| /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */ |
| /* |
| Copyright (c) 2001, 2002 by D-Link Corporation |
| Written by Edward Peng.<edward_peng@dlink.com.tw> |
| Created 03-May-2001, base on Linux' sundance.c. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| */ |
| |
| #define DRV_NAME "DL2000/TC902x-based linux driver" |
| #define DRV_VERSION "v1.19" |
| #define DRV_RELDATE "2007/08/12" |
| #include "dl2k.h" |
| #include <linux/dma-mapping.h> |
| |
| static char version[] __devinitdata = |
| KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n"; |
| #define MAX_UNITS 8 |
| static int mtu[MAX_UNITS]; |
| static int vlan[MAX_UNITS]; |
| static int jumbo[MAX_UNITS]; |
| static char *media[MAX_UNITS]; |
| static int tx_flow=-1; |
| static int rx_flow=-1; |
| static int copy_thresh; |
| static int rx_coalesce=10; /* Rx frame count each interrupt */ |
| static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */ |
| static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */ |
| |
| |
| MODULE_AUTHOR ("Edward Peng"); |
| MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter"); |
| MODULE_LICENSE("GPL"); |
| module_param_array(mtu, int, NULL, 0); |
| module_param_array(media, charp, NULL, 0); |
| module_param_array(vlan, int, NULL, 0); |
| module_param_array(jumbo, int, NULL, 0); |
| module_param(tx_flow, int, 0); |
| module_param(rx_flow, int, 0); |
| module_param(copy_thresh, int, 0); |
| module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */ |
| module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */ |
| module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */ |
| |
| |
| /* Enable the default interrupts */ |
| #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \ |
| UpdateStats | LinkEvent) |
| #define EnableInt() \ |
| writew(DEFAULT_INTR, ioaddr + IntEnable) |
| |
| static const int max_intrloop = 50; |
| static const int multicast_filter_limit = 0x40; |
| |
| static int rio_open (struct net_device *dev); |
| static void rio_timer (unsigned long data); |
| static void rio_tx_timeout (struct net_device *dev); |
| static void alloc_list (struct net_device *dev); |
| static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev); |
| static irqreturn_t rio_interrupt (int irq, void *dev_instance); |
| static void rio_free_tx (struct net_device *dev, int irq); |
| static void tx_error (struct net_device *dev, int tx_status); |
| static int receive_packet (struct net_device *dev); |
| static void rio_error (struct net_device *dev, int int_status); |
| static int change_mtu (struct net_device *dev, int new_mtu); |
| static void set_multicast (struct net_device *dev); |
| static struct net_device_stats *get_stats (struct net_device *dev); |
| static int clear_stats (struct net_device *dev); |
| static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd); |
| static int rio_close (struct net_device *dev); |
| static int find_miiphy (struct net_device *dev); |
| static int parse_eeprom (struct net_device *dev); |
| static int read_eeprom (long ioaddr, int eep_addr); |
| static int mii_wait_link (struct net_device *dev, int wait); |
| static int mii_set_media (struct net_device *dev); |
| static int mii_get_media (struct net_device *dev); |
| static int mii_set_media_pcs (struct net_device *dev); |
| static int mii_get_media_pcs (struct net_device *dev); |
| static int mii_read (struct net_device *dev, int phy_addr, int reg_num); |
| static int mii_write (struct net_device *dev, int phy_addr, int reg_num, |
| u16 data); |
| |
| static const struct ethtool_ops ethtool_ops; |
| |
| static const struct net_device_ops netdev_ops = { |
| .ndo_open = rio_open, |
| .ndo_start_xmit = start_xmit, |
| .ndo_stop = rio_close, |
| .ndo_get_stats = get_stats, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_mac_address = eth_mac_addr, |
| .ndo_set_multicast_list = set_multicast, |
| .ndo_do_ioctl = rio_ioctl, |
| .ndo_tx_timeout = rio_tx_timeout, |
| .ndo_change_mtu = change_mtu, |
| }; |
| |
| static int __devinit |
| rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| struct net_device *dev; |
| struct netdev_private *np; |
| static int card_idx; |
| int chip_idx = ent->driver_data; |
| int err, irq; |
| long ioaddr; |
| static int version_printed; |
| void *ring_space; |
| dma_addr_t ring_dma; |
| |
| if (!version_printed++) |
| printk ("%s", version); |
| |
| err = pci_enable_device (pdev); |
| if (err) |
| return err; |
| |
| irq = pdev->irq; |
| err = pci_request_regions (pdev, "dl2k"); |
| if (err) |
| goto err_out_disable; |
| |
| pci_set_master (pdev); |
| dev = alloc_etherdev (sizeof (*np)); |
| if (!dev) { |
| err = -ENOMEM; |
| goto err_out_res; |
| } |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| #ifdef MEM_MAPPING |
| ioaddr = pci_resource_start (pdev, 1); |
| ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE); |
| if (!ioaddr) { |
| err = -ENOMEM; |
| goto err_out_dev; |
| } |
| #else |
| ioaddr = pci_resource_start (pdev, 0); |
| #endif |
| dev->base_addr = ioaddr; |
| dev->irq = irq; |
| np = netdev_priv(dev); |
| np->chip_id = chip_idx; |
| np->pdev = pdev; |
| spin_lock_init (&np->tx_lock); |
| spin_lock_init (&np->rx_lock); |
| |
| /* Parse manual configuration */ |
| np->an_enable = 1; |
| np->tx_coalesce = 1; |
| if (card_idx < MAX_UNITS) { |
| if (media[card_idx] != NULL) { |
| np->an_enable = 0; |
| if (strcmp (media[card_idx], "auto") == 0 || |
| strcmp (media[card_idx], "autosense") == 0 || |
| strcmp (media[card_idx], "0") == 0 ) { |
| np->an_enable = 2; |
| } else if (strcmp (media[card_idx], "100mbps_fd") == 0 || |
| strcmp (media[card_idx], "4") == 0) { |
| np->speed = 100; |
| np->full_duplex = 1; |
| } else if (strcmp (media[card_idx], "100mbps_hd") == 0 || |
| strcmp (media[card_idx], "3") == 0) { |
| np->speed = 100; |
| np->full_duplex = 0; |
| } else if (strcmp (media[card_idx], "10mbps_fd") == 0 || |
| strcmp (media[card_idx], "2") == 0) { |
| np->speed = 10; |
| np->full_duplex = 1; |
| } else if (strcmp (media[card_idx], "10mbps_hd") == 0 || |
| strcmp (media[card_idx], "1") == 0) { |
| np->speed = 10; |
| np->full_duplex = 0; |
| } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 || |
| strcmp (media[card_idx], "6") == 0) { |
| np->speed=1000; |
| np->full_duplex=1; |
| } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 || |
| strcmp (media[card_idx], "5") == 0) { |
| np->speed = 1000; |
| np->full_duplex = 0; |
| } else { |
| np->an_enable = 1; |
| } |
| } |
| if (jumbo[card_idx] != 0) { |
