blob: 78a6203994d74786b02a2fd2051f301013b408be [file] [log] [blame]
/* Copyright (c) 2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "subsys-restart: %s(): " fmt, __func__
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/io.h>
#include <linux/kthread.h>
#include <linux/time.h>
#include <asm/current.h>
#include <mach/peripheral-loader.h>
#include <mach/scm.h>
#include <mach/socinfo.h>
#include <mach/subsystem_notif.h>
#include <mach/subsystem_restart.h>
#include "smd_private.h"
struct subsys_soc_restart_order {
const char * const *subsystem_list;
int count;
struct mutex shutdown_lock;
struct mutex powerup_lock;
struct subsys_data *subsys_ptrs[];
};
struct restart_thread_data {
struct subsys_data *subsys;
int coupled;
};
struct restart_log {
struct timeval time;
struct subsys_data *subsys;
struct list_head list;
};
static int restart_level;
static int enable_ramdumps;
static LIST_HEAD(restart_log_list);
static LIST_HEAD(subsystem_list);
static DEFINE_MUTEX(subsystem_list_lock);
static DEFINE_MUTEX(soc_order_reg_lock);
static DEFINE_MUTEX(restart_log_mutex);
/* SOC specific restart orders go here */
#define DEFINE_SINGLE_RESTART_ORDER(name, order) \
static struct subsys_soc_restart_order __##name = { \
.subsystem_list = order, \
.count = ARRAY_SIZE(order), \
.subsys_ptrs = {[ARRAY_SIZE(order)] = NULL} \
}; \
static struct subsys_soc_restart_order *name[] = { \
&__##name, \
}
/* MSM 8x60 restart ordering info */
static const char * const _order_8x60_all[] = {
"external_modem", "modem", "lpass"
};
DEFINE_SINGLE_RESTART_ORDER(orders_8x60_all, _order_8x60_all);
static const char * const _order_8x60_modems[] = {"external_modem", "modem"};
DEFINE_SINGLE_RESTART_ORDER(orders_8x60_modems, _order_8x60_modems);
/* MSM 8960 restart ordering info */
static const char * const order_8960[] = {"modem", "lpass"};
static struct subsys_soc_restart_order restart_orders_8960_one = {
.subsystem_list = order_8960,
.count = ARRAY_SIZE(order_8960),
.subsys_ptrs = {[ARRAY_SIZE(order_8960)] = NULL}
};
static struct subsys_soc_restart_order *restart_orders_8960[] = {
&restart_orders_8960_one,
};
/* These will be assigned to one of the sets above after
* runtime SoC identification.
*/
static struct subsys_soc_restart_order **restart_orders;
static int n_restart_orders;
module_param(enable_ramdumps, int, S_IRUGO | S_IWUSR);
static struct subsys_soc_restart_order *_update_restart_order(
struct subsys_data *subsys);
int get_restart_level()
{
return restart_level;
}
EXPORT_SYMBOL(get_restart_level);
static void restart_level_changed(void)
{
struct subsys_data *subsys;
if (cpu_is_msm8x60() && restart_level == RESET_SUBSYS_COUPLED) {
restart_orders = orders_8x60_all;
n_restart_orders = ARRAY_SIZE(orders_8x60_all);
}
if (cpu_is_msm8x60() && restart_level == RESET_SUBSYS_MIXED) {
restart_orders = orders_8x60_modems;
n_restart_orders = ARRAY_SIZE(orders_8x60_modems);
}
mutex_lock(&subsystem_list_lock);
list_for_each_entry(subsys, &subsystem_list, list)
subsys->restart_order = _update_restart_order(subsys);
mutex_unlock(&subsystem_list_lock);
}
static int restart_level_set(const char *val, struct kernel_param *kp)
{
int ret;
int old_val = restart_level;
if (cpu_is_msm9615()) {
pr_err("Only Phase 1 subsystem restart is supported\n");
return -EINVAL;
}
ret = param_set_int(val, kp);
if (ret)
return ret;
switch (restart_level) {
case RESET_SOC:
case RESET_SUBSYS_COUPLED:
case RESET_SUBSYS_INDEPENDENT:
