| /* |
| * linux/drivers/acorn/char/i2c.c |
| * |
| * Copyright (C) 2000 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * ARM IOC/IOMD i2c driver. |
| * |
| * On Acorn machines, the following i2c devices are on the bus: |
| * - PCF8583 real time clock & static RAM |
| */ |
| #include <linux/init.h> |
| #include <linux/sched.h> |
| #include <linux/time.h> |
| #include <linux/miscdevice.h> |
| #include <linux/rtc.h> |
| #include <linux/i2c.h> |
| #include <linux/i2c-algo-bit.h> |
| #include <linux/fs.h> |
| |
| #include <asm/hardware.h> |
| #include <asm/io.h> |
| #include <asm/hardware/ioc.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| |
| #include "pcf8583.h" |
| |
| extern int (*set_rtc)(void); |
| |
| static struct i2c_client *rtc_client; |
| static const unsigned char days_in_mon[] = |
| { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; |
| |
| #define CMOS_CHECKSUM (63) |
| |
| /* |
| * Acorn machines store the year in the static RAM at |
| * location 128. |
| */ |
| #define CMOS_YEAR (64 + 128) |
| |
| static inline int rtc_command(int cmd, void *data) |
| { |
| int ret = -EIO; |
| |
| if (rtc_client) |
| ret = rtc_client->driver->command(rtc_client, cmd, data); |
| |
| return ret; |
| } |
| |
| /* |
| * Update the century + year bytes in the CMOS RAM, ensuring |
| * that the check byte is correctly adjusted for the change. |
| */ |
| static int rtc_update_year(unsigned int new_year) |
| { |
| unsigned char yr[2], chk; |
| struct mem cmos_year = { CMOS_YEAR, sizeof(yr), yr }; |
| struct mem cmos_check = { CMOS_CHECKSUM, 1, &chk }; |
| int ret; |
| |
| ret = rtc_command(MEM_READ, &cmos_check); |
| if (ret) |
| goto out; |
| ret = rtc_command(MEM_READ, &cmos_year); |
| if (ret) |
| goto out; |
| |
| chk -= yr[1] + yr[0]; |
| |
| yr[1] = new_year / 100; |
| yr[0] = new_year % 100; |
| |
| chk += yr[1] + yr[0]; |
| |
| ret = rtc_command(MEM_WRITE, &cmos_year); |
| if (ret == 0) |
| ret = rtc_command(MEM_WRITE, &cmos_check); |
| out: |
| return ret; |
| } |
| |
| /* |
| * Read the current RTC time and date, and update xtime. |
| */ |
| static void get_rtc_time(struct rtc_tm *rtctm, unsigned int *year) |
| { |
| unsigned char ctrl, yr[2]; |
| struct mem rtcmem = { CMOS_YEAR, sizeof(yr), yr }; |
| int real_year, year_offset; |
| |
| /* |
| * Ensure that the RTC is running. |
| */ |
| rtc_command(RTC_GETCTRL, &ctrl); |
| if (ctrl & 0xc0) { |
| unsigned char new_ctrl = ctrl & ~0xc0; |
| |
| printk(KERN_WARNING "RTC: resetting control %02x -> %02x\n", |
| ctrl, new_ctrl); |
| |
| rtc_command(RTC_SETCTRL, &new_ctrl); |
| } |
| |
| if (rtc_command(RTC_GETDATETIME, rtctm) || |
| rtc_command(MEM_READ, &rtcmem)) |
| return; |
| |
| real_year = yr[0]; |
| |
| /* |
| * The RTC year holds the LSB two bits of the current |
| * year, which should reflect the LSB two bits of the |
| * CMOS copy of the year. Any difference indicates |
| * that we have to correct the CMOS version. |
| */ |
| year_offset = rtctm->year_off - (real_year & 3); |
