| /* Qualcomm Crypto Engine driver. |
| * |
| * Copyright (c) 2010-2013, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/device.h> |
| #include <linux/clk.h> |
| #include <linux/err.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/io.h> |
| #include <linux/platform_device.h> |
| #include <linux/spinlock.h> |
| #include <linux/delay.h> |
| #include <linux/crypto.h> |
| #include <crypto/hash.h> |
| #include <crypto/sha.h> |
| #include <linux/qcedev.h> |
| #include <linux/qcota.h> |
| #include <mach/dma.h> |
| |
| #include "qce.h" |
| #include "qcryptohw_30.h" |
| #include "qce_ota.h" |
| |
| /* ADM definitions */ |
| #define LI_SG_CMD (1 << 31) /* last index in the scatter gather cmd */ |
| #define SRC_INDEX_SG_CMD(index) ((index & 0x3fff) << 16) |
| #define DST_INDEX_SG_CMD(index) (index & 0x3fff) |
| #define ADM_DESC_LAST (1 << 31) |
| |
| /* Data xfer between DM and CE in blocks of 16 bytes */ |
| #define ADM_CE_BLOCK_SIZE 16 |
| |
| #define QCE_FIFO_SIZE 0x8000 |
| |
| /* Data xfer between DM and CE in blocks of 64 bytes */ |
| #define ADM_SHA_BLOCK_SIZE 64 |
| |
| #define ADM_DESC_LENGTH_MASK 0xffff |
| #define ADM_DESC_LENGTH(x) (x & ADM_DESC_LENGTH_MASK) |
| |
| struct dmov_desc { |
| uint32_t addr; |
| uint32_t len; |
| }; |
| |
| #define ADM_STATUS_OK 0x80000002 |
| |
| /* Misc definitions */ |
| |
| /* QCE max number of descriptor in a descriptor list */ |
| #define QCE_MAX_NUM_DESC 128 |
| |
| /* State of DM channel */ |
| enum qce_chan_st_enum { |
| QCE_CHAN_STATE_IDLE = 0, |
| QCE_CHAN_STATE_IN_PROG = 1, |
| QCE_CHAN_STATE_COMP = 2, |
| QCE_CHAN_STATE_LAST |
| }; |
| |
| /* |
| * CE HW device structure. |
| * Each engine has an instance of the structure. |
| * Each engine can only handle one crypto operation at one time. It is up to |
| * the sw above to ensure single threading of operation on an engine. |
| */ |
| struct qce_device { |
| struct device *pdev; /* Handle to platform_device structure */ |
| unsigned char *coh_vmem; /* Allocated coherent virtual memory */ |
| dma_addr_t coh_pmem; /* Allocated coherent physical memory */ |
| void __iomem *iobase; /* Virtual io base of CE HW */ |
| unsigned int phy_iobase; /* Physical io base of CE HW */ |
| struct clk *ce_clk; /* Handle to CE clk */ |
| unsigned int crci_in; /* CRCI for CE DM IN Channel */ |
| unsigned int crci_out; /* CRCI for CE DM OUT Channel */ |
| unsigned int crci_hash; /* CRCI for CE HASH */ |
| unsigned int chan_ce_in; /* ADM channel used for CE input |
| * and auth result if authentication |
| * only operation. */ |
| unsigned int chan_ce_out; /* ADM channel used for CE output, |
| and icv for esp */ |
| |
| |
| unsigned int *cmd_pointer_list_ce_in; |
| dma_addr_t phy_cmd_pointer_list_ce_in; |
| |
| unsigned int *cmd_pointer_list_ce_out; |
| dma_addr_t phy_cmd_pointer_list_ce_out; |
| |
| unsigned char *cmd_list_ce_in; |
| dma_addr_t phy_cmd_list_ce_in; |
| |
| unsigned char *cmd_list_ce_out; |
| dma_addr_t phy_cmd_list_ce_out; |
| |
| struct dmov_desc *ce_out_src_desc; |
| dma_addr_t phy_ce_out_src_desc; |
| |
| struct dmov_desc *ce_out_dst_desc; |
| dma_addr_t phy_ce_out_dst_desc; |
| |
| struct dmov_desc *ce_in_src_desc; |
| dma_addr_t phy_ce_in_src_desc; |
| |
| struct dmov_desc *ce_in_dst_desc; |
| dma_addr_t phy_ce_in_dst_desc; |
| |
| unsigned char *ce_out_ignore; |
| dma_addr_t phy_ce_out_ignore; |
| |
| unsigned char *ce_pad; |
| dma_addr_t phy_ce_pad; |
| |
| struct msm_dmov_cmd *chan_ce_in_cmd; |
| struct msm_dmov_cmd *chan_ce_out_cmd; |
| |
| uint32_t ce_out_ignore_size; |
| |
| int ce_out_dst_desc_index; |
| int ce_in_dst_desc_index; |
| |
| int ce_out_src_desc_index; |
| int ce_in_src_desc_index; |
| |
| enum qce_chan_st_enum chan_ce_in_state; /* chan ce_in state */ |
| enum qce_chan_st_enum chan_ce_out_state; /* chan ce_out state */ |
| |
| int chan_ce_in_status; /* chan ce_in status */ |
| int chan_ce_out_status; /* chan ce_out status */ |
| |
| |
| unsigned char *dig_result; |
| dma_addr_t phy_dig_result; |
| |
| /* cached aes key */ |
| uint32_t aeskey[AES256_KEY_SIZE/sizeof(uint32_t)]; |
| |
| uint32_t aes_key_size; /* cached aes key size in bytes */ |
| int fastaes; /* ce supports fast aes */ |
| int hmac; /* ce support hmac-sha1 */ |
| bool ota; /* ce support ota */ |
| |
| qce_comp_func_ptr_t qce_cb; /* qce callback function pointer */ |
| |
| int assoc_nents; |
| int src_nents; |
| int dst_nents; |
| |
| void *areq; |
| enum qce_cipher_mode_enum mode; |
| |
| dma_addr_t phy_iv_in; |
| dma_addr_t phy_ota_src; |
| dma_addr_t phy_ota_dst; |
| unsigned int ota_size; |
| int err; |
| }; |
| |
| /* Standard initialization vector for SHA-1, source: FIPS 180-2 */ |
| static uint32_t _std_init_vector_sha1[] = { |
| 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 |
| }; |
| /* Standard initialization vector for SHA-256, source: FIPS 180-2 */ |
| static uint32_t _std_init_vector_sha256[] = { |
| 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, |
| 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 |
| }; |
| |
| /* Source: FIPS 197, Figure 7. S-box: substitution values for the byte xy */ |
| static const uint32_t _s_box[256] = { |
| 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, |
| 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, |
| |
| 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, |
| 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, |
| |
| 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, |
| 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, |
| |
| 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, |
| 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, |
| |
| 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, |
| 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, |
| |
| 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, |
| 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, |
| |
| 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, |
| 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, |
| |
| 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, |
| 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, |
| |
| 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, |
| 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, |
| |
| 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, |
| 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, |
| |
| 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, |
| 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, |
| |
| 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, |
| 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, |
| |
| 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, |
| 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, |
| |
| 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, |