| np->jumbo = 1; |
| dev->mtu = MAX_JUMBO; |
| } else { |
| np->jumbo = 0; |
| if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE) |
| dev->mtu = mtu[card_idx]; |
| } |
| np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ? |
| vlan[card_idx] : 0; |
| if (rx_coalesce > 0 && rx_timeout > 0) { |
| np->rx_coalesce = rx_coalesce; |
| np->rx_timeout = rx_timeout; |
| np->coalesce = 1; |
| } |
| np->tx_flow = (tx_flow == 0) ? 0 : 1; |
| np->rx_flow = (rx_flow == 0) ? 0 : 1; |
| |
| if (tx_coalesce < 1) |
| tx_coalesce = 1; |
| else if (tx_coalesce > TX_RING_SIZE-1) |
| tx_coalesce = TX_RING_SIZE - 1; |
| } |
| dev->netdev_ops = &netdev_ops; |
| dev->watchdog_timeo = TX_TIMEOUT; |
| SET_ETHTOOL_OPS(dev, ðtool_ops); |
| #if 0 |
| dev->features = NETIF_F_IP_CSUM; |
| #endif |
| pci_set_drvdata (pdev, dev); |
| |
| ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma); |
| if (!ring_space) |
| goto err_out_iounmap; |
| np->tx_ring = (struct netdev_desc *) ring_space; |
| np->tx_ring_dma = ring_dma; |
| |
| ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma); |
| if (!ring_space) |
| goto err_out_unmap_tx; |
| np->rx_ring = (struct netdev_desc *) ring_space; |
| np->rx_ring_dma = ring_dma; |
| |
| /* Parse eeprom data */ |
| parse_eeprom (dev); |
| |
| /* Find PHY address */ |
| err = find_miiphy (dev); |
| if (err) |
| goto err_out_unmap_rx; |
| |
| /* Fiber device? */ |
| np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0; |
| np->link_status = 0; |
| /* Set media and reset PHY */ |
| if (np->phy_media) { |
| /* default Auto-Negotiation for fiber deivices */ |
| if (np->an_enable == 2) { |
| np->an_enable = 1; |
| } |
| mii_set_media_pcs (dev); |
| } else { |
| /* Auto-Negotiation is mandatory for 1000BASE-T, |
| IEEE 802.3ab Annex 28D page 14 */ |
| if (np->speed == 1000) |
| np->an_enable = 1; |
| mii_set_media (dev); |
| } |
| |
| err = register_netdev (dev); |
| if (err) |
| goto err_out_unmap_rx; |
| |
| card_idx++; |
| |
| printk (KERN_INFO "%s: %s, %pM, IRQ %d\n", |
| dev->name, np->name, dev->dev_addr, irq); |
| if (tx_coalesce > 1) |
| printk(KERN_INFO "tx_coalesce:\t%d packets\n", |
| tx_coalesce); |
| if (np->coalesce) |
| printk(KERN_INFO |
| "rx_coalesce:\t%d packets\n" |
| "rx_timeout: \t%d ns\n", |
| np->rx_coalesce, np->rx_timeout*640); |
| if (np->vlan) |
| printk(KERN_INFO "vlan(id):\t%d\n", np->vlan); |
| return 0; |
| |
| err_out_unmap_rx: |
| pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); |
| err_out_unmap_tx: |
| pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); |
| err_out_iounmap: |
| #ifdef MEM_MAPPING |
| iounmap ((void *) ioaddr); |
| |
| err_out_dev: |
| #endif |
| free_netdev (dev); |
| |
| err_out_res: |
| pci_release_regions (pdev); |
| |
| err_out_disable: |
| pci_disable_device (pdev); |
| return err; |
| } |
| |
| static int |
| find_miiphy (struct net_device *dev) |
| { |
| int i, phy_found = 0; |
| struct netdev_private *np; |
| long ioaddr; |
| np = netdev_priv(dev); |
| ioaddr = dev->base_addr; |
| np->phy_addr = 1; |
| |
| for (i = 31; i >= 0; i--) { |
| int mii_status = mii_read (dev, i, 1); |
| if (mii_status != 0xffff && mii_status != 0x0000) { |
| np->phy_addr = i; |
| phy_found++; |
| } |
| } |
| if (!phy_found) { |
| printk (KERN_ERR "%s: No MII PHY found!\n", dev->name); |
| return -ENODEV; |
| } |
| return 0; |
| } |
| |
| static int |
| parse_eeprom (struct net_device *dev) |
| { |
| int i, j; |
| long ioaddr = dev->base_addr; |
| u8 sromdata[256]; |
| u8 *psib; |
| u32 crc; |
| PSROM_t psrom = (PSROM_t) sromdata; |
| struct netdev_private *np = netdev_priv(dev); |
| |
| int cid, next; |
| |
| #ifdef MEM_MAPPING |
| ioaddr = pci_resource_start (np->pdev, 0); |
| #endif |
| /* Read eeprom */ |
| for (i = 0; i < 128; i++) { |
| ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i)); |
| } |
| #ifdef MEM_MAPPING |
| ioaddr = dev->base_addr; |
| #endif |
| if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */ |
| /* Check CRC */ |
| crc = ~ether_crc_le (256 - 4, sromdata); |
| if (psrom->crc != crc) { |
| printk (KERN_ERR "%s: EEPROM data CRC error.\n", |
| dev->name); |
| return -1; |
| } |
| } |
| |
| /* Set MAC address */ |
| for (i = 0; i < 6; i++) |
| dev->dev_addr[i] = psrom->mac_addr[i]; |
| |
| if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) { |
| return 0; |
| } |
| |
| /* Parse Software Information Block */ |
| i = 0x30; |
| psib = (u8 *) sromdata; |
| do { |
| cid = psib[i++]; |
| next = psib[i++]; |
| if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) { |
| printk (KERN_ERR "Cell data error\n"); |
| return -1; |
| } |
| switch (cid) { |
| case 0: /* Format version */ |
| break; |
| case 1: /* End of cell */ |
| return 0; |
| case 2: /* Duplex Polarity */ |
| np->duplex_polarity = psib[i]; |
| writeb (readb (ioaddr + PhyCtrl) | psib[i], |
| ioaddr + PhyCtrl); |
| break; |
| case 3: /* Wake Polarity */ |
| np->wake_polarity = psib[i]; |
| break; |
| case 9: /* Adapter description */ |
| j = (next - i > 255) ? 255 : next - i; |
| memcpy (np->name, &(psib[i]), j); |
| break; |
| case 4: |
| case 5: |
| case 6: |
| case 7: |
| case 8: /* Reversed */ |
| break; |
| default: /* Unknown cell */ |
| return -1; |
| } |
| i = next; |
| } while (1); |
| |
| return 0; |
| } |
| |
| static int |
| rio_open (struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| long ioaddr = dev->base_addr; |
| int i; |
| u16 macctrl; |
| |
| i = request_irq (dev->irq, rio_interrupt, IRQF_SHARED, dev->name, dev); |
| if (i) |
| return i; |
| |
| /* Reset all logic functions */ |
| writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset, |
| ioaddr + ASICCtrl + 2); |
| mdelay(10); |
| |
| /* DebugCtrl bit 4, 5, 9 must set */ |
| writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl); |
| |
| /* Jumbo frame */ |
| if (np->jumbo != 0) |
| writew (MAX_JUMBO+14, ioaddr + MaxFrameSize); |
| |
| alloc_list (dev); |
| |
| /* Get station address */ |
| for (i = 0; i < 6; i++) |
| writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i); |
| |
| set_multicast (dev); |
| if (np->coalesce) { |
| writel (np->rx_coalesce | np->rx_timeout << 16, |
| ioaddr + RxDMAIntCtrl); |
| } |
| /* Set RIO to poll every N*320nsec. */ |
| writeb (0x20, ioaddr + RxDMAPollPeriod); |
| writeb (0xff, ioaddr + TxDMAPollPeriod); |
| writeb (0x30, ioaddr + RxDMABurstThresh); |
| writeb (0x30, ioaddr + RxDMAUrgentThresh); |
| writel (0x0007ffff, ioaddr + RmonStatMask); |
| /* clear statistics */ |
| clear_stats (dev); |