| if (year_offset < 0) |
| /* |
| * RTC year wrapped. Adjust it appropriately. |
| */ |
| year_offset += 4; |
| |
| *year = real_year + year_offset + yr[1] * 100; |
| } |
| |
| static int set_rtc_time(struct rtc_tm *rtctm, unsigned int year) |
| { |
| unsigned char leap; |
| int ret; |
| |
| leap = (!(year % 4) && (year % 100)) || !(year % 400); |
| |
| if (rtctm->mon > 12 || rtctm->mon == 0 || rtctm->mday == 0) |
| return -EINVAL; |
| |
| if (rtctm->mday > (days_in_mon[rtctm->mon] + (rtctm->mon == 2 && leap))) |
| return -EINVAL; |
| |
| if (rtctm->hours >= 24 || rtctm->mins >= 60 || rtctm->secs >= 60) |
| return -EINVAL; |
| |
| /* |
| * The RTC's own 2-bit year must reflect the least |
| * significant two bits of the CMOS year. |
| */ |
| rtctm->year_off = (year % 100) & 3; |
| |
| ret = rtc_command(RTC_SETDATETIME, rtctm); |
| if (ret == 0) |
| ret = rtc_update_year(year); |
| |
| return ret; |
| } |
| |
| /* |
| * Set the RTC time only. Note that |
| * we do not touch the date. |
| */ |
| static int k_set_rtc_time(void) |
| { |
| struct rtc_tm new_rtctm, old_rtctm; |
| unsigned long nowtime = xtime.tv_sec; |
| |
| if (rtc_command(RTC_GETDATETIME, &old_rtctm)) |
| return 0; |
| |
| new_rtctm.cs = xtime.tv_nsec / 10000000; |
| new_rtctm.secs = nowtime % 60; nowtime /= 60; |
| new_rtctm.mins = nowtime % 60; nowtime /= 60; |
| new_rtctm.hours = nowtime % 24; |
| |
| /* |
| * avoid writing when we're going to change the day |
| * of the month. We will retry in the next minute. |
| * This basically means that if the RTC must not drift |
| * by more than 1 minute in 11 minutes. |
| * |
| * [ rtc: 1/1/2000 23:58:00, real 2/1/2000 00:01:00, |
| * rtc gets set to 1/1/2000 00:01:00 ] |
| */ |
| if ((old_rtctm.hours == 23 && old_rtctm.mins == 59) || |
| (new_rtctm.hours == 23 && new_rtctm.mins == 59)) |
| return 1; |
| |
| return rtc_command(RTC_SETTIME, &new_rtctm); |
| } |
| |
| static int rtc_ioctl(struct inode *inode, struct file *file, |
| unsigned int cmd, unsigned long arg) |
| { |
| unsigned int year; |
| struct rtc_time rtctm; |
| struct rtc_tm rtc_raw; |
| |
| switch (cmd) { |
| case RTC_ALM_READ: |
| case RTC_ALM_SET: |
| break; |
| |
| case RTC_RD_TIME: |
| memset(&rtctm, 0, sizeof(struct rtc_time)); |
| get_rtc_time(&rtc_raw, &year); |
| rtctm.tm_sec = rtc_raw.secs; |
| rtctm.tm_min = rtc_raw.mins; |
| rtctm.tm_hour = rtc_raw.hours; |
| rtctm.tm_mday = rtc_raw.mday; |
| rtctm.tm_mon = rtc_raw.mon - 1; /* month starts at 0 */ |
| rtctm.tm_year = year - 1900; /* starts at 1900 */ |
| return copy_to_user((void *)arg, &rtctm, sizeof(rtctm)) |
| ? -EFAULT : 0; |
| |
| case RTC_SET_TIME: |
| if (!capable(CAP_SYS_TIME)) |
| return -EACCES; |
| |
| if (copy_from_user(&rtctm, (void *)arg, sizeof(rtctm))) |
| return -EFAULT; |
| rtc_raw.secs = rtctm.tm_sec; |
| rtc_raw.mins = rtctm.tm_min; |
| rtc_raw.hours = rtctm.tm_hour; |
| rtc_raw.mday = rtctm.tm_mday; |
| rtc_raw.mon = rtctm.tm_mon + 1; |
