| /* |
| * linux/arch/arm/vfp/vfpdouble.c |
| * |
| * This code is derived in part from John R. Housers softfloat library, which |
| * carries the following notice: |
| * |
| * =========================================================================== |
| * This C source file is part of the SoftFloat IEC/IEEE Floating-point |
| * Arithmetic Package, Release 2. |
| * |
| * Written by John R. Hauser. This work was made possible in part by the |
| * International Computer Science Institute, located at Suite 600, 1947 Center |
| * Street, Berkeley, California 94704. Funding was partially provided by the |
| * National Science Foundation under grant MIP-9311980. The original version |
| * of this code was written as part of a project to build a fixed-point vector |
| * processor in collaboration with the University of California at Berkeley, |
| * overseen by Profs. Nelson Morgan and John Wawrzynek. More information |
| * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ |
| * arithmetic/softfloat.html'. |
| * |
| * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort |
| * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT |
| * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO |
| * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY |
| * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. |
| * |
| * Derivative works are acceptable, even for commercial purposes, so long as |
| * (1) they include prominent notice that the work is derivative, and (2) they |
| * include prominent notice akin to these three paragraphs for those parts of |
| * this code that are retained. |
| * =========================================================================== |
| */ |
| #include <linux/kernel.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/div64.h> |
| #include <asm/ptrace.h> |
| #include <asm/vfp.h> |
| |
| #include "vfpinstr.h" |
| #include "vfp.h" |
| |
| static struct vfp_double vfp_double_default_qnan = { |
| .exponent = 2047, |
| .sign = 0, |
| .significand = VFP_DOUBLE_SIGNIFICAND_QNAN, |
| }; |
| |
| static void vfp_double_dump(const char *str, struct vfp_double *d) |
| { |
| pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n", |
| str, d->sign != 0, d->exponent, d->significand); |
| } |
| |
| static void vfp_double_normalise_denormal(struct vfp_double *vd) |
| { |
| int bits = 31 - fls(vd->significand >> 32); |
| if (bits == 31) |
| bits = 62 - fls(vd->significand); |
| |
| vfp_double_dump("normalise_denormal: in", vd); |
| |
| if (bits) { |
| vd->exponent -= bits - 1; |
| vd->significand <<= bits; |
| } |
| |
| vfp_double_dump("normalise_denormal: out", vd); |
| } |
| |
| u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func) |
| { |
| u64 significand, incr; |
| int exponent, shift, underflow; |
| u32 rmode; |
| |
| vfp_double_dump("pack: in", vd); |
| |
| /* |
| * Infinities and NaNs are a special case. |
| */ |
| if (vd->exponent == 2047 && (vd->significand == 0 || exceptions)) |
| goto pack; |
| |
| /* |
| * Special-case zero. |
| */ |
| if (vd->significand == 0) { |
| vd->exponent = 0; |
| goto pack; |
| } |
| |
| exponent = vd->exponent; |
| significand = vd->significand; |
| |
| shift = 32 - fls(significand >> 32); |
| if (shift == 32) |
| shift = 64 - fls(significand); |
| if (shift) { |
| exponent -= shift; |
| significand <<= shift; |
| } |
| |
| #ifdef DEBUG |
| vd->exponent = exponent; |
| vd->significand = significand; |
| vfp_double_dump("pack: normalised", vd); |
| #endif |
| |
| /* |
| * Tiny number? |
| */ |
| underflow = exponent < 0; |
| if (underflow) { |
| significand = vfp_shiftright64jamming(significand, -exponent); |
| exponent = 0; |
| #ifdef DEBUG |
| vd->exponent = exponent; |
| vd->significand = significand; |
| vfp_double_dump("pack: tiny number", vd); |
| #endif |
| if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1))) |
| underflow = 0; |
| } |
| |
| /* |
| * Select rounding increment. |