| |
| /* VLAN supported */ |
| if (np->vlan) { |
| /* priority field in RxDMAIntCtrl */ |
| writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10, |
| ioaddr + RxDMAIntCtrl); |
| /* VLANId */ |
| writew (np->vlan, ioaddr + VLANId); |
| /* Length/Type should be 0x8100 */ |
| writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag); |
| /* Enable AutoVLANuntagging, but disable AutoVLANtagging. |
| VLAN information tagged by TFC' VID, CFI fields. */ |
| writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging, |
| ioaddr + MACCtrl); |
| } |
| |
| init_timer (&np->timer); |
| np->timer.expires = jiffies + 1*HZ; |
| np->timer.data = (unsigned long) dev; |
| np->timer.function = &rio_timer; |
| add_timer (&np->timer); |
| |
| /* Start Tx/Rx */ |
| writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable, |
| ioaddr + MACCtrl); |
| |
| macctrl = 0; |
| macctrl |= (np->vlan) ? AutoVLANuntagging : 0; |
| macctrl |= (np->full_duplex) ? DuplexSelect : 0; |
| macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0; |
| macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0; |
| writew(macctrl, ioaddr + MACCtrl); |
| |
| netif_start_queue (dev); |
| |
| /* Enable default interrupts */ |
| EnableInt (); |
| return 0; |
| } |
| |
| static void |
| rio_timer (unsigned long data) |
| { |
| struct net_device *dev = (struct net_device *)data; |
| struct netdev_private *np = netdev_priv(dev); |
| unsigned int entry; |
| int next_tick = 1*HZ; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&np->rx_lock, flags); |
| /* Recover rx ring exhausted error */ |
| if (np->cur_rx - np->old_rx >= RX_RING_SIZE) { |
| printk(KERN_INFO "Try to recover rx ring exhausted...\n"); |
| /* Re-allocate skbuffs to fill the descriptor ring */ |
| for (; np->cur_rx - np->old_rx > 0; np->old_rx++) { |
| struct sk_buff *skb; |
| entry = np->old_rx % RX_RING_SIZE; |
| /* Dropped packets don't need to re-allocate */ |
| if (np->rx_skbuff[entry] == NULL) { |
| skb = netdev_alloc_skb_ip_align(dev, |
| np->rx_buf_sz); |
| if (skb == NULL) { |
| np->rx_ring[entry].fraginfo = 0; |
| printk (KERN_INFO |
| "%s: Still unable to re-allocate Rx skbuff.#%d\n", |
| dev->name, entry); |
| break; |
| } |
| np->rx_skbuff[entry] = skb; |
| np->rx_ring[entry].fraginfo = |
| cpu_to_le64 (pci_map_single |
| (np->pdev, skb->data, np->rx_buf_sz, |
| PCI_DMA_FROMDEVICE)); |
| } |
| np->rx_ring[entry].fraginfo |= |
| cpu_to_le64((u64)np->rx_buf_sz << 48); |
| np->rx_ring[entry].status = 0; |
| } /* end for */ |
| } /* end if */ |
| spin_unlock_irqrestore (&np->rx_lock, flags); |
| np->timer.expires = jiffies + next_tick; |
| add_timer(&np->timer); |
| } |
| |
| static void |
| rio_tx_timeout (struct net_device *dev) |
| { |
| long ioaddr = dev->base_addr; |
| |
| printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n", |
| dev->name, readl (ioaddr + TxStatus)); |
| rio_free_tx(dev, 0); |
| dev->if_port = 0; |
| dev->trans_start = jiffies; /* prevent tx timeout */ |
| } |
| |
| /* allocate and initialize Tx and Rx descriptors */ |
| static void |
| alloc_list (struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int i; |
| |
| np->cur_rx = np->cur_tx = 0; |
| np->old_rx = np->old_tx = 0; |
| np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32); |
| |
| /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */ |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| np->tx_skbuff[i] = NULL; |
| np->tx_ring[i].status = cpu_to_le64 (TFDDone); |
| np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma + |
| ((i+1)%TX_RING_SIZE) * |
| sizeof (struct netdev_desc)); |
| } |
| |
| /* Initialize Rx descriptors */ |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma + |
| ((i + 1) % RX_RING_SIZE) * |
| sizeof (struct netdev_desc)); |
| np->rx_ring[i].status = 0; |
| np->rx_ring[i].fraginfo = 0; |
| np->rx_skbuff[i] = NULL; |
| } |
| |
| /* Allocate the rx buffers */ |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| /* Allocated fixed size of skbuff */ |
| struct sk_buff *skb; |
| |
| skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz); |
| np->rx_skbuff[i] = skb; |
| if (skb == NULL) { |
| printk (KERN_ERR |
| "%s: alloc_list: allocate Rx buffer error! ", |
| dev->name); |
| break; |
| } |
| /* Rubicon now supports 40 bits of addressing space. */ |
| np->rx_ring[i].fraginfo = |
| cpu_to_le64 ( pci_map_single ( |
| np->pdev, skb->data, np->rx_buf_sz, |
| PCI_DMA_FROMDEVICE)); |
| np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48); |
| } |
| |
| /* Set RFDListPtr */ |
| writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0); |
| writel (0, dev->base_addr + RFDListPtr1); |
| |
| return; |
| } |
| |
| static netdev_tx_t |
| start_xmit (struct sk_buff *skb, struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| struct netdev_desc *txdesc; |
| unsigned entry; |
| u32 ioaddr; |
| u64 tfc_vlan_tag = 0; |
| |
| if (np->link_status == 0) { /* Link Down */ |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; |
| } |
| ioaddr = dev->base_addr; |
| entry = np->cur_tx % TX_RING_SIZE; |
| np->tx_skbuff[entry] = skb; |
| txdesc = &np->tx_ring[entry]; |
| |
| #if 0 |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| txdesc->status |= |
| cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable | |
| IPChecksumEnable); |
| } |
| #endif |
| if (np->vlan) { |
| tfc_vlan_tag = VLANTagInsert | |
| ((u64)np->vlan << 32) | |
| ((u64)skb->priority << 45); |
| } |
| txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data, |
| skb->len, |
| PCI_DMA_TODEVICE)); |
| txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48); |
| |
| /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode |
| * Work around: Always use 1 descriptor in 10Mbps mode */ |
| if (entry % np->tx_coalesce == 0 || np->speed == 10) |
| txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag | |
| WordAlignDisable | |
| TxDMAIndicate | |
| (1 << FragCountShift)); |
| else |
| txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag | |
| WordAlignDisable | |
| (1 << FragCountShift)); |
| |
| /* TxDMAPollNow */ |
| writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl); |
| /* Schedule ISR */ |
| writel(10000, ioaddr + CountDown); |
| np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE; |
| if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE |
| < TX_QUEUE_LEN - 1 && np->speed != 10) { |
| /* do nothing */ |
| } else if (!netif_queue_stopped(dev)) { |
| netif_stop_queue (dev); |
| } |
| |