| 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, |
| |
| 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, |
| 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, |
| |
| 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, |
| 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; |
| |
| |
| /* |
| * Source: FIPS 197, Sec 5.2 Key Expansion, Figure 11. Pseudo Code for Key |
| * Expansion. |
| */ |
| static void _aes_expand_key_schedule(uint32_t keysize, uint32_t *AES_KEY, |
| uint32_t *AES_RND_KEY) |
| { |
| uint32_t i; |
| uint32_t Nk; |
| uint32_t Nr, rot_data; |
| uint32_t Rcon = 0x01000000; |
| uint32_t temp; |
| uint32_t data_in; |
| uint32_t MSB_store; |
| uint32_t byte_for_sub; |
| uint32_t word_sub[4]; |
| |
| switch (keysize) { |
| case 192: |
| Nk = 6; |
| Nr = 12; |
| break; |
| |
| case 256: |
| Nk = 8; |
| Nr = 14; |
| break; |
| |
| case 128: |
| default: /* default to AES128 */ |
| Nk = 4; |
| Nr = 10; |
| break; |
| } |
| |
| /* key expansion */ |
| i = 0; |
| while (i < Nk) { |
| AES_RND_KEY[i] = AES_KEY[i]; |
| i = i + 1; |
| } |
| |
| i = Nk; |
| while (i < (4 * (Nr + 1))) { |
| temp = AES_RND_KEY[i-1]; |
| if (Nr == 14) { |
| switch (i) { |
| case 8: |
| Rcon = 0x01000000; |
| break; |
| |
| case 16: |
| Rcon = 0x02000000; |
| break; |
| |
| case 24: |
| Rcon = 0x04000000; |
| break; |
| |
| case 32: |
| Rcon = 0x08000000; |
| break; |
| |
| case 40: |
| Rcon = 0x10000000; |
| break; |
| |
| case 48: |
| Rcon = 0x20000000; |
| break; |
| |
| case 56: |
| Rcon = 0x40000000; |
| break; |
| } |
| } else if (Nr == 12) { |
| switch (i) { |
| case 6: |
| Rcon = 0x01000000; |
| break; |
| |
| case 12: |
| Rcon = 0x02000000; |
| break; |
| |
| case 18: |
| Rcon = 0x04000000; |
| break; |
| |
| case 24: |
| Rcon = 0x08000000; |
| break; |
| |
| case 30: |
| Rcon = 0x10000000; |
| break; |
| |
| case 36: |
| Rcon = 0x20000000; |
| break; |
| |
| case 42: |
| Rcon = 0x40000000; |
| break; |
| |
| case 48: |
| Rcon = 0x80000000; |
| break; |
| } |
| } else if (Nr == 10) { |
| switch (i) { |
| case 4: |
| Rcon = 0x01000000; |
| break; |
| |
| case 8: |
| Rcon = 0x02000000; |
| break; |
| |
| case 12: |
| Rcon = 0x04000000; |
| break; |
| |
| case 16: |
| Rcon = 0x08000000; |
| break; |
| |
| case 20: |
| Rcon = 0x10000000; |
| break; |
| |
| case 24: |
| Rcon = 0x20000000; |
| break; |
| |
| case 28: |
| Rcon = 0x40000000; |
| break; |
| |
| case 32: |
| Rcon = 0x80000000; |
| break; |
| |
| case 36: |
| Rcon = 0x1b000000; |
| break; |
| |
| case 40: |
| Rcon = 0x36000000; |
| break; |
| } |
| } |
| |
| if ((i % Nk) == 0) { |
| data_in = temp; |
| MSB_store = (data_in >> 24 & 0xff); |
| rot_data = (data_in << 8) | MSB_store; |
| byte_for_sub = rot_data; |
| word_sub[0] = _s_box[(byte_for_sub & 0xff)]; |
| word_sub[1] = (_s_box[((byte_for_sub & 0xff00) >> 8)] |
| << 8); |
| word_sub[2] = (_s_box[((byte_for_sub & 0xff0000) >> 16)] |
| << 16); |
| word_sub[3] = (_s_box[((byte_for_sub & 0xff000000) |
| >> 24)] << 24); |
| word_sub[0] = word_sub[0] | word_sub[1] | word_sub[2] | |
| word_sub[3]; |
| temp = word_sub[0] ^ Rcon; |
| } else if ((Nk > 6) && ((i % Nk) == 4)) { |
| byte_for_sub = temp; |
| word_sub[0] = _s_box[(byte_for_sub & 0xff)]; |
| word_sub[1] = (_s_box[((byte_for_sub & 0xff00) >> 8)] |
| << 8); |
| word_sub[2] = (_s_box[((byte_for_sub & 0xff0000) >> 16)] |
| << 16); |
| word_sub[3] = (_s_box[((byte_for_sub & 0xff000000) >> |
| 24)] << 24); |
| word_sub[0] = word_sub[0] | word_sub[1] | word_sub[2] | |
| word_sub[3]; |
| temp = word_sub[0]; |
| } |
| |
| AES_RND_KEY[i] = AES_RND_KEY[i-Nk]^temp; |
| i = i+1; |
| } |
| } |
| |
| static void _byte_stream_to_net_words(uint32_t *iv, unsigned char *b, |
| unsigned int len) |
| { |
| unsigned n; |
| |
| n = len / sizeof(uint32_t) ; |
| for (; n > 0; n--) { |
| *iv = ((*b << 24) & 0xff000000) | |
| (((*(b+1)) << 16) & 0xff0000) | |
| (((*(b+2)) << 8) & 0xff00) | |
| (*(b+3) & 0xff); |
| b += sizeof(uint32_t); |
| iv++; |
| } |
| |
| n = len % sizeof(uint32_t); |
| if (n == 3) { |
| *iv = ((*b << 24) & 0xff000000) | |
| (((*(b+1)) << 16) & 0xff0000) | |
| (((*(b+2)) << 8) & 0xff00) ; |
| } else if (n == 2) { |
| *iv = ((*b << 24) & 0xff000000) | |
| (((*(b+1)) << 16) & 0xff0000) ; |
| } else if (n == 1) { |
| *iv = ((*b << 24) & 0xff000000) ; |
| } |
| } |
| |
| static void _net_words_to_byte_stream(uint32_t *iv, unsigned char *b, |
| unsigned int len) |
| { |
| unsigned n = len / sizeof(uint32_t); |
| |
| for (; n > 0; n--) { |
| *b++ = (unsigned char) ((*iv >> 24) & 0xff); |
| *b++ = (unsigned char) ((*iv >> 16) & 0xff); |
| *b++ = (unsigned char) ((*iv >> 8) & 0xff); |
| *b++ = (unsigned char) (*iv & 0xff); |
| iv++; |
| } |
| n = len % sizeof(uint32_t); |
| if (n == 3) { |
| *b++ = (unsigned char) ((*iv >> 24) & 0xff); |
| *b++ = (unsigned char) ((*iv >> 16) & 0xff); |
| *b = (unsigned char) ((*iv >> 8) & 0xff); |
| } else if (n == 2) { |
| *b++ = (unsigned char) ((*iv >> 24) & 0xff); |
| *b = (unsigned char) ((*iv >> 16) & 0xff); |
| } else if (n == 1) { |
| *b = (unsigned char) ((*iv >> 24) & 0xff); |
| } |
| } |
| |
| static int count_sg(struct scatterlist *sg, int nbytes) |
| { |
| int i; |
| |
| for (i = 0; nbytes > 0; i++, sg = scatterwalk_sg_next(sg)) |
| nbytes -= sg->length; |
| return i; |
| } |
| |
| static int qce_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction direction) |
| { |
| int i; |
| |
| for (i = 0; i < nents; ++i) { |
| dma_map_sg(dev, sg, 1, direction); |
| sg = scatterwalk_sg_next(sg); |
| } |
| |
| return nents; |
| } |
| |
| static int qce_dma_unmap_sg(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction direction) |
| { |
| int i; |
| |
| for (i = 0; i < nents; ++i) { |
| dma_unmap_sg(dev, sg, 1, direction); |
| sg = scatterwalk_sg_next(sg); |
| } |
| |
| return nents; |
| } |
| |
| static int _probe_ce_engine(struct qce_device *pce_dev) |
| { |
| unsigned int val; |
| unsigned int rev; |
| unsigned int eng_availability; /* engine available functions */ |
| |
| val = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG); |
| if ((val & 0xfffffff) != 0x0200004) { |
| dev_err(pce_dev->pdev, |
| "unknown Qualcomm crypto device at 0x%x 0x%x\n", |
| pce_dev->phy_iobase, val); |
| return -EIO; |
| }; |
| rev = (val & CRYPTO_CORE_REV_MASK) >> CRYPTO_CORE_REV; |
| if (rev == 0x2) { |
| dev_info(pce_dev->pdev, |
| "Qualcomm Crypto 3e device found at 0x%x\n", |
| pce_dev->phy_iobase); |
| } else if (rev == 0x1) { |
| dev_info(pce_dev->pdev, |
| "Qualcomm Crypto 3 device found at 0x%x\n", |
| pce_dev->phy_iobase); |
| } else if (rev == 0x0) { |
| dev_info(pce_dev->pdev, |
| "Qualcomm Crypto 2 device found at 0x%x\n", |
| pce_dev->phy_iobase); |
| } else { |
| dev_err(pce_dev->pdev, |
| "unknown Qualcomm crypto device at 0x%x\n", |