| */ |
| incr = 0; |
| rmode = fpscr & FPSCR_RMODE_MASK; |
| |
| if (rmode == FPSCR_ROUND_NEAREST) { |
| incr = 1ULL << VFP_DOUBLE_LOW_BITS; |
| if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0) |
| incr -= 1; |
| } else if (rmode == FPSCR_ROUND_TOZERO) { |
| incr = 0; |
| } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0)) |
| incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1; |
| |
| pr_debug("VFP: rounding increment = 0x%08llx\n", incr); |
| |
| /* |
| * Is our rounding going to overflow? |
| */ |
| if ((significand + incr) < significand) { |
| exponent += 1; |
| significand = (significand >> 1) | (significand & 1); |
| incr >>= 1; |
| #ifdef DEBUG |
| vd->exponent = exponent; |
| vd->significand = significand; |
| vfp_double_dump("pack: overflow", vd); |
| #endif |
| } |
| |
| /* |
| * If any of the low bits (which will be shifted out of the |
| * number) are non-zero, the result is inexact. |
| */ |
| if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1)) |
| exceptions |= FPSCR_IXC; |
| |
| /* |
| * Do our rounding. |
| */ |
| significand += incr; |
| |
| /* |
| * Infinity? |
| */ |
| if (exponent >= 2046) { |
| exceptions |= FPSCR_OFC | FPSCR_IXC; |
| if (incr == 0) { |
| vd->exponent = 2045; |
| vd->significand = 0x7fffffffffffffffULL; |
| } else { |
| vd->exponent = 2047; /* infinity */ |
| vd->significand = 0; |
| } |
| } else { |
| if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0) |
| exponent = 0; |
| if (exponent || significand > 0x8000000000000000ULL) |
| underflow = 0; |
| if (underflow) |
| exceptions |= FPSCR_UFC; |
| vd->exponent = exponent; |
| vd->significand = significand >> 1; |
| } |
| |
| pack: |
| vfp_double_dump("pack: final", vd); |
| { |
| s64 d = vfp_double_pack(vd); |
| pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func, |
| dd, d, exceptions); |
| vfp_put_double(dd, d); |
| } |
| return exceptions & ~VFP_NAN_FLAG; |
| } |
| |
| /* |
| * Propagate the NaN, setting exceptions if it is signalling. |
| * 'n' is always a NaN. 'm' may be a number, NaN or infinity. |
| */ |
| static u32 |
| vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn, |
| struct vfp_double *vdm, u32 fpscr) |
| { |
| struct vfp_double *nan; |
| int tn, tm = 0; |
| |
| tn = vfp_double_type(vdn); |
| |
| if (vdm) |
| tm = vfp_double_type(vdm); |
| |
| if (fpscr & FPSCR_DEFAULT_NAN) |
| /* |
| * Default NaN mode - always returns a quiet NaN |
| */ |
| nan = &vfp_double_default_qnan; |
| else { |
| /* |
| * Contemporary mode - select the first signalling |
| * NAN, or if neither are signalling, the first |
| * quiet NAN. |
| */ |
| if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) |
| nan = vdn; |
| else |
| nan = vdm; |
| /* |
| * Make the NaN quiet. |
| */ |
| nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; |
| } |
| |
| *vdd = *nan; |
| |
| /* |
| * If one was a signalling NAN, raise invalid operation. |
| */ |
| return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; |
| } |
| |
| /* |
| * Extended operations |
| */ |
| static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr) |
| { |
| vfp_put_double(dd, vfp_double_packed_abs(vfp_get_double(dm))); |
| return 0; |
| } |
| |
| static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr) |
| { |
| vfp_put_double(dd, vfp_get_double(dm)); |
| return 0; |
| } |
| |
| static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr) |
| { |
| vfp_put_double(dd, vfp_double_packed_negate(vfp_get_double(dm))); |
| return 0; |
| } |
| |
| static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr) |
| { |
| struct vfp_double vdm, vdd; |
| int ret, tm; |
| |
| vfp_double_unpack(&vdm, vfp_get_double(dm)); |
| tm = vfp_double_type(&vdm); |
| if (tm & (VFP_NAN|VFP_INFINITY)) { |
| struct vfp_double *vdp = &vdd; |
| |
| if (tm & VFP_NAN) |
| ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr); |
| else if (vdm.sign == 0) { |
| sqrt_copy: |
| vdp = &vdm; |