| year = rtctm.tm_year + 1900; |
| return set_rtc_time(&rtc_raw, year); |
| break; |
| |
| case RTC_EPOCH_READ: |
| return put_user(1900, (unsigned long *)arg); |
| |
| } |
| return -EINVAL; |
| } |
| |
| static struct file_operations rtc_fops = { |
| .ioctl = rtc_ioctl, |
| }; |
| |
| static struct miscdevice rtc_dev = { |
| .minor = RTC_MINOR, |
| .name = "rtc", |
| .fops = &rtc_fops, |
| }; |
| |
| /* IOC / IOMD i2c driver */ |
| |
| #define FORCE_ONES 0xdc |
| #define SCL 0x02 |
| #define SDA 0x01 |
| |
| /* |
| * We must preserve all non-i2c output bits in IOC_CONTROL. |
| * Note also that we need to preserve the value of SCL and |
| * SDA outputs as well (which may be different from the |
| * values read back from IOC_CONTROL). |
| */ |
| static u_int force_ones; |
| |
| static void ioc_setscl(void *data, int state) |
| { |
| u_int ioc_control = ioc_readb(IOC_CONTROL) & ~(SCL | SDA); |
| u_int ones = force_ones; |
| |
| if (state) |
| ones |= SCL; |
| else |
| ones &= ~SCL; |
| |
| force_ones = ones; |
| |
| ioc_writeb(ioc_control | ones, IOC_CONTROL); |
| } |
| |
| static void ioc_setsda(void *data, int state) |
| { |
| u_int ioc_control = ioc_readb(IOC_CONTROL) & ~(SCL | SDA); |
| u_int ones = force_ones; |
| |
| if (state) |
| ones |= SDA; |
| else |
| ones &= ~SDA; |
| |
| force_ones = ones; |
| |
| ioc_writeb(ioc_control | ones, IOC_CONTROL); |
| } |
| |
| static int ioc_getscl(void *data) |
| { |
| return (ioc_readb(IOC_CONTROL) & SCL) != 0; |
| } |
| |
| static int ioc_getsda(void *data) |
| { |
| return (ioc_readb(IOC_CONTROL) & SDA) != 0; |
| } |
| |
| static struct i2c_algo_bit_data ioc_data = { |
| .setsda = ioc_setsda, |
| .setscl = ioc_setscl, |
| .getsda = ioc_getsda, |
| .getscl = ioc_getscl, |
| .udelay = 80, |
| .mdelay = 80, |
| .timeout = 100 |
| }; |
| |
| static int ioc_client_reg(struct i2c_client *client) |
| { |
| if (client->driver->id == I2C_DRIVERID_PCF8583 && |
| client->addr == 0x50) { |
| struct rtc_tm rtctm; |
| unsigned int year; |
| struct timespec tv; |
| |
| rtc_client = client; |
| get_rtc_time(&rtctm, &year); |
| |
| tv.tv_nsec = rtctm.cs * 10000000; |
| tv.tv_sec = mktime(year, rtctm.mon, rtctm.mday, |
| rtctm.hours, rtctm.mins, rtctm.secs); |
| do_settimeofday(&tv); |
| set_rtc = k_set_rtc_time; |
| } |
| |
| return 0; |
| } |
| |
| static int ioc_client_unreg(struct i2c_client *client) |
| { |
| if (client == rtc_client) { |
| set_rtc = NULL; |
| rtc_client = NULL; |
| } |
| |
| return 0; |
| } |
| |
| static struct i2c_adapter ioc_ops = { |
| .id = I2C_HW_B_IOC, |
| .algo_data = &ioc_data, |
| .client_register = ioc_client_reg, |
| .client_unregister = ioc_client_unreg, |
| }; |
| |
| static int __init i2c_ioc_init(void) |
| { |
| int ret; |
| |
| force_ones = FORCE_ONES | SCL | SDA; |
| |
| ret = i2c_bit_add_bus(&ioc_ops); |
| |
| if (ret >= 0){ |
| ret = misc_register(&rtc_dev); |
| if(ret < 0) |
| i2c_bit_del_bus(&ioc_ops); |
| } |
| |
| return ret; |
| } |
| |
| __initcall(i2c_ioc_init); |