| pce_dev->phy_iobase); |
| return -EIO; |
| } |
| |
| eng_availability = readl_relaxed(pce_dev->iobase + |
| CRYPTO_ENGINES_AVAIL); |
| |
| if (((eng_availability & CRYPTO_AES_SEL_MASK) >> CRYPTO_AES_SEL) |
| == CRYPTO_AES_SEL_FAST) |
| pce_dev->fastaes = 1; |
| else |
| pce_dev->fastaes = 0; |
| |
| if (eng_availability & (1 << CRYPTO_HMAC_SEL)) |
| pce_dev->hmac = 1; |
| else |
| pce_dev->hmac = 0; |
| |
| if ((eng_availability & (1 << CRYPTO_F9_SEL)) && |
| (eng_availability & (1 << CRYPTO_F8_SEL))) |
| pce_dev->ota = true; |
| else |
| pce_dev->ota = false; |
| |
| pce_dev->aes_key_size = 0; |
| |
| return 0; |
| }; |
| |
| static int _init_ce_engine(struct qce_device *pce_dev) |
| { |
| unsigned int val; |
| |
| /* reset qce */ |
| writel_relaxed(1 << CRYPTO_SW_RST, pce_dev->iobase + CRYPTO_CONFIG_REG); |
| |
| /* Ensure previous instruction (write to reset bit) |
| * was completed. |
| */ |
| mb(); |
| /* configure ce */ |
| val = (1 << CRYPTO_MASK_DOUT_INTR) | (1 << CRYPTO_MASK_DIN_INTR) | |
| (1 << CRYPTO_MASK_AUTH_DONE_INTR) | |
| (1 << CRYPTO_MASK_ERR_INTR); |
| writel_relaxed(val, pce_dev->iobase + CRYPTO_CONFIG_REG); |
| |
| if (_probe_ce_engine(pce_dev) < 0) |
| return -EIO; |
| if (readl_relaxed(pce_dev->iobase + CRYPTO_CONFIG_REG) != val) { |
| dev_err(pce_dev->pdev, |
| "unknown Qualcomm crypto device at 0x%x\n", |
| pce_dev->phy_iobase); |
| return -EIO; |
| }; |
| return 0; |
| }; |
| |
| static int _sha_ce_setup(struct qce_device *pce_dev, struct qce_sha_req *sreq) |
| { |
| uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)]; |
| uint32_t diglen; |
| int rc; |
| int i; |
| uint32_t cfg = 0; |
| |
| /* if not the last, the size has to be on the block boundary */ |
| if (sreq->last_blk == 0 && (sreq->size % SHA256_BLOCK_SIZE)) |
| return -EIO; |
| |
| switch (sreq->alg) { |
| case QCE_HASH_SHA1: |
| diglen = SHA1_DIGEST_SIZE; |
| break; |
| case QCE_HASH_SHA256: |
| diglen = SHA256_DIGEST_SIZE; |
| break; |
| default: |
| return -EINVAL; |
| } |
| /* |
| * write 20/32 bytes, 5/8 words into auth_iv |
| * for SHA1/SHA256 |
| */ |
| |
| if (sreq->first_blk) { |
| if (sreq->alg == QCE_HASH_SHA1) { |
| for (i = 0; i < 5; i++) |
| auth32[i] = _std_init_vector_sha1[i]; |
| } else { |
| for (i = 0; i < 8; i++) |
| auth32[i] = _std_init_vector_sha256[i]; |
| } |
| } else |
| _byte_stream_to_net_words(auth32, sreq->digest, diglen); |
| |
| rc = clk_enable(pce_dev->ce_clk); |
| if (rc) |
| return rc; |
| |
| writel_relaxed(auth32[0], pce_dev->iobase + CRYPTO_AUTH_IV0_REG); |
| writel_relaxed(auth32[1], pce_dev->iobase + CRYPTO_AUTH_IV1_REG); |
| writel_relaxed(auth32[2], pce_dev->iobase + CRYPTO_AUTH_IV2_REG); |
| writel_relaxed(auth32[3], pce_dev->iobase + CRYPTO_AUTH_IV3_REG); |
| writel_relaxed(auth32[4], pce_dev->iobase + CRYPTO_AUTH_IV4_REG); |
| |
| if (sreq->alg == QCE_HASH_SHA256) { |
| writel_relaxed(auth32[5], pce_dev->iobase + |
| CRYPTO_AUTH_IV5_REG); |
| writel_relaxed(auth32[6], pce_dev->iobase + |
| CRYPTO_AUTH_IV6_REG); |
| writel_relaxed(auth32[7], pce_dev->iobase + |
| CRYPTO_AUTH_IV7_REG); |
| } |
| /* write auth_bytecnt 0/1, start with 0 */ |
| writel_relaxed(sreq->auth_data[0], pce_dev->iobase + |
| CRYPTO_AUTH_BYTECNT0_REG); |
| writel_relaxed(sreq->auth_data[1], pce_dev->iobase + |
| CRYPTO_AUTH_BYTECNT1_REG); |
| |
| /* write auth_seg_cfg */ |
| writel_relaxed(sreq->size << CRYPTO_AUTH_SEG_SIZE, |
| pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| |
| /* |
| * write seg_cfg |
| */ |
| |
| if (sreq->alg == QCE_HASH_SHA1) |
| cfg |= (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE); |
| else |
| cfg = (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE); |
| |
| if (sreq->first_blk) |
| cfg |= 1 << CRYPTO_FIRST; |
| if (sreq->last_blk) |
| cfg |= 1 << CRYPTO_LAST; |
| cfg |= CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG; |
| writel_relaxed(cfg, pce_dev->iobase + CRYPTO_SEG_CFG_REG); |
| |
| /* write seg_size */ |
| writel_relaxed(sreq->size, pce_dev->iobase + CRYPTO_SEG_SIZE_REG); |
| |
| /* issue go to crypto */ |
| writel_relaxed(1 << CRYPTO_GO, pce_dev->iobase + CRYPTO_GOPROC_REG); |
| /* Ensure previous instructions (setting the GO register) |
| * was completed before issuing a DMA transfer request |
| */ |
| mb(); |
| |
| return 0; |
| } |
| |
| static int _ce_setup(struct qce_device *pce_dev, struct qce_req *q_req, |
| uint32_t totallen, uint32_t coffset) |
| { |
| uint32_t hmackey[HMAC_KEY_SIZE/sizeof(uint32_t)] = { |
| 0, 0, 0, 0, 0}; |
| uint32_t enckey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)] = { |
| 0, 0, 0, 0, 0, 0, 0, 0}; |
| uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = { |
| 0, 0, 0, 0}; |
| uint32_t enck_size_in_word = q_req->encklen / sizeof(uint32_t); |
| int aes_key_chg; |
| int i, rc; |
| uint32_t aes_round_key[CRYPTO_AES_RNDKEYS]; |
| uint32_t cfg; |
| uint32_t ivsize = q_req->ivsize; |
| |
| rc = clk_enable(pce_dev->ce_clk); |
| if (rc) |
| return rc; |
| |
| cfg = (1 << CRYPTO_FIRST) | (1 << CRYPTO_LAST); |
| if (q_req->op == QCE_REQ_AEAD) { |
| |
| /* do authentication setup */ |
| |
| cfg |= (CRYPTO_AUTH_SIZE_HMAC_SHA1 << CRYPTO_AUTH_SIZE)| |
| (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG); |
| |
| /* write sha1 init vector */ |
| writel_relaxed(_std_init_vector_sha1[0], |
| pce_dev->iobase + CRYPTO_AUTH_IV0_REG); |
| writel_relaxed(_std_init_vector_sha1[1], |
| pce_dev->iobase + CRYPTO_AUTH_IV1_REG); |
| writel_relaxed(_std_init_vector_sha1[2], |
| pce_dev->iobase + CRYPTO_AUTH_IV2_REG); |
| writel_relaxed(_std_init_vector_sha1[3], |
| pce_dev->iobase + CRYPTO_AUTH_IV3_REG); |
| writel_relaxed(_std_init_vector_sha1[4], |
| pce_dev->iobase + CRYPTO_AUTH_IV4_REG); |
| /* write hmac key */ |
| _byte_stream_to_net_words(hmackey, q_req->authkey, |
| q_req->authklen); |
| writel_relaxed(hmackey[0], pce_dev->iobase + |
| CRYPTO_AUTH_IV5_REG); |
| writel_relaxed(hmackey[1], pce_dev->iobase + |
| CRYPTO_AUTH_IV6_REG); |
| writel_relaxed(hmackey[2], pce_dev->iobase + |
| CRYPTO_AUTH_IV7_REG); |
| writel_relaxed(hmackey[3], pce_dev->iobase + |
| CRYPTO_AUTH_IV8_REG); |
| writel_relaxed(hmackey[4], pce_dev->iobase + |
| CRYPTO_AUTH_IV9_REG); |
| writel_relaxed(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT0_REG); |
| writel_relaxed(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT1_REG); |
| |
| /* write auth_seg_cfg */ |
| writel_relaxed((totallen << CRYPTO_AUTH_SEG_SIZE) & 0xffff0000, |
| pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| |
| } |
| |
| _byte_stream_to_net_words(enckey32, q_req->enckey, q_req->encklen); |
| |
| switch (q_req->mode) { |
| case QCE_MODE_ECB: |
| cfg |= (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE); |
| break; |
| |
| case QCE_MODE_CBC: |
| cfg |= (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE); |