| ret = 0; |
| } else { |
| sqrt_invalid: |
| vdp = &vfp_double_default_qnan; |
| ret = FPSCR_IOC; |
| } |
| vfp_put_double(dd, vfp_double_pack(vdp)); |
| return ret; |
| } |
| |
| /* |
| * sqrt(+/- 0) == +/- 0 |
| */ |
| if (tm & VFP_ZERO) |
| goto sqrt_copy; |
| |
| /* |
| * Normalise a denormalised number |
| */ |
| if (tm & VFP_DENORMAL) |
| vfp_double_normalise_denormal(&vdm); |
| |
| /* |
| * sqrt(<0) = invalid |
| */ |
| if (vdm.sign) |
| goto sqrt_invalid; |
| |
| vfp_double_dump("sqrt", &vdm); |
| |
| /* |
| * Estimate the square root. |
| */ |
| vdd.sign = 0; |
| vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023; |
| vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31; |
| |
| vfp_double_dump("sqrt estimate1", &vdd); |
| |
| vdm.significand >>= 1 + (vdm.exponent & 1); |
| vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand); |
| |
| vfp_double_dump("sqrt estimate2", &vdd); |
| |
| /* |
| * And now adjust. |
| */ |
| if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) { |
| if (vdd.significand < 2) { |
| vdd.significand = ~0ULL; |
| } else { |
| u64 termh, terml, remh, reml; |
| vdm.significand <<= 2; |
| mul64to128(&termh, &terml, vdd.significand, vdd.significand); |
| sub128(&remh, &reml, vdm.significand, 0, termh, terml); |
| while ((s64)remh < 0) { |
| vdd.significand -= 1; |
| shift64left(&termh, &terml, vdd.significand); |
| terml |= 1; |
| add128(&remh, &reml, remh, reml, termh, terml); |
| } |
| vdd.significand |= (remh | reml) != 0; |
| } |
| } |
| vdd.significand = vfp_shiftright64jamming(vdd.significand, 1); |
| |
| return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt"); |
| } |
| |
| /* |
| * Equal := ZC |
| * Less than := N |
| * Greater than := C |
| * Unordered := CV |
| */ |
| static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr) |
| { |
| s64 d, m; |
| u32 ret = 0; |
| |
| m = vfp_get_double(dm); |
| if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) { |
| ret |= FPSCR_C | FPSCR_V; |
| if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) |
| /* |
| * Signalling NaN, or signalling on quiet NaN |
| */ |
| ret |= FPSCR_IOC; |
| } |
| |
| d = vfp_get_double(dd); |
| if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) { |
| ret |= FPSCR_C | FPSCR_V; |
| if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) |
| /* |
| * Signalling NaN, or signalling on quiet NaN |
| */ |
| ret |= FPSCR_IOC; |
| } |
| |
| if (ret == 0) { |
| if (d == m || vfp_double_packed_abs(d | m) == 0) { |
| /* |
| * equal |
| */ |
| ret |= FPSCR_Z | FPSCR_C; |
| } else if (vfp_double_packed_sign(d ^ m)) { |
| /* |
| * different signs |
| */ |
| if (vfp_double_packed_sign(d)) |
| /* |
| * d is negative, so d < m |
| */ |
| ret |= FPSCR_N; |
| else |
| /* |
| * d is positive, so d > m |
| */ |
| ret |= FPSCR_C; |
| } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) { |
| /* |
| * d < m |
| */ |
| ret |= FPSCR_N; |
| } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) { |
| /* |
| * d > m |
| */ |
| ret |= FPSCR_C; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr) |
| { |
| return vfp_compare(dd, 0, dm, fpscr); |
| } |
| |
| static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr) |
| { |
| return vfp_compare(dd, 1, dm, fpscr); |
| } |
| |
| static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr) |
| { |
| return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr); |
| } |
| |
| static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr) |
| { |
| return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr); |
| } |
| |
| static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr) |
| { |
| struct vfp_double vdm; |
| struct vfp_single vsd; |
| int tm; |
| u32 exceptions = 0; |
| |
| vfp_double_unpack(&vdm, vfp_get_double(dm)); |
| |
| tm = vfp_double_type(&vdm); |
| |
| /* |
| * If we have a signalling NaN, signal invalid operation. |
| */ |
| if (tm == VFP_SNAN) |