pr_info("Phase %d behavior activated.\n", restart_level);
break;
case RESET_SUBSYS_MIXED:
pr_info("Phase 2+ behavior activated.\n");
break;
default:
restart_level = old_val;
return -EINVAL;
break;
}
if (restart_level != old_val)
restart_level_changed();
return 0;
}
module_param_call(restart_level, restart_level_set, param_get_int,
&restart_level, 0644);
static struct subsys_data *_find_subsystem(const char *subsys_name)
{
struct subsys_data *subsys;
mutex_lock(&subsystem_list_lock);
list_for_each_entry(subsys, &subsystem_list, list)
if (!strncmp(subsys->name, subsys_name,
SUBSYS_NAME_MAX_LENGTH)) {
mutex_unlock(&subsystem_list_lock);
return subsys;
}
mutex_unlock(&subsystem_list_lock);
return NULL;
}
static struct subsys_soc_restart_order *_update_restart_order(
struct subsys_data *subsys)
{
int i, j;
if (!subsys)
return NULL;
if (!subsys->name)
return NULL;
mutex_lock(&soc_order_reg_lock);
for (j = 0; j < n_restart_orders; j++) {
for (i = 0; i < restart_orders[j]->count; i++)
if (!strncmp(restart_orders[j]->subsystem_list[i],
subsys->name, SUBSYS_NAME_MAX_LENGTH)) {
restart_orders[j]->subsys_ptrs[i] =
subsys;
mutex_unlock(&soc_order_reg_lock);
return restart_orders[j];
}
}
mutex_unlock(&soc_order_reg_lock);
return NULL;
}
static void _send_notification_to_order(struct subsys_data
**restart_list, int count,
enum subsys_notif_type notif_type)
{
int i;
for (i = 0; i < count; i++)
if (restart_list[i])
subsys_notif_queue_notification(
restart_list[i]->notif_handle, notif_type);
}
static int max_restarts;
module_param(max_restarts, int, 0644);
static long max_history_time = 3600;
module_param(max_history_time, long, 0644);
static void do_epoch_check(struct subsys_data *subsys)
{
int n = 0;
struct timeval *time_first = NULL, *curr_time;
struct restart_log *r_log, *temp;
static int max_restarts_check;
static long max_history_time_check;
mutex_lock(&restart_log_mutex);
max_restarts_check = max_restarts;
max_history_time_check = max_history_time;
/* Check if epoch checking is enabled */
if (!max_restarts_check)
goto out;
r_log = kmalloc(sizeof(struct restart_log), GFP_KERNEL);
if (!r_log)
goto out;
r_log->subsys = subsys;
do_gettimeofday(&r_log->time);
curr_time = &r_log->time;
INIT_LIST_HEAD(&r_log->list);
list_add_tail(&r_log->list, &restart_log_list);
list_for_each_entry_safe(r_log, temp, &restart_log_list, list) {
if ((curr_time->tv_sec - r_log->time.tv_sec) >
max_history_time_check) {
pr_debug("Deleted node with restart_time = %ld\n",
r_log->time.tv_sec);
list_del(&r_log->list);
kfree(r_log);
continue;
}
if (!n) {
time_first = &r_log->time;
pr_debug("Time_first: %ld\n", time_first->tv_sec);
}
n++;
pr_debug("Restart_time: %ld\n", r_log->time.tv_sec);
}
if (time_first && n >= max_restarts_check) {
if ((curr_time->tv_sec - time_first->tv_sec) <
max_history_time_check)
panic("Subsystems have crashed %d times in less than "
"%ld seconds!", max_restarts_check,
max_history_time_check);
}
out:
mutex_unlock(&restart_log_mutex);
}
static int subsystem_restart_thread(void *data)
{
struct restart_thread_data *r_work = data;
struct subsys_data **restart_list;
struct subsys_data *subsys = r_work->subsys;
struct subsys_soc_restart_order *soc_restart_order = NULL;
struct mutex *powerup_lock;
struct mutex *shutdown_lock;
int i;
int restart_list_count = 0;
if (r_work->coupled)
soc_restart_order = subsys->restart_order;
/* It's OK to not take the registration lock at this point.