| break; |
| |
| case QCE_MODE_CTR: |
| default: |
| cfg |= (CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE); |
| break; |
| } |
| pce_dev->mode = q_req->mode; |
| |
| switch (q_req->alg) { |
| case CIPHER_ALG_DES: |
| if (q_req->mode != QCE_MODE_ECB) { |
| _byte_stream_to_net_words(enciv32, q_req->iv, ivsize); |
| writel_relaxed(enciv32[0], pce_dev->iobase + |
| CRYPTO_CNTR0_IV0_REG); |
| writel_relaxed(enciv32[1], pce_dev->iobase + |
| CRYPTO_CNTR1_IV1_REG); |
| } |
| writel_relaxed(enckey32[0], pce_dev->iobase + |
| CRYPTO_DES_KEY0_REG); |
| writel_relaxed(enckey32[1], pce_dev->iobase + |
| CRYPTO_DES_KEY1_REG); |
| cfg |= ((CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG)); |
| break; |
| |
| case CIPHER_ALG_3DES: |
| if (q_req->mode != QCE_MODE_ECB) { |
| _byte_stream_to_net_words(enciv32, q_req->iv, ivsize); |
| writel_relaxed(enciv32[0], pce_dev->iobase + |
| CRYPTO_CNTR0_IV0_REG); |
| writel_relaxed(enciv32[1], pce_dev->iobase + |
| CRYPTO_CNTR1_IV1_REG); |
| } |
| writel_relaxed(enckey32[0], pce_dev->iobase + |
| CRYPTO_DES_KEY0_REG); |
| writel_relaxed(enckey32[1], pce_dev->iobase + |
| CRYPTO_DES_KEY1_REG); |
| writel_relaxed(enckey32[2], pce_dev->iobase + |
| CRYPTO_DES_KEY2_REG); |
| writel_relaxed(enckey32[3], pce_dev->iobase + |
| CRYPTO_DES_KEY3_REG); |
| writel_relaxed(enckey32[4], pce_dev->iobase + |
| CRYPTO_DES_KEY4_REG); |
| writel_relaxed(enckey32[5], pce_dev->iobase + |
| CRYPTO_DES_KEY5_REG); |
| cfg |= ((CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG)); |
| break; |
| |
| case CIPHER_ALG_AES: |
| default: |
| if (q_req->mode != QCE_MODE_ECB) { |
| _byte_stream_to_net_words(enciv32, q_req->iv, ivsize); |
| writel_relaxed(enciv32[0], pce_dev->iobase + |
| CRYPTO_CNTR0_IV0_REG); |
| writel_relaxed(enciv32[1], pce_dev->iobase + |
| CRYPTO_CNTR1_IV1_REG); |
| writel_relaxed(enciv32[2], pce_dev->iobase + |
| CRYPTO_CNTR2_IV2_REG); |
| writel_relaxed(enciv32[3], pce_dev->iobase + |
| CRYPTO_CNTR3_IV3_REG); |
| } |
| /* set number of counter bits */ |
| writel_relaxed(0xffff, pce_dev->iobase + CRYPTO_CNTR_MASK_REG); |
| |
| if (q_req->op == QCE_REQ_ABLK_CIPHER_NO_KEY) { |
| cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 << |
| CRYPTO_ENCR_KEY_SZ); |
| cfg |= CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG; |
| } else { |
| switch (q_req->encklen) { |
| case AES128_KEY_SIZE: |
| cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 << |
| CRYPTO_ENCR_KEY_SZ); |
| break; |
| case AES192_KEY_SIZE: |
| cfg |= (CRYPTO_ENCR_KEY_SZ_AES192 << |
| CRYPTO_ENCR_KEY_SZ); |
| break; |
| case AES256_KEY_SIZE: |
| default: |
| cfg |= (CRYPTO_ENCR_KEY_SZ_AES256 << |
| CRYPTO_ENCR_KEY_SZ); |
| |
| /* check for null key. If null, use hw key*/ |
| for (i = 0; i < enck_size_in_word; i++) { |
| if (enckey32[i] != 0) |
| break; |
| } |
| if (i == enck_size_in_word) |
| cfg |= 1 << CRYPTO_USE_HW_KEY; |
| break; |
| } /* end of switch (q_req->encklen) */ |
| |
| cfg |= CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG; |
| if (pce_dev->aes_key_size != q_req->encklen) |
| aes_key_chg = 1; |
| else { |
| for (i = 0; i < enck_size_in_word; i++) { |
| if (enckey32[i] != pce_dev->aeskey[i]) |
| break; |
| } |
| aes_key_chg = (i == enck_size_in_word) ? 0 : 1; |
| } |
| |
| if (aes_key_chg) { |
| if (pce_dev->fastaes) { |
| for (i = 0; i < enck_size_in_word; |
| i++) { |
| writel_relaxed(enckey32[i], |
| pce_dev->iobase + |
| CRYPTO_AES_RNDKEY0 + |
| (i * sizeof(uint32_t))); |
| } |
| } else { |
| /* size in bit */ |
| _aes_expand_key_schedule( |
| q_req->encklen * 8, |
| enckey32, aes_round_key); |
| |
| for (i = 0; i < CRYPTO_AES_RNDKEYS; |
| i++) { |
| writel_relaxed(aes_round_key[i], |
| pce_dev->iobase + |
| CRYPTO_AES_RNDKEY0 + |
| (i * sizeof(uint32_t))); |
| } |
| } |
| |
| pce_dev->aes_key_size = q_req->encklen; |
| for (i = 0; i < enck_size_in_word; i++) |
| pce_dev->aeskey[i] = enckey32[i]; |
| } /*if (aes_key_chg) { */ |
| } /* else of if (q_req->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */ |
| break; |
| } /* end of switch (q_req->mode) */ |
| |
| if (q_req->dir == QCE_ENCRYPT) |
| cfg |= (1 << CRYPTO_AUTH_POS); |
| cfg |= ((q_req->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE; |
| |
| /* write encr seg cfg */ |
| writel_relaxed((q_req->cryptlen << CRYPTO_ENCR_SEG_SIZE) | |
| (coffset & 0xffff), /* cipher offset */ |
| pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG); |
| |
| /* write seg cfg and size */ |
| writel_relaxed(cfg, pce_dev->iobase + CRYPTO_SEG_CFG_REG); |
| writel_relaxed(totallen, pce_dev->iobase + CRYPTO_SEG_SIZE_REG); |
| |
| /* issue go to crypto */ |
| writel_relaxed(1 << CRYPTO_GO, pce_dev->iobase + CRYPTO_GOPROC_REG); |
| /* Ensure previous instructions (setting the GO register) |
| * was completed before issuing a DMA transfer request |
| */ |
| mb(); |
| return 0; |
| }; |
| |
| static int _aead_complete(struct qce_device *pce_dev) |
| { |
| struct aead_request *areq; |
| struct crypto_aead *aead; |
| uint32_t ivsize; |
| uint32_t iv_out[4]; |
| unsigned char iv[4 * sizeof(uint32_t)]; |
| uint32_t status; |
| |
| areq = (struct aead_request *) pce_dev->areq; |
| aead = crypto_aead_reqtfm(areq); |
| ivsize = crypto_aead_ivsize(aead); |
| |
| if (areq->src != areq->dst) { |
| qce_dma_unmap_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents, |
| DMA_FROM_DEVICE); |
| } |
| qce_dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| DMA_TO_DEVICE); |
| dma_unmap_single(pce_dev->pdev, pce_dev->phy_iv_in, |
| ivsize, DMA_TO_DEVICE); |
| qce_dma_unmap_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents, |
| DMA_TO_DEVICE); |
| |
| /* check ce error status */ |
| status = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG); |
| if (status & (1 << CRYPTO_SW_ERR)) { |
| pce_dev->err++; |
| dev_err(pce_dev->pdev, |
| "Qualcomm Crypto Error at 0x%x, status%x\n", |
| pce_dev->phy_iobase, status); |
| _init_ce_engine(pce_dev); |
| clk_disable(pce_dev->ce_clk); |
| pce_dev->qce_cb(areq, pce_dev->dig_result, NULL, -ENXIO); |
| return 0; |
| }; |
| |
| /* get iv out */ |
| if (pce_dev->mode == QCE_MODE_ECB) { |
| clk_disable(pce_dev->ce_clk); |
| pce_dev->qce_cb(areq, pce_dev->dig_result, NULL, |
| pce_dev->chan_ce_in_status | |
| pce_dev->chan_ce_out_status); |
| } else { |
| |
| iv_out[0] = readl_relaxed(pce_dev->iobase + |
| CRYPTO_CNTR0_IV0_REG); |
| iv_out[1] = readl_relaxed(pce_dev->iobase + |
| CRYPTO_CNTR1_IV1_REG); |
| iv_out[2] = readl_relaxed(pce_dev->iobase + |
| CRYPTO_CNTR2_IV2_REG); |
| iv_out[3] = readl_relaxed(pce_dev->iobase + |
| CRYPTO_CNTR3_IV3_REG); |
| |
| _net_words_to_byte_stream(iv_out, iv, sizeof(iv)); |
| clk_disable(pce_dev->ce_clk); |
| pce_dev->qce_cb(areq, pce_dev->dig_result, iv, |
| pce_dev->chan_ce_in_status | |