| exceptions = FPSCR_IOC; |
| |
| if (tm & VFP_DENORMAL) |
| vfp_double_normalise_denormal(&vdm); |
| |
| vsd.sign = vdm.sign; |
| vsd.significand = vfp_hi64to32jamming(vdm.significand); |
| |
| /* |
| * If we have an infinity or a NaN, the exponent must be 255 |
| */ |
| if (tm & (VFP_INFINITY|VFP_NAN)) { |
| vsd.exponent = 255; |
| if (tm & VFP_NAN) |
| vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN; |
| goto pack_nan; |
| } else if (tm & VFP_ZERO) |
| vsd.exponent = 0; |
| else |
| vsd.exponent = vdm.exponent - (1023 - 127); |
| |
| return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts"); |
| |
| pack_nan: |
| vfp_put_float(sd, vfp_single_pack(&vsd)); |
| return exceptions; |
| } |
| |
| static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr) |
| { |
| struct vfp_double vdm; |
| u32 m = vfp_get_float(dm); |
| |
| vdm.sign = 0; |
| vdm.exponent = 1023 + 63 - 1; |
| vdm.significand = (u64)m; |
| |
| return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito"); |
| } |
| |
| static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr) |
| { |
| struct vfp_double vdm; |
| u32 m = vfp_get_float(dm); |
| |
| vdm.sign = (m & 0x80000000) >> 16; |
| vdm.exponent = 1023 + 63 - 1; |
| vdm.significand = vdm.sign ? -m : m; |
| |
| return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito"); |
| } |
| |
| static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr) |
| { |
| struct vfp_double vdm; |
| u32 d, exceptions = 0; |
| int rmode = fpscr & FPSCR_RMODE_MASK; |
| int tm; |
| |
| vfp_double_unpack(&vdm, vfp_get_double(dm)); |
| |
| /* |
| * Do we have a denormalised number? |
| */ |
| tm = vfp_double_type(&vdm); |
| if (tm & VFP_DENORMAL) |
| exceptions |= FPSCR_IDC; |
| |
| if (tm & VFP_NAN) |
| vdm.sign = 0; |
| |
| if (vdm.exponent >= 1023 + 32) { |
| d = vdm.sign ? 0 : 0xffffffff; |
| exceptions = FPSCR_IOC; |
| } else if (vdm.exponent >= 1023 - 1) { |
| int shift = 1023 + 63 - vdm.exponent; |
| u64 rem, incr = 0; |
| |
| /* |
| * 2^0 <= m < 2^32-2^8 |
| */ |
| d = (vdm.significand << 1) >> shift; |
| rem = vdm.significand << (65 - shift); |
| |
| if (rmode == FPSCR_ROUND_NEAREST) { |
| incr = 0x8000000000000000ULL; |
| if ((d & 1) == 0) |
| incr -= 1; |
| } else if (rmode == FPSCR_ROUND_TOZERO) { |
| incr = 0; |
| } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { |
| incr = ~0ULL; |
| } |
| |
| if ((rem + incr) < rem) { |
| if (d < 0xffffffff) |
| d += 1; |
| else |
| exceptions |= FPSCR_IOC; |
| } |
| |
| if (d && vdm.sign) { |
| d = 0; |
| exceptions |= FPSCR_IOC; |
| } else if (rem) |
| exceptions |= FPSCR_IXC; |
| } else { |
| d = 0; |
| if (vdm.exponent | vdm.significand) { |
| exceptions |= FPSCR_IXC; |
| if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) |
| d = 1; |
| else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) { |
| d = 0; |
| exceptions |= FPSCR_IOC; |
| } |
| } |
| } |
| |
| pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); |
| |
| vfp_put_float(sd, d); |
| |
| return exceptions; |
| } |
| |
| static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr) |
| { |
| return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO); |
| } |
| |
| static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr) |
| { |
| struct vfp_double vdm; |
| u32 d, exceptions = 0; |
| int rmode = fpscr & FPSCR_RMODE_MASK; |
| |
| vfp_double_unpack(&vdm, vfp_get_double(dm)); |
| vfp_double_dump("VDM", &vdm); |
| |
| /* |
| * Do we have denormalised number? |
| */ |
| if (vfp_double_type(&vdm) & VFP_DENORMAL) |
| exceptions |= FPSCR_IDC; |
| |
| if (vdm.exponent >= 1023 + 32) { |
| d = 0x7fffffff; |
| if (vdm.sign) |
| d = ~d; |
| exceptions |= FPSCR_IOC; |
| } else if (vdm.exponent >= 1023 - 1) { |
| int shift = 1023 + 63 - vdm.exponent; /* 58 */ |
| u64 rem, incr = 0; |
| |
| d = (vdm.significand << 1) >> shift; |
| rem = vdm.significand << (65 - shift); |
| |
| if (rmode == FPSCR_ROUND_NEAREST) { |