| /* The first TFDListPtr */ |
| if (readl (dev->base_addr + TFDListPtr0) == 0) { |
| writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc), |
| dev->base_addr + TFDListPtr0); |
| writel (0, dev->base_addr + TFDListPtr1); |
| } |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static irqreturn_t |
| rio_interrupt (int irq, void *dev_instance) |
| { |
| struct net_device *dev = dev_instance; |
| struct netdev_private *np; |
| unsigned int_status; |
| long ioaddr; |
| int cnt = max_intrloop; |
| int handled = 0; |
| |
| ioaddr = dev->base_addr; |
| np = netdev_priv(dev); |
| while (1) { |
| int_status = readw (ioaddr + IntStatus); |
| writew (int_status, ioaddr + IntStatus); |
| int_status &= DEFAULT_INTR; |
| if (int_status == 0 || --cnt < 0) |
| break; |
| handled = 1; |
| /* Processing received packets */ |
| if (int_status & RxDMAComplete) |
| receive_packet (dev); |
| /* TxDMAComplete interrupt */ |
| if ((int_status & (TxDMAComplete|IntRequested))) { |
| int tx_status; |
| tx_status = readl (ioaddr + TxStatus); |
| if (tx_status & 0x01) |
| tx_error (dev, tx_status); |
| /* Free used tx skbuffs */ |
| rio_free_tx (dev, 1); |
| } |
| |
| /* Handle uncommon events */ |
| if (int_status & |
| (HostError | LinkEvent | UpdateStats)) |
| rio_error (dev, int_status); |
| } |
| if (np->cur_tx != np->old_tx) |
| writel (100, ioaddr + CountDown); |
| return IRQ_RETVAL(handled); |
| } |
| |
| static inline dma_addr_t desc_to_dma(struct netdev_desc *desc) |
| { |
| return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48); |
| } |
| |
| static void |
| rio_free_tx (struct net_device *dev, int irq) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int entry = np->old_tx % TX_RING_SIZE; |
| int tx_use = 0; |
| unsigned long flag = 0; |
| |
| if (irq) |
| spin_lock(&np->tx_lock); |
| else |
| spin_lock_irqsave(&np->tx_lock, flag); |
| |
| /* Free used tx skbuffs */ |
| while (entry != np->cur_tx) { |
| struct sk_buff *skb; |
| |
| if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone))) |
| break; |
| skb = np->tx_skbuff[entry]; |
| pci_unmap_single (np->pdev, |
| desc_to_dma(&np->tx_ring[entry]), |
| skb->len, PCI_DMA_TODEVICE); |
| if (irq) |
| dev_kfree_skb_irq (skb); |
| else |
| dev_kfree_skb (skb); |
| |
| np->tx_skbuff[entry] = NULL; |
| entry = (entry + 1) % TX_RING_SIZE; |
| tx_use++; |
| } |
| if (irq) |
| spin_unlock(&np->tx_lock); |
| else |
| spin_unlock_irqrestore(&np->tx_lock, flag); |
| np->old_tx = entry; |
| |
| /* If the ring is no longer full, clear tx_full and |
| call netif_wake_queue() */ |
| |
| if (netif_queue_stopped(dev) && |
| ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE |
| < TX_QUEUE_LEN - 1 || np->speed == 10)) { |
| netif_wake_queue (dev); |
| } |
| } |
| |
| static void |
| tx_error (struct net_device *dev, int tx_status) |
| { |
| struct netdev_private *np; |
| long ioaddr = dev->base_addr; |
| int frame_id; |
| int i; |
| |
| np = netdev_priv(dev); |
| |
| frame_id = (tx_status & 0xffff0000); |
| printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n", |
| dev->name, tx_status, frame_id); |
| np->stats.tx_errors++; |
| /* Ttransmit Underrun */ |
| if (tx_status & 0x10) { |
| np->stats.tx_fifo_errors++; |
| writew (readw (ioaddr + TxStartThresh) + 0x10, |
| ioaddr + TxStartThresh); |
| /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */ |
| writew (TxReset | DMAReset | FIFOReset | NetworkReset, |
| ioaddr + ASICCtrl + 2); |
| /* Wait for ResetBusy bit clear */ |
| for (i = 50; i > 0; i--) { |
| if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0) |
| break; |
| mdelay (1); |
| } |
| rio_free_tx (dev, 1); |
| /* Reset TFDListPtr */ |
| writel (np->tx_ring_dma + |
| np->old_tx * sizeof (struct netdev_desc), |
| dev->base_addr + TFDListPtr0); |
| writel (0, dev->base_addr + TFDListPtr1); |
| |
| /* Let TxStartThresh stay default value */ |
| } |
| /* Late Collision */ |
| if (tx_status & 0x04) { |
| np->stats.tx_fifo_errors++; |
| /* TxReset and clear FIFO */ |
| writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2); |
| /* Wait reset done */ |
| for (i = 50; i > 0; i--) { |
| if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0) |
| break; |
| mdelay (1); |
| } |
| /* Let TxStartThresh stay default value */ |
| } |
| /* Maximum Collisions */ |
| #ifdef ETHER_STATS |
| if (tx_status & 0x08) |
| np->stats.collisions16++; |
| #else |
| if (tx_status & 0x08) |
| np->stats.collisions++; |
| #endif |
| /* Restart the Tx */ |
| writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl); |
| } |
| |
| static int |
| receive_packet (struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int entry = np->cur_rx % RX_RING_SIZE; |
| int cnt = 30; |
| |
| /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */ |
| while (1) { |
| struct netdev_desc *desc = &np->rx_ring[entry]; |
| int pkt_len; |
| u64 frame_status; |
| |
| if (!(desc->status & cpu_to_le64(RFDDone)) || |
| !(desc->status & cpu_to_le64(FrameStart)) || |
| !(desc->status & cpu_to_le64(FrameEnd))) |
| break; |
| |
| /* Chip omits the CRC. */ |
| frame_status = le64_to_cpu(desc->status); |
| pkt_len = frame_status & 0xffff; |
| if (--cnt < 0) |
| break; |
| /* Update rx error statistics, drop packet. */ |
| if (frame_status & RFS_Errors) { |
| np->stats.rx_errors++; |
| if (frame_status & (RxRuntFrame | RxLengthError)) |
| np->stats.rx_length_errors++; |
| if (frame_status & RxFCSError) |
| np->stats.rx_crc_errors++; |
| if (frame_status & RxAlignmentError && np->speed != 1000) |
| np->stats.rx_frame_errors++; |
| if (frame_status & RxFIFOOverrun) |
| np->stats.rx_fifo_errors++; |
| } else { |
| struct sk_buff *skb; |
| |
| /* Small skbuffs for short packets */ |
| if (pkt_len > copy_thresh) { |
| pci_unmap_single (np->pdev, |
| desc_to_dma(desc), |
| np->rx_buf_sz, |
| PCI_DMA_FROMDEVICE); |
| skb_put (skb = np->rx_skbuff[entry], pkt_len); |
| np->rx_skbuff[entry] = NULL; |
| } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) { |
| pci_dma_sync_single_for_cpu(np->pdev, |
| desc_to_dma(desc), |
| np->rx_buf_sz, |
| PCI_DMA_FROMDEVICE); |
| skb_copy_to_linear_data (skb, |
| np->rx_skbuff[entry]->data, |
| pkt_len); |
| skb_put (skb, pkt_len); |
| pci_dma_sync_single_for_device(np->pdev, |
| desc_to_dma(desc), |
| np->rx_buf_sz, |
| PCI_DMA_FROMDEVICE); |
| } |
| skb->protocol = eth_type_trans (skb, dev); |
| #if 0 |
| /* Checksum done by hw, but csum value unavailable. */ |
| if (np->pdev->pci_rev_id >= 0x0c && |