| pce_dev->chan_ce_out_status); |
| }; |
| return 0; |
| }; |
| |
| static void _sha_complete(struct qce_device *pce_dev) |
| { |
| |
| struct ahash_request *areq; |
| uint32_t auth_data[2]; |
| uint32_t status; |
| |
| areq = (struct ahash_request *) pce_dev->areq; |
| qce_dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| DMA_TO_DEVICE); |
| |
| /* check ce error status */ |
| status = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG); |
| if (status & (1 << CRYPTO_SW_ERR)) { |
| pce_dev->err++; |
| dev_err(pce_dev->pdev, |
| "Qualcomm Crypto Error at 0x%x, status%x\n", |
| pce_dev->phy_iobase, status); |
| _init_ce_engine(pce_dev); |
| clk_disable(pce_dev->ce_clk); |
| pce_dev->qce_cb(areq, pce_dev->dig_result, NULL, -ENXIO); |
| return; |
| }; |
| |
| auth_data[0] = readl_relaxed(pce_dev->iobase + |
| CRYPTO_AUTH_BYTECNT0_REG); |
| auth_data[1] = readl_relaxed(pce_dev->iobase + |
| CRYPTO_AUTH_BYTECNT1_REG); |
| /* Ensure previous instruction (retriving byte count information) |
| * was completed before disabling the clk. |
| */ |
| mb(); |
| clk_disable(pce_dev->ce_clk); |
| pce_dev->qce_cb(areq, pce_dev->dig_result, (unsigned char *)auth_data, |
| pce_dev->chan_ce_in_status); |
| }; |
| |
| static int _ablk_cipher_complete(struct qce_device *pce_dev) |
| { |
| struct ablkcipher_request *areq; |
| uint32_t iv_out[4]; |
| unsigned char iv[4 * sizeof(uint32_t)]; |
| uint32_t status; |
| |
| areq = (struct ablkcipher_request *) pce_dev->areq; |
| |
| if (areq->src != areq->dst) { |
| qce_dma_unmap_sg(pce_dev->pdev, areq->dst, |
| pce_dev->dst_nents, DMA_FROM_DEVICE); |
| } |
| qce_dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| DMA_TO_DEVICE); |
| |
| /* check ce error status */ |
| status = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG); |
| if (status & (1 << CRYPTO_SW_ERR)) { |
| pce_dev->err++; |
| dev_err(pce_dev->pdev, |
| "Qualcomm Crypto Error at 0x%x, status%x\n", |
| pce_dev->phy_iobase, status); |
| _init_ce_engine(pce_dev); |
| clk_disable(pce_dev->ce_clk); |
| pce_dev->qce_cb(areq, NULL, NULL, -ENXIO); |
| return 0; |
| }; |
| |
| /* get iv out */ |
| if (pce_dev->mode == QCE_MODE_ECB) { |
| clk_disable(pce_dev->ce_clk); |
| pce_dev->qce_cb(areq, NULL, NULL, pce_dev->chan_ce_in_status | |
| pce_dev->chan_ce_out_status); |
| } else { |
| iv_out[0] = readl_relaxed(pce_dev->iobase + |
| CRYPTO_CNTR0_IV0_REG); |
| iv_out[1] = readl_relaxed(pce_dev->iobase + |
| CRYPTO_CNTR1_IV1_REG); |
| iv_out[2] = readl_relaxed(pce_dev->iobase + |
| CRYPTO_CNTR2_IV2_REG); |
| iv_out[3] = readl_relaxed(pce_dev->iobase + |
| CRYPTO_CNTR3_IV3_REG); |
| |
| _net_words_to_byte_stream(iv_out, iv, sizeof(iv)); |
| clk_disable(pce_dev->ce_clk); |
| pce_dev->qce_cb(areq, NULL, iv, pce_dev->chan_ce_in_status | |
| pce_dev->chan_ce_out_status); |
| } |
| |
| return 0; |
| }; |
| |
| static int qce_split_and_insert_dm_desc(struct dmov_desc *pdesc, |
| unsigned int plen, unsigned int paddr, int *index) |
| { |
| while (plen > QCE_FIFO_SIZE) { |
| pdesc->len = QCE_FIFO_SIZE; |
| if (paddr > 0) { |
| pdesc->addr = paddr; |
| paddr += QCE_FIFO_SIZE; |
| } |
| plen -= pdesc->len; |
| if (plen > 0) { |
| *index = (*index) + 1; |
| if ((*index) >= QCE_MAX_NUM_DESC) |
| return -ENOMEM; |
| pdesc++; |
| } |
| } |
| if ((plen > 0) && (plen <= QCE_FIFO_SIZE)) { |
| pdesc->len = plen; |
| if (paddr > 0) |
| pdesc->addr = paddr; |
| } |
| |
| return 0; |
| } |
| |
| static int _chain_sg_buffer_in(struct qce_device *pce_dev, |
| struct scatterlist *sg, unsigned int nbytes) |
| { |
| unsigned int len; |
| unsigned int dlen; |
| struct dmov_desc *pdesc; |
| |
| pdesc = pce_dev->ce_in_src_desc + pce_dev->ce_in_src_desc_index; |
| /* |
| * Two consective chunks may be handled by the old |
| * buffer descriptor. |
| */ |
| while (nbytes > 0) { |
| len = min(nbytes, sg_dma_len(sg)); |
| dlen = pdesc->len & ADM_DESC_LENGTH_MASK; |
| nbytes -= len; |
| if (dlen == 0) { |
| pdesc->addr = sg_dma_address(sg); |
| pdesc->len = len; |
| if (pdesc->len > QCE_FIFO_SIZE) { |
| if (qce_split_and_insert_dm_desc(pdesc, |
| pdesc->len, sg_dma_address(sg), |
| &pce_dev->ce_in_src_desc_index)) |
| return -EIO; |
| } |
| } else if (sg_dma_address(sg) == (pdesc->addr + dlen)) { |
| pdesc->len = dlen + len; |
| if (pdesc->len > QCE_FIFO_SIZE) { |
| if (qce_split_and_insert_dm_desc(pdesc, |
| pdesc->len, pdesc->addr, |
| &pce_dev->ce_in_src_desc_index)) |
| return -EIO; |
| } |
| } else { |
| pce_dev->ce_in_src_desc_index++; |
| if (pce_dev->ce_in_src_desc_index >= QCE_MAX_NUM_DESC) |
| return -ENOMEM; |
| pdesc++; |
| pdesc->len = len; |
| pdesc->addr = sg_dma_address(sg); |
| if (pdesc->len > QCE_FIFO_SIZE) { |
| if (qce_split_and_insert_dm_desc(pdesc, |
| pdesc->len, sg_dma_address(sg), |
| &pce_dev->ce_in_src_desc_index)) |
| return -EIO; |
| } |
| } |
| if (nbytes > 0) |
| sg = scatterwalk_sg_next(sg); |
| } |
| return 0; |
| } |
| |
| static int _chain_pm_buffer_in(struct qce_device *pce_dev, |
| unsigned int pmem, unsigned int nbytes) |
| { |
| unsigned int dlen; |
| struct dmov_desc *pdesc; |
| |
| pdesc = pce_dev->ce_in_src_desc + pce_dev->ce_in_src_desc_index; |
| dlen = pdesc->len & ADM_DESC_LENGTH_MASK; |
| if (dlen == 0) { |
| pdesc->addr = pmem; |
| pdesc->len = nbytes; |
| } else if (pmem == (pdesc->addr + dlen)) { |
| pdesc->len = dlen + nbytes; |
| } else { |
| pce_dev->ce_in_src_desc_index++; |
| if (pce_dev->ce_in_src_desc_index >= QCE_MAX_NUM_DESC) |
| return -ENOMEM; |
| pdesc++; |
| pdesc->len = nbytes; |
| pdesc->addr = pmem; |
| } |
| return 0; |
| } |
| |
| static void _chain_buffer_in_init(struct qce_device *pce_dev) |
| { |
| struct dmov_desc *pdesc; |
| |
| pce_dev->ce_in_src_desc_index = 0; |
| pce_dev->ce_in_dst_desc_index = 0; |
| pdesc = pce_dev->ce_in_src_desc; |
| pdesc->len = 0; |
| } |
| |
| static void _ce_in_final(struct qce_device *pce_dev, int ncmd, unsigned total) |
| { |
| struct dmov_desc *pdesc; |
| dmov_sg *pcmd; |
| |
| pdesc = pce_dev->ce_in_src_desc + pce_dev->ce_in_src_desc_index; |
| pdesc->len |= ADM_DESC_LAST; |
| |
| pdesc = pce_dev->ce_in_dst_desc; |
| if (total > QCE_FIFO_SIZE) { |
| qce_split_and_insert_dm_desc(pdesc, total, 0, |
| &pce_dev->ce_in_dst_desc_index); |
| pdesc = pce_dev->ce_in_dst_desc + pce_dev->ce_in_dst_desc_index; |
| pdesc->len |= ADM_DESC_LAST; |
| } else |
| pdesc->len = ADM_DESC_LAST | total; |
| |
| pcmd = (dmov_sg *) pce_dev->cmd_list_ce_in; |
| if (ncmd == 1) |
| pcmd->cmd |= CMD_LC; |
| else { |
| dmov_s *pscmd; |
| |
| pcmd->cmd &= ~CMD_LC; |
| pcmd++; |
| pscmd = (dmov_s *)pcmd; |
| pscmd->cmd |= CMD_LC; |
| } |
| |
| #ifdef QCE_DEBUG |
| dev_info(pce_dev->pdev, "_ce_in_final %d\n", |
| pce_dev->ce_in_src_desc_index); |
| #endif |
| } |
| |
| #ifdef QCE_DEBUG |
| static void _ce_in_dump(struct qce_device *pce_dev) |