| incr = 0x8000000000000000ULL; |
| if ((d & 1) == 0) |
| incr -= 1; |
| } else if (rmode == FPSCR_ROUND_TOZERO) { |
| incr = 0; |
| } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { |
| incr = ~0ULL; |
| } |
| |
| if ((rem + incr) < rem && d < 0xffffffff) |
| d += 1; |
| if (d > 0x7fffffff + (vdm.sign != 0)) { |
| d = 0x7fffffff + (vdm.sign != 0); |
| exceptions |= FPSCR_IOC; |
| } else if (rem) |
| exceptions |= FPSCR_IXC; |
| |
| if (vdm.sign) |
| d = -d; |
| } else { |
| d = 0; |
| if (vdm.exponent | vdm.significand) { |
| exceptions |= FPSCR_IXC; |
| if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) |
| d = 1; |
| else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) |
| d = -1; |
| } |
| } |
| |
| pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); |
| |
| vfp_put_float(sd, (s32)d); |
| |
| return exceptions; |
| } |
| |
| static u32 vfp_double_ftosiz(int dd, int unused, int dm, u32 fpscr) |
| { |
| return vfp_double_ftosi(dd, unused, dm, FPSCR_ROUND_TOZERO); |
| } |
| |
| |
| static u32 (* const fop_extfns[32])(int dd, int unused, int dm, u32 fpscr) = { |
| [FEXT_TO_IDX(FEXT_FCPY)] = vfp_double_fcpy, |
| [FEXT_TO_IDX(FEXT_FABS)] = vfp_double_fabs, |
| [FEXT_TO_IDX(FEXT_FNEG)] = vfp_double_fneg, |
| [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_double_fsqrt, |
| [FEXT_TO_IDX(FEXT_FCMP)] = vfp_double_fcmp, |
| [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_double_fcmpe, |
| [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_double_fcmpz, |
| [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_double_fcmpez, |
| [FEXT_TO_IDX(FEXT_FCVT)] = vfp_double_fcvts, |
| [FEXT_TO_IDX(FEXT_FUITO)] = vfp_double_fuito, |
| [FEXT_TO_IDX(FEXT_FSITO)] = vfp_double_fsito, |
| [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_double_ftoui, |
| [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_double_ftouiz, |
| [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_double_ftosi, |
| [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_double_ftosiz, |
| }; |
| |
| |
| |
| |
| static u32 |
| vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn, |
| struct vfp_double *vdm, u32 fpscr) |
| { |
| struct vfp_double *vdp; |
| u32 exceptions = 0; |
| int tn, tm; |
| |
| tn = vfp_double_type(vdn); |
| tm = vfp_double_type(vdm); |
| |
| if (tn & tm & VFP_INFINITY) { |
| /* |
| * Two infinities. Are they different signs? |
| */ |
| if (vdn->sign ^ vdm->sign) { |
| /* |
| * different signs -> invalid |
| */ |
| exceptions = FPSCR_IOC; |
| vdp = &vfp_double_default_qnan; |
| } else { |
| /* |
| * same signs -> valid |
| */ |
| vdp = vdn; |
| } |
| } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) { |
| /* |
| * One infinity and one number -> infinity |
| */ |
| vdp = vdn; |
| } else { |
| /* |
| * 'n' is a NaN of some type |
| */ |
| return vfp_propagate_nan(vdd, vdn, vdm, fpscr); |
| } |
| *vdd = *vdp; |
| return exceptions; |
| } |
| |
| static u32 |
| vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn, |
| struct vfp_double *vdm, u32 fpscr) |
| { |
| u32 exp_diff; |
| u64 m_sig; |
| |
| if (vdn->significand & (1ULL << 63) || |
| vdm->significand & (1ULL << 63)) { |
| pr_info("VFP: bad FP values in %s\n", __func__); |
| vfp_double_dump("VDN", vdn); |
| vfp_double_dump("VDM", vdm); |
| } |
| |
| /* |
| * Ensure that 'n' is the largest magnitude number. Note that |
| * if 'n' and 'm' have equal exponents, we do not swap them. |
| * This ensures that NaN propagation works correctly. |
| */ |
| if (vdn->exponent < vdm->exponent) { |
| struct vfp_double *t = vdn; |
| vdn = vdm; |
| vdm = t; |
| } |
| |
| /* |
| * Is 'n' an infinity or a NaN? Note that 'm' may be a number, |
| * infinity or a NaN here. |
| */ |
| if (vdn->exponent == 2047) |
| return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr); |
| |
| /* |
| * We have two proper numbers, where 'vdn' is the larger magnitude. |
| * |
| * Copy 'n' to 'd' before doing the arithmetic. |