| !(frame_status & (TCPError | UDPError | IPError))) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } |
| #endif |
| netif_rx (skb); |
| } |
| entry = (entry + 1) % RX_RING_SIZE; |
| } |
| spin_lock(&np->rx_lock); |
| np->cur_rx = entry; |
| /* Re-allocate skbuffs to fill the descriptor ring */ |
| entry = np->old_rx; |
| while (entry != np->cur_rx) { |
| struct sk_buff *skb; |
| /* Dropped packets don't need to re-allocate */ |
| if (np->rx_skbuff[entry] == NULL) { |
| skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz); |
| if (skb == NULL) { |
| np->rx_ring[entry].fraginfo = 0; |
| printk (KERN_INFO |
| "%s: receive_packet: " |
| "Unable to re-allocate Rx skbuff.#%d\n", |
| dev->name, entry); |
| break; |
| } |
| np->rx_skbuff[entry] = skb; |
| np->rx_ring[entry].fraginfo = |
| cpu_to_le64 (pci_map_single |
| (np->pdev, skb->data, np->rx_buf_sz, |
| PCI_DMA_FROMDEVICE)); |
| } |
| np->rx_ring[entry].fraginfo |= |
| cpu_to_le64((u64)np->rx_buf_sz << 48); |
| np->rx_ring[entry].status = 0; |
| entry = (entry + 1) % RX_RING_SIZE; |
| } |
| np->old_rx = entry; |
| spin_unlock(&np->rx_lock); |
| return 0; |
| } |
| |
| static void |
| rio_error (struct net_device *dev, int int_status) |
| { |
| long ioaddr = dev->base_addr; |
| struct netdev_private *np = netdev_priv(dev); |
| u16 macctrl; |
| |
| /* Link change event */ |
| if (int_status & LinkEvent) { |
| if (mii_wait_link (dev, 10) == 0) { |
| printk (KERN_INFO "%s: Link up\n", dev->name); |
| if (np->phy_media) |
| mii_get_media_pcs (dev); |
| else |
| mii_get_media (dev); |
| if (np->speed == 1000) |
| np->tx_coalesce = tx_coalesce; |
| else |
| np->tx_coalesce = 1; |
| macctrl = 0; |
| macctrl |= (np->vlan) ? AutoVLANuntagging : 0; |
| macctrl |= (np->full_duplex) ? DuplexSelect : 0; |
| macctrl |= (np->tx_flow) ? |
| TxFlowControlEnable : 0; |
| macctrl |= (np->rx_flow) ? |
| RxFlowControlEnable : 0; |
| writew(macctrl, ioaddr + MACCtrl); |
| np->link_status = 1; |
| netif_carrier_on(dev); |
| } else { |
| printk (KERN_INFO "%s: Link off\n", dev->name); |
| np->link_status = 0; |
| netif_carrier_off(dev); |
| } |
| } |
| |
| /* UpdateStats statistics registers */ |
| if (int_status & UpdateStats) { |
| get_stats (dev); |
| } |
| |
| /* PCI Error, a catastronphic error related to the bus interface |
| occurs, set GlobalReset and HostReset to reset. */ |
| if (int_status & HostError) { |
| printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n", |
| dev->name, int_status); |
| writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2); |
| mdelay (500); |
| } |
| } |
| |
| static struct net_device_stats * |
| get_stats (struct net_device *dev) |
| { |
| long ioaddr = dev->base_addr; |
| struct netdev_private *np = netdev_priv(dev); |
| #ifdef MEM_MAPPING |
| int i; |
| #endif |
| unsigned int stat_reg; |
| |
| /* All statistics registers need to be acknowledged, |
| else statistic overflow could cause problems */ |
| |
| np->stats.rx_packets += readl (ioaddr + FramesRcvOk); |
| np->stats.tx_packets += readl (ioaddr + FramesXmtOk); |
| np->stats.rx_bytes += readl (ioaddr + OctetRcvOk); |
| np->stats.tx_bytes += readl (ioaddr + OctetXmtOk); |
| |
| np->stats.multicast = readl (ioaddr + McstFramesRcvdOk); |
| np->stats.collisions += readl (ioaddr + SingleColFrames) |
| + readl (ioaddr + MultiColFrames); |
| |
| /* detailed tx errors */ |
| stat_reg = readw (ioaddr + FramesAbortXSColls); |
| np->stats.tx_aborted_errors += stat_reg; |
| np->stats.tx_errors += stat_reg; |
| |
| stat_reg = readw (ioaddr + CarrierSenseErrors); |
| np->stats.tx_carrier_errors += stat_reg; |
| np->stats.tx_errors += stat_reg; |
| |
| /* Clear all other statistic register. */ |
| readl (ioaddr + McstOctetXmtOk); |
| readw (ioaddr + BcstFramesXmtdOk); |
| readl (ioaddr + McstFramesXmtdOk); |
| readw (ioaddr + BcstFramesRcvdOk); |
| readw (ioaddr + MacControlFramesRcvd); |
| readw (ioaddr + FrameTooLongErrors); |
| readw (ioaddr + InRangeLengthErrors); |
| readw (ioaddr + FramesCheckSeqErrors); |
| readw (ioaddr + FramesLostRxErrors); |
| readl (ioaddr + McstOctetXmtOk); |
| readl (ioaddr + BcstOctetXmtOk); |
| readl (ioaddr + McstFramesXmtdOk); |
| readl (ioaddr + FramesWDeferredXmt); |
| readl (ioaddr + LateCollisions); |
| readw (ioaddr + BcstFramesXmtdOk); |
| readw (ioaddr + MacControlFramesXmtd); |
| readw (ioaddr + FramesWEXDeferal); |
| |
| #ifdef MEM_MAPPING |
| for (i = 0x100; i <= 0x150; i += 4) |
| readl (ioaddr + i); |
| #endif |
| readw (ioaddr + TxJumboFrames); |
| readw (ioaddr + RxJumboFrames); |
| readw (ioaddr + TCPCheckSumErrors); |
| readw (ioaddr + UDPCheckSumErrors); |
| readw (ioaddr + IPCheckSumErrors); |
| return &np->stats; |
| } |
| |
| static int |
| clear_stats (struct net_device *dev) |
| { |
| long ioaddr = dev->base_addr; |
| #ifdef MEM_MAPPING |
| int i; |
| #endif |
| |
| /* All statistics registers need to be acknowledged, |
| else statistic overflow could cause problems */ |
| readl (ioaddr + FramesRcvOk); |
| readl (ioaddr + FramesXmtOk); |
| readl (ioaddr + OctetRcvOk); |
| readl (ioaddr + OctetXmtOk); |
| |
| readl (ioaddr + McstFramesRcvdOk); |
| readl (ioaddr + SingleColFrames); |
| readl (ioaddr + MultiColFrames); |
| readl (ioaddr + LateCollisions); |
| /* detailed rx errors */ |
| readw (ioaddr + FrameTooLongErrors); |
| readw (ioaddr + InRangeLengthErrors); |
| readw (ioaddr + FramesCheckSeqErrors); |
| readw (ioaddr + FramesLostRxErrors); |
| |
| /* detailed tx errors */ |
| readw (ioaddr + FramesAbortXSColls); |
| readw (ioaddr + CarrierSenseErrors); |
| |
| /* Clear all other statistic register. */ |
| readl (ioaddr + McstOctetXmtOk); |
| readw (ioaddr + BcstFramesXmtdOk); |
| readl (ioaddr + McstFramesXmtdOk); |
| readw (ioaddr + BcstFramesRcvdOk); |
| readw (ioaddr + MacControlFramesRcvd); |
| readl (ioaddr + McstOctetXmtOk); |
| readl (ioaddr + BcstOctetXmtOk); |
| readl (ioaddr + McstFramesXmtdOk); |
| readl (ioaddr + FramesWDeferredXmt); |
| readw (ioaddr + BcstFramesXmtdOk); |
| readw (ioaddr + MacControlFramesXmtd); |
| readw (ioaddr + FramesWEXDeferal); |
| #ifdef MEM_MAPPING |
| for (i = 0x100; i <= 0x150; i += 4) |
| readl (ioaddr + i); |
| #endif |
| readw (ioaddr + TxJumboFrames); |
| readw (ioaddr + RxJumboFrames); |
| readw (ioaddr + TCPCheckSumErrors); |
| readw (ioaddr + UDPCheckSumErrors); |
| readw (ioaddr + IPCheckSumErrors); |
| return 0; |
| } |
| |
| |
| static int |
| change_mtu (struct net_device *dev, int new_mtu) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int max = (np->jumbo) ? MAX_JUMBO : 1536; |