| { |
| int i; |
| struct dmov_desc *pdesc; |
| |
| dev_info(pce_dev->pdev, "_ce_in_dump: src\n"); |
| for (i = 0; i <= pce_dev->ce_in_src_desc_index; i++) { |
| pdesc = pce_dev->ce_in_src_desc + i; |
| dev_info(pce_dev->pdev, "%x , %x\n", pdesc->addr, |
| pdesc->len); |
| } |
| dev_info(pce_dev->pdev, "_ce_in_dump: dst\n"); |
| for (i = 0; i <= pce_dev->ce_in_dst_desc_index; i++) { |
| pdesc = pce_dev->ce_in_dst_desc + i; |
| dev_info(pce_dev->pdev, "%x , %x\n", pdesc->addr, |
| pdesc->len); |
| } |
| }; |
| |
| static void _ce_out_dump(struct qce_device *pce_dev) |
| { |
| int i; |
| struct dmov_desc *pdesc; |
| |
| dev_info(pce_dev->pdev, "_ce_out_dump: src\n"); |
| for (i = 0; i <= pce_dev->ce_out_src_desc_index; i++) { |
| pdesc = pce_dev->ce_out_src_desc + i; |
| dev_info(pce_dev->pdev, "%x , %x\n", pdesc->addr, |
| pdesc->len); |
| } |
| |
| dev_info(pce_dev->pdev, "_ce_out_dump: dst\n"); |
| for (i = 0; i <= pce_dev->ce_out_dst_desc_index; i++) { |
| pdesc = pce_dev->ce_out_dst_desc + i; |
| dev_info(pce_dev->pdev, "%x , %x\n", pdesc->addr, |
| pdesc->len); |
| } |
| }; |
| #endif |
| |
| static int _chain_sg_buffer_out(struct qce_device *pce_dev, |
| struct scatterlist *sg, unsigned int nbytes) |
| { |
| unsigned int len; |
| unsigned int dlen; |
| struct dmov_desc *pdesc; |
| |
| pdesc = pce_dev->ce_out_dst_desc + pce_dev->ce_out_dst_desc_index; |
| /* |
| * Two consective chunks may be handled by the old |
| * buffer descriptor. |
| */ |
| while (nbytes > 0) { |
| len = min(nbytes, sg_dma_len(sg)); |
| dlen = pdesc->len & ADM_DESC_LENGTH_MASK; |
| nbytes -= len; |
| if (dlen == 0) { |
| pdesc->addr = sg_dma_address(sg); |
| pdesc->len = len; |
| if (pdesc->len > QCE_FIFO_SIZE) { |
| if (qce_split_and_insert_dm_desc(pdesc, |
| pdesc->len, sg_dma_address(sg), |
| &pce_dev->ce_out_dst_desc_index)) |
| return -EIO; |
| } |
| } else if (sg_dma_address(sg) == (pdesc->addr + dlen)) { |
| pdesc->len = dlen + len; |
| if (pdesc->len > QCE_FIFO_SIZE) { |
| if (qce_split_and_insert_dm_desc(pdesc, |
| pdesc->len, pdesc->addr, |
| &pce_dev->ce_out_dst_desc_index)) |
| return -EIO; |
| } |
| } else { |
| pce_dev->ce_out_dst_desc_index++; |
| if (pce_dev->ce_out_dst_desc_index >= QCE_MAX_NUM_DESC) |
| return -EIO; |
| pdesc++; |
| pdesc->len = len; |
| pdesc->addr = sg_dma_address(sg); |
| if (pdesc->len > QCE_FIFO_SIZE) { |
| if (qce_split_and_insert_dm_desc(pdesc, |
| pdesc->len, sg_dma_address(sg), |
| &pce_dev->ce_out_dst_desc_index)) |
| return -EIO; |
| } |
| } |
| if (nbytes > 0) |
| sg = scatterwalk_sg_next(sg); |
| } |
| return 0; |
| } |
| |
| static int _chain_pm_buffer_out(struct qce_device *pce_dev, |
| unsigned int pmem, unsigned int nbytes) |
| { |
| unsigned int dlen; |
| struct dmov_desc *pdesc; |
| |
| pdesc = pce_dev->ce_out_dst_desc + pce_dev->ce_out_dst_desc_index; |
| dlen = pdesc->len & ADM_DESC_LENGTH_MASK; |
| |
| if (dlen == 0) { |
| pdesc->addr = pmem; |
| pdesc->len = nbytes; |
| } else if (pmem == (pdesc->addr + dlen)) { |
| pdesc->len = dlen + nbytes; |
| } else { |
| pce_dev->ce_out_dst_desc_index++; |
| if (pce_dev->ce_out_dst_desc_index >= QCE_MAX_NUM_DESC) |
| return -EIO; |
| pdesc++; |
| pdesc->len = nbytes; |
| pdesc->addr = pmem; |
| } |
| return 0; |
| }; |
| |
| static void _chain_buffer_out_init(struct qce_device *pce_dev) |
| { |
| struct dmov_desc *pdesc; |
| |
| pce_dev->ce_out_dst_desc_index = 0; |
| pce_dev->ce_out_src_desc_index = 0; |
| pdesc = pce_dev->ce_out_dst_desc; |
| pdesc->len = 0; |
| }; |
| |
| static void _ce_out_final(struct qce_device *pce_dev, int ncmd, unsigned total) |
| { |
| struct dmov_desc *pdesc; |
| dmov_sg *pcmd; |
| |
| pdesc = pce_dev->ce_out_dst_desc + pce_dev->ce_out_dst_desc_index; |
| pdesc->len |= ADM_DESC_LAST; |
| |
| pdesc = pce_dev->ce_out_src_desc; |
| if (total > QCE_FIFO_SIZE) { |
| qce_split_and_insert_dm_desc(pdesc, total, 0, |
| &pce_dev->ce_out_src_desc_index); |
| pdesc = pce_dev->ce_out_src_desc + |
| pce_dev->ce_out_src_desc_index; |
| pdesc->len |= ADM_DESC_LAST; |
| } else |
| pdesc->len = ADM_DESC_LAST | total; |
| |
| pcmd = (dmov_sg *) pce_dev->cmd_list_ce_out; |
| if (ncmd == 1) |
| pcmd->cmd |= CMD_LC; |
| else { |
| dmov_s *pscmd; |
| |
| pcmd->cmd &= ~CMD_LC; |
| pcmd++; |
| pscmd = (dmov_s *)pcmd; |
| pscmd->cmd |= CMD_LC; |
| } |
| #ifdef QCE_DEBUG |
| dev_info(pce_dev->pdev, "_ce_out_final %d\n", |
| pce_dev->ce_out_dst_desc_index); |
| #endif |
| |
| }; |
| |
| static void _aead_ce_in_call_back(struct msm_dmov_cmd *cmd_ptr, |
| unsigned int result, struct msm_dmov_errdata *err) |
| { |
| struct qce_device *pce_dev; |
| |
| pce_dev = (struct qce_device *) cmd_ptr->user; |
| if (result != ADM_STATUS_OK) { |
| dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| result); |
| pce_dev->chan_ce_in_status = -1; |
| } else |
| pce_dev->chan_ce_in_status = 0; |
| |
| pce_dev->chan_ce_in_state = QCE_CHAN_STATE_COMP; |
| if (pce_dev->chan_ce_out_state == QCE_CHAN_STATE_COMP) { |
| pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| |
| /* done */ |
| _aead_complete(pce_dev); |
| } |
| }; |
| |
| static void _aead_ce_out_call_back(struct msm_dmov_cmd *cmd_ptr, |
| unsigned int result, struct msm_dmov_errdata *err) |
| { |
| struct qce_device *pce_dev; |
| |
| pce_dev = (struct qce_device *) cmd_ptr->user; |
| if (result != ADM_STATUS_OK) { |
| dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| result); |
| pce_dev->chan_ce_out_status = -1; |
| } else { |
| pce_dev->chan_ce_out_status = 0; |
| }; |
| |
| pce_dev->chan_ce_out_state = QCE_CHAN_STATE_COMP; |
| if (pce_dev->chan_ce_in_state == QCE_CHAN_STATE_COMP) { |
| pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| |
| /* done */ |
| _aead_complete(pce_dev); |
| } |
| |
| }; |
| |
| static void _sha_ce_in_call_back(struct msm_dmov_cmd *cmd_ptr, |
| unsigned int result, struct msm_dmov_errdata *err) |
| { |
| struct qce_device *pce_dev; |
| |
| pce_dev = (struct qce_device *) cmd_ptr->user; |
| if (result != ADM_STATUS_OK) { |
| dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| result); |
| pce_dev->chan_ce_in_status = -1; |
| } else |
| pce_dev->chan_ce_in_status = 0; |
| pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| _sha_complete(pce_dev); |
| }; |
| |
| static void _ablk_cipher_ce_in_call_back(struct msm_dmov_cmd *cmd_ptr, |
| unsigned int result, struct msm_dmov_errdata *err) |
| { |
| struct qce_device *pce_dev; |
| |
| pce_dev = (struct qce_device *) cmd_ptr->user; |
| if (result != ADM_STATUS_OK) { |
| dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| result); |
| pce_dev->chan_ce_in_status = -1; |
| } else |
| pce_dev->chan_ce_in_status = 0; |
| |
| pce_dev->chan_ce_in_state = QCE_CHAN_STATE_COMP; |
| if (pce_dev->chan_ce_out_state == QCE_CHAN_STATE_COMP) { |
| pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| |
| /* done */ |
| _ablk_cipher_complete(pce_dev); |
| } |
| }; |
| |
| static void _ablk_cipher_ce_out_call_back(struct msm_dmov_cmd *cmd_ptr, |
| unsigned int result, struct msm_dmov_errdata *err) |
| { |
| struct qce_device *pce_dev; |
| |
| pce_dev = (struct qce_device *) cmd_ptr->user; |
| if (result != ADM_STATUS_OK) { |
| dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| result); |
| pce_dev->chan_ce_out_status = -1; |
| } else { |
| pce_dev->chan_ce_out_status = 0; |
| }; |
| |
| pce_dev->chan_ce_out_state = QCE_CHAN_STATE_COMP; |
| if (pce_dev->chan_ce_in_state == QCE_CHAN_STATE_COMP) { |
| pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| |
| /* done */ |
| _ablk_cipher_complete(pce_dev); |
| } |
| }; |
| |
| |
| static int _setup_cmd_template(struct qce_device *pce_dev) |
| { |
| dmov_sg *pcmd; |
| dmov_s *pscmd; |
| struct dmov_desc *pdesc; |
| unsigned char *vaddr; |
| int i = 0; |
| |
| /* Divide up the 4K coherent memory */ |
| /* 1. ce_in channel 1st command src descriptors, 128 entries */ |
| vaddr = pce_dev->coh_vmem; |
| vaddr = (unsigned char *) ALIGN(((unsigned int)vaddr), 16); |
| pce_dev->ce_in_src_desc = (struct dmov_desc *) vaddr; |
| pce_dev->phy_ce_in_src_desc = pce_dev->coh_pmem + |
| (vaddr - pce_dev->coh_vmem); |
| vaddr = vaddr + (sizeof(struct dmov_desc) * QCE_MAX_NUM_DESC); |
| |
| /* 2. ce_in channel 1st command dst descriptor, 1 entry */ |
| vaddr = (unsigned char *) ALIGN(((unsigned int)vaddr), 16); |
| pce_dev->ce_in_dst_desc = (struct dmov_desc *) vaddr; |
| pce_dev->phy_ce_in_dst_desc = pce_dev->coh_pmem + |
| (vaddr - pce_dev->coh_vmem); |
| vaddr = vaddr + (sizeof(struct dmov_desc) * QCE_MAX_NUM_DESC); |
| |
| /* |
| * 3. ce_in channel command list of one scatter gather command |
| * and one simple command. |
| */ |
| pce_dev->cmd_list_ce_in = vaddr; |
| pce_dev->phy_cmd_list_ce_in = pce_dev->coh_pmem |
| + (vaddr - pce_dev->coh_vmem); |
| vaddr = vaddr + sizeof(dmov_s) + sizeof(dmov_sg); |
| |
| /* 4. authentication result. */ |
| pce_dev->dig_result = vaddr; |
| pce_dev->phy_dig_result = pce_dev->coh_pmem + |
| (vaddr - pce_dev->coh_vmem); |
| vaddr = vaddr + SHA256_DIGESTSIZE; |
| |
| /* |
| * 5. ce_out channel command list of one scatter gather command |
| * and one simple command. |
| */ |
| pce_dev->cmd_list_ce_out = vaddr; |
| pce_dev->phy_cmd_list_ce_out = pce_dev->coh_pmem |
| + (vaddr - pce_dev->coh_vmem); |
| vaddr = vaddr + sizeof(dmov_s) + sizeof(dmov_sg); |
| |
| /* 6. ce_out channel command src descriptors, 1 entry */ |
| vaddr = (unsigned char *) ALIGN(((unsigned int)vaddr), 16); |
| pce_dev->ce_out_src_desc = (struct dmov_desc *) vaddr; |
| pce_dev->phy_ce_out_src_desc = pce_dev->coh_pmem |
| + (vaddr - pce_dev->coh_vmem); |
| vaddr = vaddr + (sizeof(struct dmov_desc) * QCE_MAX_NUM_DESC); |
| |
| /* 7. ce_out channel command dst descriptors, 128 entries. */ |
| vaddr = (unsigned char *) ALIGN(((unsigned int)vaddr), 16); |
| pce_dev->ce_out_dst_desc = (struct dmov_desc *) vaddr; |
| pce_dev->phy_ce_out_dst_desc = pce_dev->coh_pmem |
| + (vaddr - pce_dev->coh_vmem); |
| vaddr = vaddr + (sizeof(struct dmov_desc) * QCE_MAX_NUM_DESC); |
| |
| /* 8. pad area. */ |
| pce_dev->ce_pad = vaddr; |
| pce_dev->phy_ce_pad = pce_dev->coh_pmem + |
| (vaddr - pce_dev->coh_vmem); |
| vaddr = vaddr + ADM_CE_BLOCK_SIZE; |
| |
| /* 9. ce_in channel command pointer list. */ |
| vaddr = (unsigned char *) ALIGN(((unsigned int) vaddr), 16); |
| pce_dev->cmd_pointer_list_ce_in = (unsigned int *) vaddr; |
| pce_dev->phy_cmd_pointer_list_ce_in = pce_dev->coh_pmem + |
| (vaddr - pce_dev->coh_vmem); |
| vaddr = vaddr + sizeof(unsigned char *); |
| |
| /* 10. ce_ou channel command pointer list. */ |
| vaddr = (unsigned char *) ALIGN(((unsigned int) vaddr), 16); |
| pce_dev->cmd_pointer_list_ce_out = (unsigned int *) vaddr; |
| pce_dev->phy_cmd_pointer_list_ce_out = pce_dev->coh_pmem + |
| (vaddr - pce_dev->coh_vmem); |
| vaddr = vaddr + sizeof(unsigned char *); |
| |
| /* 11. throw away area to store by-pass data from ce_out. */ |
| pce_dev->ce_out_ignore = (unsigned char *) vaddr; |
| pce_dev->phy_ce_out_ignore = pce_dev->coh_pmem |
| + (vaddr - pce_dev->coh_vmem); |
| pce_dev->ce_out_ignore_size = (2 * PAGE_SIZE) - (vaddr - |
| pce_dev->coh_vmem); /* at least 1.5 K of space */ |
| /* |
| * The first command of command list ce_in is for the input of |
| * concurrent operation of encrypt/decrypt or for the input |
| * of authentication. |
| */ |
| pcmd = (dmov_sg *) pce_dev->cmd_list_ce_in; |
| /* swap byte and half word , dst crci , scatter gather */ |
| pcmd->cmd = CMD_DST_SWAP_BYTES | CMD_DST_SWAP_SHORTS | |
| CMD_DST_CRCI(pce_dev->crci_in) | CMD_MODE_SG; |
| pdesc = pce_dev->ce_in_src_desc; |
| pdesc->addr = 0; /* to be filled in each operation */ |
| pdesc->len = 0; /* to be filled in each operation */ |
| pcmd->src_dscr = (unsigned) pce_dev->phy_ce_in_src_desc; |
| |
| pdesc = pce_dev->ce_in_dst_desc; |
| for (i = 0; i < QCE_MAX_NUM_DESC; i++) { |
| pdesc->addr = (CRYPTO_DATA_SHADOW0 + pce_dev->phy_iobase); |
| pdesc->len = 0; /* to be filled in each operation */ |
| pdesc++; |
| } |
| pcmd->dst_dscr = (unsigned) pce_dev->phy_ce_in_dst_desc; |
| pcmd->_reserved = LI_SG_CMD | SRC_INDEX_SG_CMD(0) | |
| DST_INDEX_SG_CMD(0); |
| pcmd++; |
| /* |
| * The second command is for the digested data of |
| * hashing operation only. For others, this command is not used. |
| */ |
| pscmd = (dmov_s *) pcmd; |
| /* last command, swap byte, half word, src crci, single */ |
| pscmd->cmd = CMD_LC | CMD_SRC_SWAP_BYTES | CMD_SRC_SWAP_SHORTS | |
| CMD_SRC_CRCI(pce_dev->crci_hash) | CMD_MODE_SINGLE; |
| pscmd->src = (unsigned) (CRYPTO_AUTH_IV0_REG + pce_dev->phy_iobase); |
| pscmd->len = SHA256_DIGESTSIZE; /* to be filled. */ |
| pscmd->dst = (unsigned) pce_dev->phy_dig_result; |
| /* setup command pointer list */ |
| *(pce_dev->cmd_pointer_list_ce_in) = (CMD_PTR_LP | DMOV_CMD_LIST | |
| DMOV_CMD_ADDR((unsigned int) |
| pce_dev->phy_cmd_list_ce_in)); |
| pce_dev->chan_ce_in_cmd->user = (void *) pce_dev; |
| pce_dev->chan_ce_in_cmd->exec_func = NULL; |
| pce_dev->chan_ce_in_cmd->cmdptr = DMOV_CMD_ADDR( |
| (unsigned int) pce_dev->phy_cmd_pointer_list_ce_in); |
| /* |
| * The first command in the command list ce_out. |
| * It is for encry/decryp output. |
| * If hashing only, ce_out is not used. |
| */ |
| pcmd = (dmov_sg *) pce_dev->cmd_list_ce_out; |
| /* swap byte, half word, source crci, scatter gather */ |
| pcmd->cmd = CMD_SRC_SWAP_BYTES | CMD_SRC_SWAP_SHORTS | |
| CMD_SRC_CRCI(pce_dev->crci_out) | CMD_MODE_SG; |
| |
| pdesc = pce_dev->ce_out_src_desc; |
| for (i = 0; i < QCE_MAX_NUM_DESC; i++) { |
| pdesc->addr = (CRYPTO_DATA_SHADOW0 + pce_dev->phy_iobase); |