* This is because the subsystem list inside the relevant
* restart order is not being traversed.
*/
if (!soc_restart_order) {
restart_list = subsys->single_restart_list;
restart_list_count = 1;
powerup_lock = &subsys->powerup_lock;
shutdown_lock = &subsys->shutdown_lock;
} else {
restart_list = soc_restart_order->subsys_ptrs;
restart_list_count = soc_restart_order->count;
powerup_lock = &soc_restart_order->powerup_lock;
shutdown_lock = &soc_restart_order->shutdown_lock;
}
pr_debug("[%p]: Attempting to get shutdown lock!\n", current);
/* Try to acquire shutdown_lock. If this fails, these subsystems are
* already being restarted - return.
*/
if (!mutex_trylock(shutdown_lock)) {
kfree(data);
do_exit(0);
}
pr_debug("[%p]: Attempting to get powerup lock!\n", current);
/* Now that we've acquired the shutdown lock, either we're the first to
* restart these subsystems or some other thread is doing the powerup
* sequence for these subsystems. In the latter case, panic and bail
* out, since a subsystem died in its powerup sequence.
*/
if (!mutex_trylock(powerup_lock))
panic("%s[%p]: Subsystem died during powerup!",
__func__, current);
do_epoch_check(subsys);
/* Now it is necessary to take the registration lock. This is because
* the subsystem list in the SoC restart order will be traversed
* and it shouldn't be changed until _this_ restart sequence completes.
*/
mutex_lock(&soc_order_reg_lock);
pr_debug("[%p]: Starting restart sequence for %s\n", current,
r_work->subsys->name);
_send_notification_to_order(restart_list,
restart_list_count,
SUBSYS_BEFORE_SHUTDOWN);
for (i = 0; i < restart_list_count; i++) {
if (!restart_list[i])
continue;
pr_info("[%p]: Shutting down %s\n", current,
restart_list[i]->name);
if (restart_list[i]->shutdown(subsys) < 0)
panic("subsys-restart: %s[%p]: Failed to shutdown %s!",
__func__, current, restart_list[i]->name);
}
_send_notification_to_order(restart_list, restart_list_count,
SUBSYS_AFTER_SHUTDOWN);
/* Now that we've finished shutting down these subsystems, release the
* shutdown lock. If a subsystem restart request comes in for a
* subsystem in _this_ restart order after the unlock below, and
* before the powerup lock is released, panic and bail out.
*/
mutex_unlock(shutdown_lock);
/* Collect ram dumps for all subsystems in order here */
for (i = 0; i < restart_list_count; i++) {
if (!restart_list[i])
continue;
if (restart_list[i]->ramdump)
if (restart_list[i]->ramdump(enable_ramdumps,
subsys) < 0)
pr_warn("%s[%p]: Ramdump failed.\n",
restart_list[i]->name, current);
}
_send_notification_to_order(restart_list,
restart_list_count,
SUBSYS_BEFORE_POWERUP);
for (i = restart_list_count - 1; i >= 0; i--) {
if (!restart_list[i])
continue;
pr_info("[%p]: Powering up %s\n", current,
restart_list[i]->name);
if (restart_list[i]->powerup(subsys) < 0)
panic("%s[%p]: Failed to powerup %s!", __func__,
current, restart_list[i]->name);
}
_send_notification_to_order(restart_list,
restart_list_count,
SUBSYS_AFTER_POWERUP);
pr_info("[%p]: Restart sequence for %s completed.\n",
current, r_work->subsys->name);
mutex_unlock(powerup_lock);
mutex_unlock(&soc_order_reg_lock);
pr_debug("[%p]: Released powerup lock!\n", current);
kfree(data);
do_exit(0);
}
int subsystem_restart(const char *subsys_name)
{
struct subsys_data *subsys;
struct task_struct *tsk;
struct restart_thread_data *data = NULL;
if (!subsys_name) {
pr_err("Invalid subsystem name.\n");
return -EINVAL;
}
pr_info("Restart sequence requested for %s, restart_level = %d.\n",
subsys_name, restart_level);
/* List of subsystems is protected by a lock. New subsystems can
* still come in.