| */ |
| *vdd = *vdn; |
| |
| /* |
| * Align 'm' with the result. |
| */ |
| exp_diff = vdn->exponent - vdm->exponent; |
| m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff); |
| |
| /* |
| * If the signs are different, we are really subtracting. |
| */ |
| if (vdn->sign ^ vdm->sign) { |
| m_sig = vdn->significand - m_sig; |
| if ((s64)m_sig < 0) { |
| vdd->sign = vfp_sign_negate(vdd->sign); |
| m_sig = -m_sig; |
| } else if (m_sig == 0) { |
| vdd->sign = (fpscr & FPSCR_RMODE_MASK) == |
| FPSCR_ROUND_MINUSINF ? 0x8000 : 0; |
| } |
| } else { |
| m_sig += vdn->significand; |
| } |
| vdd->significand = m_sig; |
| |
| return 0; |
| } |
| |
| static u32 |
| vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn, |
| struct vfp_double *vdm, u32 fpscr) |
| { |
| vfp_double_dump("VDN", vdn); |
| vfp_double_dump("VDM", vdm); |
| |
| /* |
| * Ensure that 'n' is the largest magnitude number. Note that |
| * if 'n' and 'm' have equal exponents, we do not swap them. |
| * This ensures that NaN propagation works correctly. |
| */ |
| if (vdn->exponent < vdm->exponent) { |
| struct vfp_double *t = vdn; |
| vdn = vdm; |
| vdm = t; |
| pr_debug("VFP: swapping M <-> N\n"); |
| } |
| |
| vdd->sign = vdn->sign ^ vdm->sign; |
| |
| /* |
| * If 'n' is an infinity or NaN, handle it. 'm' may be anything. |
| */ |
| if (vdn->exponent == 2047) { |
| if (vdn->significand || (vdm->exponent == 2047 && vdm->significand)) |
| return vfp_propagate_nan(vdd, vdn, vdm, fpscr); |
| if ((vdm->exponent | vdm->significand) == 0) { |
| *vdd = vfp_double_default_qnan; |
| return FPSCR_IOC; |
| } |
| vdd->exponent = vdn->exponent; |
| vdd->significand = 0; |
| return 0; |
| } |
| |
| /* |
| * If 'm' is zero, the result is always zero. In this case, |
| * 'n' may be zero or a number, but it doesn't matter which. |
| */ |
| if ((vdm->exponent | vdm->significand) == 0) { |
| vdd->exponent = 0; |
| vdd->significand = 0; |
| return 0; |
| } |
| |
| /* |
| * We add 2 to the destination exponent for the same reason |
| * as the addition case - though this time we have +1 from |
| * each input operand. |
| */ |
| vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2; |
| vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand); |
| |
| vfp_double_dump("VDD", vdd); |
| return 0; |
| } |
| |
| #define NEG_MULTIPLY (1 << 0) |
| #define NEG_SUBTRACT (1 << 1) |
| |
| static u32 |
| vfp_double_multiply_accumulate(int dd, int dn, int dm, u32 fpscr, u32 negate, char *func) |
| { |
| struct vfp_double vdd, vdp, vdn, vdm; |
| u32 exceptions; |
| |
| vfp_double_unpack(&vdn, vfp_get_double(dn)); |
| if (vdn.exponent == 0 && vdn.significand) |
| vfp_double_normalise_denormal(&vdn); |
| |
| vfp_double_unpack(&vdm, vfp_get_double(dm)); |
| if (vdm.exponent == 0 && vdm.significand) |
| vfp_double_normalise_denormal(&vdm); |
| |
| exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr); |
| if (negate & NEG_MULTIPLY) |
| vdp.sign = vfp_sign_negate(vdp.sign); |
| |
| vfp_double_unpack(&vdn, vfp_get_double(dd)); |
| if (negate & NEG_SUBTRACT) |
| vdn.sign = vfp_sign_negate(vdn.sign); |
| |
| exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr); |
| |
| return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, func); |
| } |
| |
| /* |
| * Standard operations |
| */ |
| |
| /* |
| * sd = sd + (sn * sm) |
| */ |
| static u32 vfp_double_fmac(int dd, int dn, int dm, u32 fpscr) |
| { |
| return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, 0, "fmac"); |
| } |
| |
| /* |
| * sd = sd - (sn * sm) |
| */ |
| static u32 vfp_double_fnmac(int dd, int dn, int dm, u32 fpscr) |
| { |
| return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac"); |
| } |
| |
| /* |
| * sd = -sd + (sn * sm) |
| */ |
| static u32 vfp_double_fmsc(int dd, int dn, int dm, u32 fpscr) |
| { |
| return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc"); |
| } |
| |
| /* |
| * sd = -sd - (sn * sm) |
| */ |