| |
| if ((new_mtu < 68) || (new_mtu > max)) { |
| return -EINVAL; |
| } |
| |
| dev->mtu = new_mtu; |
| |
| return 0; |
| } |
| |
| static void |
| set_multicast (struct net_device *dev) |
| { |
| long ioaddr = dev->base_addr; |
| u32 hash_table[2]; |
| u16 rx_mode = 0; |
| struct netdev_private *np = netdev_priv(dev); |
| |
| hash_table[0] = hash_table[1] = 0; |
| /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */ |
| hash_table[1] |= 0x02000000; |
| if (dev->flags & IFF_PROMISC) { |
| /* Receive all frames promiscuously. */ |
| rx_mode = ReceiveAllFrames; |
| } else if ((dev->flags & IFF_ALLMULTI) || |
| (netdev_mc_count(dev) > multicast_filter_limit)) { |
| /* Receive broadcast and multicast frames */ |
| rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast; |
| } else if (!netdev_mc_empty(dev)) { |
| struct netdev_hw_addr *ha; |
| /* Receive broadcast frames and multicast frames filtering |
| by Hashtable */ |
| rx_mode = |
| ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast; |
| netdev_for_each_mc_addr(ha, dev) { |
| int bit, index = 0; |
| int crc = ether_crc_le(ETH_ALEN, ha->addr); |
| /* The inverted high significant 6 bits of CRC are |
| used as an index to hashtable */ |
| for (bit = 0; bit < 6; bit++) |
| if (crc & (1 << (31 - bit))) |
| index |= (1 << bit); |
| hash_table[index / 32] |= (1 << (index % 32)); |
| } |
| } else { |
| rx_mode = ReceiveBroadcast | ReceiveUnicast; |
| } |
| if (np->vlan) { |
| /* ReceiveVLANMatch field in ReceiveMode */ |
| rx_mode |= ReceiveVLANMatch; |
| } |
| |
| writel (hash_table[0], ioaddr + HashTable0); |
| writel (hash_table[1], ioaddr + HashTable1); |
| writew (rx_mode, ioaddr + ReceiveMode); |
| } |
| |
| static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| strcpy(info->driver, "dl2k"); |
| strcpy(info->version, DRV_VERSION); |
| strcpy(info->bus_info, pci_name(np->pdev)); |
| } |
| |
| static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| if (np->phy_media) { |
| /* fiber device */ |
| cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE; |
| cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE; |
| cmd->port = PORT_FIBRE; |
| cmd->transceiver = XCVR_INTERNAL; |
| } else { |
| /* copper device */ |
| cmd->supported = SUPPORTED_10baseT_Half | |
| SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
| | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | |
| SUPPORTED_Autoneg | SUPPORTED_MII; |
| cmd->advertising = ADVERTISED_10baseT_Half | |
| ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | |
| ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full| |
| ADVERTISED_Autoneg | ADVERTISED_MII; |
| cmd->port = PORT_MII; |
| cmd->transceiver = XCVR_INTERNAL; |
| } |
| if ( np->link_status ) { |
| cmd->speed = np->speed; |
| cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF; |
| } else { |
| cmd->speed = -1; |
| cmd->duplex = -1; |
| } |
| if ( np->an_enable) |
| cmd->autoneg = AUTONEG_ENABLE; |
| else |
| cmd->autoneg = AUTONEG_DISABLE; |
| |
| cmd->phy_address = np->phy_addr; |
| return 0; |
| } |
| |
| static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| netif_carrier_off(dev); |
| if (cmd->autoneg == AUTONEG_ENABLE) { |
| if (np->an_enable) |
| return 0; |
| else { |
| np->an_enable = 1; |
| mii_set_media(dev); |
| return 0; |
| } |
| } else { |
| np->an_enable = 0; |
| if (np->speed == 1000) { |
| cmd->speed = SPEED_100; |
| cmd->duplex = DUPLEX_FULL; |
| printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n"); |
| } |
| switch(cmd->speed + cmd->duplex) { |
| |
| case SPEED_10 + DUPLEX_HALF: |
| np->speed = 10; |
| np->full_duplex = 0; |
| break; |
| |
| case SPEED_10 + DUPLEX_FULL: |
| np->speed = 10; |
| np->full_duplex = 1; |
| break; |
| case SPEED_100 + DUPLEX_HALF: |
| np->speed = 100; |
| np->full_duplex = 0; |
| break; |
| case SPEED_100 + DUPLEX_FULL: |
| np->speed = 100; |
| np->full_duplex = 1; |
| break; |
| case SPEED_1000 + DUPLEX_HALF:/* not supported */ |
| case SPEED_1000 + DUPLEX_FULL:/* not supported */ |
| default: |
| return -EINVAL; |
| } |
| mii_set_media(dev); |
| } |
| return 0; |
| } |
| |
| static u32 rio_get_link(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| return np->link_status; |
| } |
| |
| static const struct ethtool_ops ethtool_ops = { |
| .get_drvinfo = rio_get_drvinfo, |
| .get_settings = rio_get_settings, |
| .set_settings = rio_set_settings, |
| .get_link = rio_get_link, |
| }; |
| |
| static int |
| rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| int phy_addr; |
| struct netdev_private *np = netdev_priv(dev); |
| struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru; |
| |
| struct netdev_desc *desc; |
| int i; |
| |
| phy_addr = np->phy_addr; |
| switch (cmd) { |
| case SIOCDEVPRIVATE: |
| break; |
| |
| case SIOCDEVPRIVATE + 1: |
| miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num); |
| break; |
| case SIOCDEVPRIVATE + 2: |
| mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value); |
| break; |
| case SIOCDEVPRIVATE + 3: |
| break; |
| case SIOCDEVPRIVATE + 4: |
| break; |
| case SIOCDEVPRIVATE + 5: |
| netif_stop_queue (dev); |
| break; |
| case SIOCDEVPRIVATE + 6: |
| netif_wake_queue (dev); |
| break; |
| case SIOCDEVPRIVATE + 7: |
| printk |
| ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n", |
| netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx, |
| np->old_rx); |
| break; |
| case SIOCDEVPRIVATE + 8: |
| printk("TX ring:\n"); |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| desc = &np->tx_ring[i]; |
| printk |
| ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x", |
| i, |
| (u32) (np->tx_ring_dma + i * sizeof (*desc)), |
| (u32)le64_to_cpu(desc->next_desc), |
| (u32)le64_to_cpu(desc->status), |
| (u32)(le64_to_cpu(desc->fraginfo) >> 32), |
| (u32)le64_to_cpu(desc->fraginfo)); |
| printk ("\n"); |
| } |
| printk ("\n"); |
| break; |
| |
| default: |
| return -EOPNOTSUPP; |
| } |
| return 0; |
| } |
| |
| #define EEP_READ 0x0200 |
| #define EEP_BUSY 0x8000 |
| /* Read the EEPROM word */ |
| /* We use I/O instruction to read/write eeprom to avoid fail on some machines */ |
| static int |
| read_eeprom (long ioaddr, int eep_addr) |
| { |
| int i = 1000; |
| outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl); |
| while (i-- > 0) { |
| if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) { |
| return inw (ioaddr + EepromData); |
| } |
| } |
| return 0; |
| } |
| |
| enum phy_ctrl_bits { |
| MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04, |
