
}
}
static void kvmppc_mmu_book3s_64_mtsrin(struct kvm_vcpu *vcpu, u32 srnum,
ulong value)
{
u64 rb = 0, rs = 0;
/*
* According to Book3 2.01 mtsrin is implemented as:
*
* The SLB entry specified by (RB)32:35 is loaded from register
* RS, as follows.
*
* SLBE Bit Source SLB Field
*
* 0:31 0x0000_0000 ESID-0:31
* 32:35 (RB)32:35 ESID-32:35
* 36 0b1 V
* 37:61 0x00_0000|| 0b0 VSID-0:24
* 62:88 (RS)37:63 VSID-25:51
* 89:91 (RS)33:35 Ks Kp N
* 92 (RS)36 L ((RS)36 must be 0b0)
* 93 0b0 C
*/
dprintk("KVM MMU: mtsrin(0x%x, 0x%lx)\n", srnum, value);
/* ESID = srnum */
rb |= (srnum & 0xf) << 28;
/* Set the valid bit */
rb |= 1 << 27;
/* Index = ESID */
rb |= srnum;
/* VSID = VSID */
rs |= (value & 0xfffffff) << 12;
/* flags = flags */
rs |= ((value >> 28) & 0x7) << 9;
kvmppc_mmu_book3s_64_slbmte(vcpu, rs, rb);
}
static void kvmppc_mmu_book3s_64_tlbie(struct kvm_vcpu *vcpu, ulong va,
bool large)
{
u64 mask = 0xFFFFFFFFFULL;
dprintk("KVM MMU: tlbie(0x%lx)\n", va);
if (large)
mask = 0xFFFFFF000ULL;
kvmppc_mmu_pte_vflush(vcpu, va >> 12, mask);
}
static int kvmppc_mmu_book3s_64_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
u64 *vsid)
{
ulong ea = esid << SID_SHIFT;
struct kvmppc_slb *slb;
u64 gvsid = esid;
ulong mp_ea = vcpu->arch.magic_page_ea;
if (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
slb = kvmppc_mmu_book3s_64_find_slbe(vcpu, ea);
if (slb)
gvsid = slb->vsid;
}
switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
case 0:
*vsid = VSID_REAL | esid;
break;
case MSR_IR:
*vsid = VSID_REAL_IR | gvsid;
break;
case MSR_DR:
*vsid = VSID_REAL_DR | gvsid;
break;
case MSR_DR|MSR_IR:
if (!slb)
goto no_slb;
*vsid = gvsid;
break;
default:
BUG();
break;
}
if (vcpu->arch.shared->msr & MSR_PR)
*vsid |= VSID_PR;
return 0;
no_slb:
/* Catch magic page case */
if (unlikely(mp_ea) &&
unlikely(esid == (mp_ea >> SID_SHIFT)) &&
!(vcpu->arch.shared->msr & MSR_PR)) {
*vsid = VSID_REAL | esid;
return 0;
}
return -EINVAL;
}
static bool kvmppc_mmu_book3s_64_is_dcbz32(struct kvm_vcpu *vcpu)
{
return (to_book3s(vcpu)->hid[5] & 0x80);
}
void kvmppc_mmu_book3s_64_init(struct kvm_vcpu *vcpu)
{
struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
mmu->mfsrin = NULL;
mmu->mtsrin = kvmppc_mmu_book3s_64_mtsrin;
mmu->slbmte = kvmppc_mmu_book3s_64_slbmte;
mmu->slbmfee = kvmppc_mmu_book3s_64_slbmfee;
mmu->slbmfev = kvmppc_mmu_book3s_64_slbmfev;
mmu->slbie = kvmppc_mmu_book3s_64_slbie;
mmu->slbia = kvmppc_mmu_book3s_64_slbia;
mmu->xlate = kvmppc_mmu_book3s_64_xlate;
mmu->reset_msr = kvmppc_mmu_book3s_64_reset_msr;
mmu->tlbie = kvmppc_mmu_book3s_64_tlbie;
mmu->esid_to_vsid = kvmppc_mmu_book3s_64_esid_to_vsid;
mmu->ea_to_vp = kvmppc_mmu_book3s_64_ea_to_vp;
mmu->is_dcbz32 = kvmppc_mmu_book3s_64_is_dcbz32;
vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
}