| static u32 vfp_double_fnmsc(int dd, int dn, int dm, u32 fpscr) |
| { |
| return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc"); |
| } |
| |
| /* |
| * sd = sn * sm |
| */ |
| static u32 vfp_double_fmul(int dd, int dn, int dm, u32 fpscr) |
| { |
| struct vfp_double vdd, vdn, vdm; |
| u32 exceptions; |
| |
| vfp_double_unpack(&vdn, vfp_get_double(dn)); |
| if (vdn.exponent == 0 && vdn.significand) |
| vfp_double_normalise_denormal(&vdn); |
| |
| vfp_double_unpack(&vdm, vfp_get_double(dm)); |
| if (vdm.exponent == 0 && vdm.significand) |
| vfp_double_normalise_denormal(&vdm); |
| |
| exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr); |
| return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fmul"); |
| } |
| |
| /* |
| * sd = -(sn * sm) |
| */ |
| static u32 vfp_double_fnmul(int dd, int dn, int dm, u32 fpscr) |
| { |
| struct vfp_double vdd, vdn, vdm; |
| u32 exceptions; |
| |
| vfp_double_unpack(&vdn, vfp_get_double(dn)); |
| if (vdn.exponent == 0 && vdn.significand) |
| vfp_double_normalise_denormal(&vdn); |
| |
| vfp_double_unpack(&vdm, vfp_get_double(dm)); |
| if (vdm.exponent == 0 && vdm.significand) |
| vfp_double_normalise_denormal(&vdm); |
| |
| exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr); |
| vdd.sign = vfp_sign_negate(vdd.sign); |
| |
| return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fnmul"); |
| } |
| |
| /* |
| * sd = sn + sm |
| */ |
| static u32 vfp_double_fadd(int dd, int dn, int dm, u32 fpscr) |
| { |
| struct vfp_double vdd, vdn, vdm; |
| u32 exceptions; |
| |
| vfp_double_unpack(&vdn, vfp_get_double(dn)); |
| if (vdn.exponent == 0 && vdn.significand) |
| vfp_double_normalise_denormal(&vdn); |
| |
| vfp_double_unpack(&vdm, vfp_get_double(dm)); |
| if (vdm.exponent == 0 && vdm.significand) |
| vfp_double_normalise_denormal(&vdm); |
| |
| exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr); |
| |
| return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fadd"); |
| } |
| |
| /* |
| * sd = sn - sm |
| */ |
| static u32 vfp_double_fsub(int dd, int dn, int dm, u32 fpscr) |
| { |
| struct vfp_double vdd, vdn, vdm; |
| u32 exceptions; |
| |
| vfp_double_unpack(&vdn, vfp_get_double(dn)); |
| if (vdn.exponent == 0 && vdn.significand) |
| vfp_double_normalise_denormal(&vdn); |
| |
| vfp_double_unpack(&vdm, vfp_get_double(dm)); |
| if (vdm.exponent == 0 && vdm.significand) |
| vfp_double_normalise_denormal(&vdm); |
| |
| /* |
| * Subtraction is like addition, but with a negated operand. |
| */ |
| vdm.sign = vfp_sign_negate(vdm.sign); |
| |
| exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr); |
| |
| return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fsub"); |
| } |
| |
| /* |
| * sd = sn / sm |
| */ |
| static u32 vfp_double_fdiv(int dd, int dn, int dm, u32 fpscr) |
| { |
| struct vfp_double vdd, vdn, vdm; |
| u32 exceptions = 0; |
| int tm, tn; |
| |
| vfp_double_unpack(&vdn, vfp_get_double(dn)); |
| vfp_double_unpack(&vdm, vfp_get_double(dm)); |
| |
| vdd.sign = vdn.sign ^ vdm.sign; |
| |
| tn = vfp_double_type(&vdn); |
| tm = vfp_double_type(&vdm); |
| |
| /* |
| * Is n a NAN? |
| */ |
| if (tn & VFP_NAN) |
| goto vdn_nan; |
| |
| /* |
| * Is m a NAN? |
| */ |
| if (tm & VFP_NAN) |
| goto vdm_nan; |
| |
| /* |
| * If n and m are infinity, the result is invalid |
| * If n and m are zero, the result is invalid |
| */ |
| if (tm & tn & (VFP_INFINITY|VFP_ZERO)) |
| goto invalid; |
| |
| /* |
| * If n is infinity, the result is infinity |
| */ |
| if (tn & VFP_INFINITY) |
| goto infinity; |
| |
| /* |
| * If m is zero, raise div0 exceptions |
| */ |
| if (tm & VFP_ZERO) |
| goto divzero; |
| |
| /* |
| * If m is infinity, or n is zero, the result is zero |
| */ |
| if (tm & VFP_INFINITY || tn & VFP_ZERO) |
| goto zero; |
| |
| if (tn & VFP_DENORMAL) |
| vfp_double_normalise_denormal(&vdn); |
| if (tm & VFP_DENORMAL) |
| vfp_double_normalise_denormal(&vdm); |
| |
| /* |