*/
subsys = _find_subsystem(subsys_name);
if (!subsys) {
pr_warn("Unregistered subsystem %s!\n", subsys_name);
return -EINVAL;
}
if (restart_level != RESET_SOC) {
data = kzalloc(sizeof(struct restart_thread_data), GFP_KERNEL);
if (!data) {
restart_level = RESET_SOC;
pr_warn("Failed to alloc restart data. Resetting.\n");
} else {
if (restart_level == RESET_SUBSYS_COUPLED ||
restart_level == RESET_SUBSYS_MIXED)
data->coupled = 1;
else
data->coupled = 0;
data->subsys = subsys;
}
}
switch (restart_level) {
case RESET_SUBSYS_COUPLED:
case RESET_SUBSYS_MIXED:
case RESET_SUBSYS_INDEPENDENT:
pr_debug("Restarting %s [level=%d]!\n", subsys_name,
restart_level);
/* Let the kthread handle the actual restarting. Using a
* workqueue will not work since all restart requests are
* serialized and it prevents the short circuiting of
* restart requests for subsystems already in a restart
* sequence.
*/
tsk = kthread_run(subsystem_restart_thread, data,
"subsystem_restart_thread");
if (IS_ERR(tsk))
panic("%s: Unable to create thread to restart %s",
__func__, subsys->name);
break;
case RESET_SOC:
panic("subsys-restart: Resetting the SoC - %s crashed.",
subsys->name);
break;
default:
panic("subsys-restart: Unknown restart level!\n");
break;
}
return 0;
}
EXPORT_SYMBOL(subsystem_restart);
int ssr_register_subsystem(struct subsys_data *subsys)
{
if (!subsys)
goto err;
if (!subsys->name)
goto err;
if (!subsys->powerup || !subsys->shutdown)
goto err;
subsys->notif_handle = subsys_notif_add_subsys(subsys->name);
subsys->restart_order = _update_restart_order(subsys);
subsys->single_restart_list[0] = subsys;
mutex_init(&subsys->shutdown_lock);
mutex_init(&subsys->powerup_lock);
mutex_lock(&subsystem_list_lock);
list_add(&subsys->list, &subsystem_list);
mutex_unlock(&subsystem_list_lock);
return 0;
err:
return -EINVAL;
}
EXPORT_SYMBOL(ssr_register_subsystem);
static int ssr_panic_handler(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct subsys_data *subsys;
list_for_each_entry(subsys, &subsystem_list, list)
if (subsys->crash_shutdown)
subsys->crash_shutdown(subsys);
return NOTIFY_DONE;
}
static struct notifier_block panic_nb = {
.notifier_call = ssr_panic_handler,
};
static int __init ssr_init_soc_restart_orders(void)
{
int i;
atomic_notifier_chain_register(&panic_notifier_list,
&panic_nb);
if (cpu_is_msm8x60()) {
for (i = 0; i < ARRAY_SIZE(orders_8x60_all); i++) {
mutex_init(&orders_8x60_all[i]->powerup_lock);
mutex_init(&orders_8x60_all[i]->shutdown_lock);
}
for (i = 0; i < ARRAY_SIZE(orders_8x60_modems); i++) {
mutex_init(&orders_8x60_modems[i]->powerup_lock);
mutex_init(&orders_8x60_modems[i]->shutdown_lock);
}
restart_orders = orders_8x60_all;
n_restart_orders = ARRAY_SIZE(orders_8x60_all);
}
if (cpu_is_msm8960() || cpu_is_msm8930() || cpu_is_msm9615()) {
restart_orders = restart_orders_8960;
n_restart_orders = ARRAY_SIZE(restart_orders_8960);
}
if (restart_orders == NULL || n_restart_orders < 1) {
WARN_ON(1);
return -EINVAL;
}
return 0;
}
static int __init subsys_restart_init(void)
{
int ret = 0;
restart_level = RESET_SOC;
ret = ssr_init_soc_restart_orders();
return ret;
}
arch_initcall(subsys_restart_init);
MODULE_DESCRIPTION("Subsystem Restart Driver");
MODULE_LICENSE("GPL v2");