| MII_DUPLEX = 0x08, |
| }; |
| |
| #define mii_delay() readb(ioaddr) |
| static void |
| mii_sendbit (struct net_device *dev, u32 data) |
| { |
| long ioaddr = dev->base_addr + PhyCtrl; |
| data = (data) ? MII_DATA1 : 0; |
| data |= MII_WRITE; |
| data |= (readb (ioaddr) & 0xf8) | MII_WRITE; |
| writeb (data, ioaddr); |
| mii_delay (); |
| writeb (data | MII_CLK, ioaddr); |
| mii_delay (); |
| } |
| |
| static int |
| mii_getbit (struct net_device *dev) |
| { |
| long ioaddr = dev->base_addr + PhyCtrl; |
| u8 data; |
| |
| data = (readb (ioaddr) & 0xf8) | MII_READ; |
| writeb (data, ioaddr); |
| mii_delay (); |
| writeb (data | MII_CLK, ioaddr); |
| mii_delay (); |
| return ((readb (ioaddr) >> 1) & 1); |
| } |
| |
| static void |
| mii_send_bits (struct net_device *dev, u32 data, int len) |
| { |
| int i; |
| for (i = len - 1; i >= 0; i--) { |
| mii_sendbit (dev, data & (1 << i)); |
| } |
| } |
| |
| static int |
| mii_read (struct net_device *dev, int phy_addr, int reg_num) |
| { |
| u32 cmd; |
| int i; |
| u32 retval = 0; |
| |
| /* Preamble */ |
| mii_send_bits (dev, 0xffffffff, 32); |
| /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ |
| /* ST,OP = 0110'b for read operation */ |
| cmd = (0x06 << 10 | phy_addr << 5 | reg_num); |
| mii_send_bits (dev, cmd, 14); |
| /* Turnaround */ |
| if (mii_getbit (dev)) |
| goto err_out; |
| /* Read data */ |
| for (i = 0; i < 16; i++) { |
| retval |= mii_getbit (dev); |
| retval <<= 1; |
| } |
| /* End cycle */ |
| mii_getbit (dev); |
| return (retval >> 1) & 0xffff; |
| |
| err_out: |
| return 0; |
| } |
| static int |
| mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data) |
| { |
| u32 cmd; |
| |
| /* Preamble */ |
| mii_send_bits (dev, 0xffffffff, 32); |
| /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ |
| /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */ |
| cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data; |
| mii_send_bits (dev, cmd, 32); |
| /* End cycle */ |
| mii_getbit (dev); |
| return 0; |
| } |
| static int |
| mii_wait_link (struct net_device *dev, int wait) |
| { |
| __u16 bmsr; |
| int phy_addr; |
| struct netdev_private *np; |
| |
| np = netdev_priv(dev); |
| phy_addr = np->phy_addr; |
| |
| do { |
| bmsr = mii_read (dev, phy_addr, MII_BMSR); |
| if (bmsr & MII_BMSR_LINK_STATUS) |
| return 0; |
| mdelay (1); |
| } while (--wait > 0); |
| return -1; |
| } |
| static int |
| mii_get_media (struct net_device *dev) |
| { |
| __u16 negotiate; |
| __u16 bmsr; |
| __u16 mscr; |
| __u16 mssr; |
| int phy_addr; |
| struct netdev_private *np; |
| |
| np = netdev_priv(dev); |
| phy_addr = np->phy_addr; |
| |
| bmsr = mii_read (dev, phy_addr, MII_BMSR); |
| if (np->an_enable) { |
| if (!(bmsr & MII_BMSR_AN_COMPLETE)) { |
| /* Auto-Negotiation not completed */ |
| return -1; |
| } |
| negotiate = mii_read (dev, phy_addr, MII_ANAR) & |
| mii_read (dev, phy_addr, MII_ANLPAR); |
| mscr = mii_read (dev, phy_addr, MII_MSCR); |
| mssr = mii_read (dev, phy_addr, MII_MSSR); |
| if (mscr & MII_MSCR_1000BT_FD && mssr & MII_MSSR_LP_1000BT_FD) { |
| np->speed = 1000; |
| np->full_duplex = 1; |
| printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); |
| } else if (mscr & MII_MSCR_1000BT_HD && mssr & MII_MSSR_LP_1000BT_HD) { |
| np->speed = 1000; |
| np->full_duplex = 0; |
| printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n"); |
| } else if (negotiate & MII_ANAR_100BX_FD) { |
| np->speed = 100; |
| np->full_duplex = 1; |
| printk (KERN_INFO "Auto 100 Mbps, Full duplex\n"); |
| } else if (negotiate & MII_ANAR_100BX_HD) { |
| np->speed = 100; |
| np->full_duplex = 0; |
| printk (KERN_INFO "Auto 100 Mbps, Half duplex\n"); |
| } else if (negotiate & MII_ANAR_10BT_FD) { |
| np->speed = 10; |
| np->full_duplex = 1; |
| printk (KERN_INFO "Auto 10 Mbps, Full duplex\n"); |
| } else if (negotiate & MII_ANAR_10BT_HD) { |
| np->speed = 10; |
| np->full_duplex = 0; |
| printk (KERN_INFO "Auto 10 Mbps, Half duplex\n"); |
| } |
| if (negotiate & MII_ANAR_PAUSE) { |
| np->tx_flow &= 1; |
| np->rx_flow &= 1; |
| } else if (negotiate & MII_ANAR_ASYMMETRIC) { |
| np->tx_flow = 0; |
| np->rx_flow &= 1; |
| } |
| /* else tx_flow, rx_flow = user select */ |
| } else { |
| __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR); |
| switch (bmcr & (MII_BMCR_SPEED_100 | MII_BMCR_SPEED_1000)) { |
| case MII_BMCR_SPEED_1000: |
| printk (KERN_INFO "Operating at 1000 Mbps, "); |
| break; |
| case MII_BMCR_SPEED_100: |
| printk (KERN_INFO "Operating at 100 Mbps, "); |
| break; |
| case 0: |
| printk (KERN_INFO "Operating at 10 Mbps, "); |
| } |
| if (bmcr & MII_BMCR_DUPLEX_MODE) { |
| printk (KERN_CONT "Full duplex\n"); |
| } else { |
| printk (KERN_CONT "Half duplex\n"); |
| } |
| } |
| if (np->tx_flow) |
| printk(KERN_INFO "Enable Tx Flow Control\n"); |
| else |
| printk(KERN_INFO "Disable Tx Flow Control\n"); |
| if (np->rx_flow) |
| printk(KERN_INFO "Enable Rx Flow Control\n"); |
| else |
| printk(KERN_INFO "Disable Rx Flow Control\n"); |
| |
| return 0; |
| } |
| |
| static int |
| mii_set_media (struct net_device *dev) |
| { |
| __u16 pscr; |
| __u16 bmcr; |
| __u16 bmsr; |
| __u16 anar; |
| int phy_addr; |
| struct netdev_private *np; |
| np = netdev_priv(dev); |
| phy_addr = np->phy_addr; |
| |
| /* Does user set speed? */ |
| if (np->an_enable) { |
| /* Advertise capabilities */ |
| bmsr = mii_read (dev, phy_addr, MII_BMSR); |
| anar = mii_read (dev, phy_addr, MII_ANAR) & |
| ~MII_ANAR_100BX_FD & |
| ~MII_ANAR_100BX_HD & |
| ~MII_ANAR_100BT4 & |
| ~MII_ANAR_10BT_FD & |
| ~MII_ANAR_10BT_HD; |
| if (bmsr & MII_BMSR_100BX_FD) |
| anar |= MII_ANAR_100BX_FD; |
| if (bmsr & MII_BMSR_100BX_HD) |
| anar |= MII_ANAR_100BX_HD; |
| if (bmsr & MII_BMSR_100BT4) |
| anar |= MII_ANAR_100BT4; |
| if (bmsr & MII_BMSR_10BT_FD) |
| anar |= MII_ANAR_10BT_FD; |
| if (bmsr & MII_BMSR_10BT_HD) |
| anar |= MII_ANAR_10BT_HD; |
| anar |= MII_ANAR_PAUSE | MII_ANAR_ASYMMETRIC; |
| mii_write (dev, phy_addr, MII_ANAR, anar); |
| |
| /* Enable Auto crossover */ |
| pscr = mii_read (dev, phy_addr, MII_PHY_SCR); |
| pscr |= 3 << 5; /* 11'b */ |
| mii_write (dev, phy_addr, MII_PHY_SCR, pscr); |
| |
| /* Soft reset PHY */ |
| mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET); |
| bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET; |
| mii_write (dev, phy_addr, MII_BMCR, bmcr); |
| mdelay(1); |
| } else { |
| /* Force speed setting */ |
| /* 1) Disable Auto crossover */ |
| pscr = mii_read (dev, phy_addr, MII_PHY_SCR); |