| * Ok, we have two numbers, we can perform division. |
| */ |
| vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1; |
| vdm.significand <<= 1; |
| if (vdm.significand <= (2 * vdn.significand)) { |
| vdn.significand >>= 1; |
| vdd.exponent++; |
| } |
| vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand); |
| if ((vdd.significand & 0x1ff) <= 2) { |
| u64 termh, terml, remh, reml; |
| mul64to128(&termh, &terml, vdm.significand, vdd.significand); |
| sub128(&remh, &reml, vdn.significand, 0, termh, terml); |
| while ((s64)remh < 0) { |
| vdd.significand -= 1; |
| add128(&remh, &reml, remh, reml, 0, vdm.significand); |
| } |
| vdd.significand |= (reml != 0); |
| } |
| return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fdiv"); |
| |
| vdn_nan: |
| exceptions = vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr); |
| pack: |
| vfp_put_double(dd, vfp_double_pack(&vdd)); |
| return exceptions; |
| |
| vdm_nan: |
| exceptions = vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr); |
| goto pack; |
| |
| zero: |
| vdd.exponent = 0; |
| vdd.significand = 0; |
| goto pack; |
| |
| divzero: |
| exceptions = FPSCR_DZC; |
| infinity: |
| vdd.exponent = 2047; |
| vdd.significand = 0; |
| goto pack; |
| |
| invalid: |
| vfp_put_double(dd, vfp_double_pack(&vfp_double_default_qnan)); |
| return FPSCR_IOC; |
| } |
| |
| static u32 (* const fop_fns[16])(int dd, int dn, int dm, u32 fpscr) = { |
| [FOP_TO_IDX(FOP_FMAC)] = vfp_double_fmac, |
| [FOP_TO_IDX(FOP_FNMAC)] = vfp_double_fnmac, |
| [FOP_TO_IDX(FOP_FMSC)] = vfp_double_fmsc, |
| [FOP_TO_IDX(FOP_FNMSC)] = vfp_double_fnmsc, |
| [FOP_TO_IDX(FOP_FMUL)] = vfp_double_fmul, |
| [FOP_TO_IDX(FOP_FNMUL)] = vfp_double_fnmul, |
| [FOP_TO_IDX(FOP_FADD)] = vfp_double_fadd, |
| [FOP_TO_IDX(FOP_FSUB)] = vfp_double_fsub, |
| [FOP_TO_IDX(FOP_FDIV)] = vfp_double_fdiv, |
| }; |
| |
| #define FREG_BANK(x) ((x) & 0x0c) |
| #define FREG_IDX(x) ((x) & 3) |
| |
| u32 vfp_double_cpdo(u32 inst, u32 fpscr) |
| { |
| u32 op = inst & FOP_MASK; |
| u32 exceptions = 0; |
| unsigned int dd = vfp_get_sd(inst); |
| unsigned int dn = vfp_get_sn(inst); |
| unsigned int dm = vfp_get_sm(inst); |
| unsigned int vecitr, veclen, vecstride; |
| u32 (*fop)(int, int, s32, u32); |
| |
| veclen = fpscr & FPSCR_LENGTH_MASK; |
| vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK)) * 2; |
| |
| /* |
| * If destination bank is zero, vector length is always '1'. |
| * ARM DDI0100F C5.1.3, C5.3.2. |
| */ |
| if (FREG_BANK(dd) == 0) |
| veclen = 0; |
| |
| pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride, |
| (veclen >> FPSCR_LENGTH_BIT) + 1); |
| |
| fop = (op == FOP_EXT) ? fop_extfns[dn] : fop_fns[FOP_TO_IDX(op)]; |
| if (!fop) |
| goto invalid; |
| |
| for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) { |
| u32 except; |
| |
| if (op == FOP_EXT) |
| pr_debug("VFP: itr%d (d%u.%u) = op[%u] (d%u.%u)\n", |
| vecitr >> FPSCR_LENGTH_BIT, |
| dd >> 1, dd & 1, dn, |
| dm >> 1, dm & 1); |
| else |
| pr_debug("VFP: itr%d (d%u.%u) = (d%u.%u) op[%u] (d%u.%u)\n", |
| vecitr >> FPSCR_LENGTH_BIT, |
| dd >> 1, dd & 1, |
| dn >> 1, dn & 1, |
| FOP_TO_IDX(op), |
| dm >> 1, dm & 1); |
| |
| except = fop(dd, dn, dm, fpscr); |
| pr_debug("VFP: itr%d: exceptions=%08x\n", |
| vecitr >> FPSCR_LENGTH_BIT, except); |
| |
| exceptions |= except; |
| |
| /* |
| * This ensures that comparisons only operate on scalars; |
| * comparisons always return with one FPSCR status bit set. |
| */ |
| if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) |
| break; |
| |
| /* |
| * CHECK: It appears to be undefined whether we stop when |
| * we encounter an exception. We continue. |
| */ |
| |
| dd = FREG_BANK(dd) + ((FREG_IDX(dd) + vecstride) & 6); |
| dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 6); |
| if (FREG_BANK(dm) != 0) |
| dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 6); |
| } |
| return exceptions; |
| |
| invalid: |
| return ~0; |
| } |