| pscr &= ~(3 << 5); |
| mii_write (dev, phy_addr, MII_PHY_SCR, pscr); |
| |
| /* 2) PHY Reset */ |
| bmcr = mii_read (dev, phy_addr, MII_BMCR); |
| bmcr |= MII_BMCR_RESET; |
| mii_write (dev, phy_addr, MII_BMCR, bmcr); |
| |
| /* 3) Power Down */ |
| bmcr = 0x1940; /* must be 0x1940 */ |
| mii_write (dev, phy_addr, MII_BMCR, bmcr); |
| mdelay (100); /* wait a certain time */ |
| |
| /* 4) Advertise nothing */ |
| mii_write (dev, phy_addr, MII_ANAR, 0); |
| |
| /* 5) Set media and Power Up */ |
| bmcr = MII_BMCR_POWER_DOWN; |
| if (np->speed == 100) { |
| bmcr |= MII_BMCR_SPEED_100; |
| printk (KERN_INFO "Manual 100 Mbps, "); |
| } else if (np->speed == 10) { |
| printk (KERN_INFO "Manual 10 Mbps, "); |
| } |
| if (np->full_duplex) { |
| bmcr |= MII_BMCR_DUPLEX_MODE; |
| printk (KERN_CONT "Full duplex\n"); |
| } else { |
| printk (KERN_CONT "Half duplex\n"); |
| } |
| #if 0 |
| /* Set 1000BaseT Master/Slave setting */ |
| mscr = mii_read (dev, phy_addr, MII_MSCR); |
| mscr |= MII_MSCR_CFG_ENABLE; |
| mscr &= ~MII_MSCR_CFG_VALUE = 0; |
| #endif |
| mii_write (dev, phy_addr, MII_BMCR, bmcr); |
| mdelay(10); |
| } |
| return 0; |
| } |
| |
| static int |
| mii_get_media_pcs (struct net_device *dev) |
| { |
| __u16 negotiate; |
| __u16 bmsr; |
| int phy_addr; |
| struct netdev_private *np; |
| |
| np = netdev_priv(dev); |
| phy_addr = np->phy_addr; |
| |
| bmsr = mii_read (dev, phy_addr, PCS_BMSR); |
| if (np->an_enable) { |
| if (!(bmsr & MII_BMSR_AN_COMPLETE)) { |
| /* Auto-Negotiation not completed */ |
| return -1; |
| } |
| negotiate = mii_read (dev, phy_addr, PCS_ANAR) & |
| mii_read (dev, phy_addr, PCS_ANLPAR); |
| np->speed = 1000; |
| if (negotiate & PCS_ANAR_FULL_DUPLEX) { |
| printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); |
| np->full_duplex = 1; |
| } else { |
| printk (KERN_INFO "Auto 1000 Mbps, half duplex\n"); |
| np->full_duplex = 0; |
| } |
| if (negotiate & PCS_ANAR_PAUSE) { |
| np->tx_flow &= 1; |
| np->rx_flow &= 1; |
| } else if (negotiate & PCS_ANAR_ASYMMETRIC) { |
| np->tx_flow = 0; |
| np->rx_flow &= 1; |
| } |
| /* else tx_flow, rx_flow = user select */ |
| } else { |
| __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR); |
| printk (KERN_INFO "Operating at 1000 Mbps, "); |
| if (bmcr & MII_BMCR_DUPLEX_MODE) { |
| printk (KERN_CONT "Full duplex\n"); |
| } else { |
| printk (KERN_CONT "Half duplex\n"); |
| } |
| } |
| if (np->tx_flow) |
| printk(KERN_INFO "Enable Tx Flow Control\n"); |
| else |
| printk(KERN_INFO "Disable Tx Flow Control\n"); |
| if (np->rx_flow) |
| printk(KERN_INFO "Enable Rx Flow Control\n"); |
| else |
| printk(KERN_INFO "Disable Rx Flow Control\n"); |
| |
| return 0; |
| } |
| |
| static int |
| mii_set_media_pcs (struct net_device *dev) |
| { |
| __u16 bmcr; |
| __u16 esr; |
| __u16 anar; |
| int phy_addr; |
| struct netdev_private *np; |
| np = netdev_priv(dev); |
| phy_addr = np->phy_addr; |
| |
| /* Auto-Negotiation? */ |
| if (np->an_enable) { |
| /* Advertise capabilities */ |
| esr = mii_read (dev, phy_addr, PCS_ESR); |
| anar = mii_read (dev, phy_addr, MII_ANAR) & |
| ~PCS_ANAR_HALF_DUPLEX & |
| ~PCS_ANAR_FULL_DUPLEX; |
| if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD)) |
| anar |= PCS_ANAR_HALF_DUPLEX; |
| if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD)) |
| anar |= PCS_ANAR_FULL_DUPLEX; |
| anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC; |
| mii_write (dev, phy_addr, MII_ANAR, anar); |
| |
| /* Soft reset PHY */ |
| mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET); |
| bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | |
| MII_BMCR_RESET; |
| mii_write (dev, phy_addr, MII_BMCR, bmcr); |
| mdelay(1); |
| } else { |
| /* Force speed setting */ |
| /* PHY Reset */ |
| bmcr = MII_BMCR_RESET; |
| mii_write (dev, phy_addr, MII_BMCR, bmcr); |
| mdelay(10); |
| if (np->full_duplex) { |
| bmcr = MII_BMCR_DUPLEX_MODE; |
| printk (KERN_INFO "Manual full duplex\n"); |
| } else { |
| bmcr = 0; |
| printk (KERN_INFO "Manual half duplex\n"); |
| } |
| mii_write (dev, phy_addr, MII_BMCR, bmcr); |
| mdelay(10); |
| |
| /* Advertise nothing */ |
| mii_write (dev, phy_addr, MII_ANAR, 0); |
| } |
| return 0; |
| } |
| |
| |
| static int |
| rio_close (struct net_device *dev) |
| { |
| long ioaddr = dev->base_addr; |
| struct netdev_private *np = netdev_priv(dev); |
| struct sk_buff *skb; |
| int i; |
| |
| netif_stop_queue (dev); |
| |
| /* Disable interrupts */ |
| writew (0, ioaddr + IntEnable); |
| |
| /* Stop Tx and Rx logics */ |
| writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl); |
| |
| free_irq (dev->irq, dev); |
| del_timer_sync (&np->timer); |
| |
| /* Free all the skbuffs in the queue. */ |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| np->rx_ring[i].status = 0; |
| np->rx_ring[i].fraginfo = 0; |
| skb = np->rx_skbuff[i]; |
| if (skb) { |
| pci_unmap_single(np->pdev, |
| desc_to_dma(&np->rx_ring[i]), |
| skb->len, PCI_DMA_FROMDEVICE); |
| dev_kfree_skb (skb); |
| np->rx_skbuff[i] = NULL; |
| } |
| } |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| skb = np->tx_skbuff[i]; |
| if (skb) { |
| pci_unmap_single(np->pdev, |
| desc_to_dma(&np->tx_ring[i]), |
| skb->len, PCI_DMA_TODEVICE); |
| dev_kfree_skb (skb); |
| np->tx_skbuff[i] = NULL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void __devexit |
| rio_remove1 (struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata (pdev); |
| |
| if (dev) { |
| struct netdev_private *np = netdev_priv(dev); |
| |
| unregister_netdev (dev); |
| pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, |
| np->rx_ring_dma); |
| pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, |
| np->tx_ring_dma); |
| #ifdef MEM_MAPPING |
| iounmap ((char *) (dev->base_addr)); |
| #endif |
| free_netdev (dev); |
| pci_release_regions (pdev); |
| pci_disable_device (pdev); |
| } |
| pci_set_drvdata (pdev, NULL); |
| } |
| |
| static struct pci_driver rio_driver = { |
| .name = "dl2k", |
| .id_table = rio_pci_tbl, |
| .probe = rio_probe1, |
| .remove = __devexit_p(rio_remove1), |
| }; |
| |
| static int __init |
| rio_init (void) |
| { |
| return pci_register_driver(&rio_driver); |
| } |
| |
| static void __exit |
| rio_exit (void) |
| { |
| pci_unregister_driver (&rio_driver); |
| } |
| |
| module_init (rio_init); |
| module_exit (rio_exit); |
| |
| /* |
| |
| Compile command: |
| |
| gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c |
| |
| Read Documentation/networking/dl2k.txt for details. |
| |
| */ |
| |