| pdesc->len = 0; /* to be filled in each operation */ |
| pdesc++; |
| } |
| pcmd->src_dscr = (unsigned) pce_dev->phy_ce_out_src_desc; |
| |
| pdesc = pce_dev->ce_out_dst_desc; |
| pdesc->addr = 0; /* to be filled in each operation */ |
| pdesc->len = 0; /* to be filled in each operation */ |
| pcmd->dst_dscr = (unsigned) pce_dev->phy_ce_out_dst_desc; |
| pcmd->_reserved = LI_SG_CMD | SRC_INDEX_SG_CMD(0) | |
| DST_INDEX_SG_CMD(0); |
| |
| pcmd++; |
| /* |
| * The second command is for digested data of esp operation. |
| * For ciphering, this command is not used. |
| */ |
| pscmd = (dmov_s *) pcmd; |
| /* last command, swap byte, half word, src crci, single */ |
| pscmd->cmd = CMD_LC | CMD_SRC_SWAP_BYTES | CMD_SRC_SWAP_SHORTS | |
| CMD_SRC_CRCI(pce_dev->crci_hash) | CMD_MODE_SINGLE; |
| pscmd->src = (CRYPTO_AUTH_IV0_REG + pce_dev->phy_iobase); |
| pscmd->len = SHA1_DIGESTSIZE; /* we only support hmac(sha1) */ |
| pscmd->dst = (unsigned) pce_dev->phy_dig_result; |
| /* setup command pointer list */ |
| *(pce_dev->cmd_pointer_list_ce_out) = (CMD_PTR_LP | DMOV_CMD_LIST | |
| DMOV_CMD_ADDR((unsigned int)pce_dev-> |
| phy_cmd_list_ce_out)); |
| |
| pce_dev->chan_ce_out_cmd->user = pce_dev; |
| pce_dev->chan_ce_out_cmd->exec_func = NULL; |
| pce_dev->chan_ce_out_cmd->cmdptr = DMOV_CMD_ADDR( |
| (unsigned int) pce_dev->phy_cmd_pointer_list_ce_out); |
| |
| |
| return 0; |
| }; |
| |
| static int _qce_start_dma(struct qce_device *pce_dev, bool ce_in, bool ce_out) |
| { |
| |
| if (ce_in) |
| pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IN_PROG; |
| else |
| pce_dev->chan_ce_in_state = QCE_CHAN_STATE_COMP; |
| |
| if (ce_out) |
| pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IN_PROG; |
| else |
| pce_dev->chan_ce_out_state = QCE_CHAN_STATE_COMP; |
| |
| if (ce_in) |
| msm_dmov_enqueue_cmd(pce_dev->chan_ce_in, |
| pce_dev->chan_ce_in_cmd); |
| if (ce_out) |
| msm_dmov_enqueue_cmd(pce_dev->chan_ce_out, |
| pce_dev->chan_ce_out_cmd); |
| |
| return 0; |
| }; |
| |
| static void _f9_complete(struct qce_device *pce_dev) |
| { |
| uint32_t mac_i; |
| uint32_t status; |
| |
| dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src, |
| pce_dev->ota_size, DMA_TO_DEVICE); |
| |
| /* check ce error status */ |
| status = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG); |
| if (status & (1 << CRYPTO_SW_ERR)) { |
| pce_dev->err++; |
| dev_err(pce_dev->pdev, |
| "Qualcomm Crypto Error at 0x%x, status%x\n", |
| pce_dev->phy_iobase, status); |
| _init_ce_engine(pce_dev); |
| pce_dev->qce_cb(pce_dev->areq, NULL, NULL, -ENXIO); |
| return; |
| }; |
| |
| mac_i = readl_relaxed(pce_dev->iobase + CRYPTO_AUTH_IV0_REG); |
| pce_dev->qce_cb(pce_dev->areq, (void *) mac_i, NULL, |
| pce_dev->chan_ce_in_status); |
| }; |
| |
| static void _f8_complete(struct qce_device *pce_dev) |
| { |
| uint32_t status; |
| |
| if (pce_dev->phy_ota_dst != 0) |
| dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_dst, |
| pce_dev->ota_size, DMA_FROM_DEVICE); |
| if (pce_dev->phy_ota_src != 0) |
| dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src, |
| pce_dev->ota_size, (pce_dev->phy_ota_dst) ? |
| DMA_TO_DEVICE : DMA_BIDIRECTIONAL); |
| |
| /* check ce error status */ |
| status = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG); |
| if (status & (1 << CRYPTO_SW_ERR)) { |
| pce_dev->err++; |
| dev_err(pce_dev->pdev, |
| "Qualcomm Crypto Error at 0x%x, status%x\n", |
| pce_dev->phy_iobase, status); |
| _init_ce_engine(pce_dev); |
| pce_dev->qce_cb(pce_dev->areq, NULL, NULL, -ENXIO); |
| return; |
| }; |
| |
| pce_dev->qce_cb(pce_dev->areq, NULL, NULL, |
| pce_dev->chan_ce_in_status | |
| pce_dev->chan_ce_out_status); |
| }; |
| |
| |
| static void _f9_ce_in_call_back(struct msm_dmov_cmd *cmd_ptr, |
| unsigned int result, struct msm_dmov_errdata *err) |
| { |
| struct qce_device *pce_dev; |
| |
| pce_dev = (struct qce_device *) cmd_ptr->user; |
| if (result != ADM_STATUS_OK) { |
| dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| result); |
| pce_dev->chan_ce_in_status = -1; |
| } else |
| pce_dev->chan_ce_in_status = 0; |
| pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| _f9_complete(pce_dev); |
| }; |
| |
| static void _f8_ce_in_call_back(struct msm_dmov_cmd *cmd_ptr, |
| unsigned int result, struct msm_dmov_errdata *err) |
| { |
| struct qce_device *pce_dev; |
| |
| pce_dev = (struct qce_device *) cmd_ptr->user; |
| if (result != ADM_STATUS_OK) { |
| dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| result); |
| pce_dev->chan_ce_in_status = -1; |
| } else |
| pce_dev->chan_ce_in_status = 0; |
| |
| pce_dev->chan_ce_in_state = QCE_CHAN_STATE_COMP; |
| if (pce_dev->chan_ce_out_state == QCE_CHAN_STATE_COMP) { |
| pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| |
| /* done */ |
| _f8_complete(pce_dev); |
| } |
| }; |
| |
| static void _f8_ce_out_call_back(struct msm_dmov_cmd *cmd_ptr, |
| unsigned int result, struct msm_dmov_errdata *err) |
| { |
| struct qce_device *pce_dev; |
| |
| pce_dev = (struct qce_device *) cmd_ptr->user; |
| if (result != ADM_STATUS_OK) { |
| dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| result); |
| pce_dev->chan_ce_out_status = -1; |
| } else { |
| pce_dev->chan_ce_out_status = 0; |
| }; |
| |
| pce_dev->chan_ce_out_state = QCE_CHAN_STATE_COMP; |
| if (pce_dev->chan_ce_in_state == QCE_CHAN_STATE_COMP) { |
| pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| |
| /* done */ |
| _f8_complete(pce_dev); |
| } |
| }; |
| |
| static int _ce_f9_setup(struct qce_device *pce_dev, struct qce_f9_req * req) |
| { |
| uint32_t cfg; |
| uint32_t ikey[OTA_KEY_SIZE/sizeof(uint32_t)]; |
| |
| _byte_stream_to_net_words(ikey, &req->ikey[0], OTA_KEY_SIZE); |
| writel_relaxed(ikey[0], pce_dev->iobase + CRYPTO_AUTH_IV0_REG); |
| writel_relaxed(ikey[1], pce_dev->iobase + CRYPTO_AUTH_IV1_REG); |
| writel_relaxed(ikey[2], pce_dev->iobase + CRYPTO_AUTH_IV2_REG); |
| writel_relaxed(ikey[3], pce_dev->iobase + CRYPTO_AUTH_IV3_REG); |
| writel_relaxed(req->last_bits, pce_dev->iobase + CRYPTO_AUTH_IV4_REG); |
| |
| writel_relaxed(req->fresh, pce_dev->iobase + CRYPTO_AUTH_BYTECNT0_REG); |
| writel_relaxed(req->count_i, pce_dev->iobase + |
| CRYPTO_AUTH_BYTECNT1_REG); |
| |
| /* write auth_seg_cfg */ |
| writel_relaxed((uint32_t)req->msize << CRYPTO_AUTH_SEG_SIZE, |
| pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| |
| /* write seg_cfg */ |
| cfg = (CRYPTO_AUTH_ALG_F9 << CRYPTO_AUTH_ALG) | (1 << CRYPTO_FIRST) | |
| (1 << CRYPTO_LAST); |
| |
| if (req->algorithm == QCE_OTA_ALGO_KASUMI) |
| cfg |= (CRYPTO_AUTH_SIZE_UIA1 << CRYPTO_AUTH_SIZE); |
| else |
| cfg |= (CRYPTO_AUTH_SIZE_UIA2 << CRYPTO_AUTH_SIZE) ; |
| |
| if (req->direction == QCE_OTA_DIR_DOWNLINK) |
| cfg |= 1 << CRYPTO_F9_DIRECTION; |
| |
| writel_relaxed(cfg, pce_dev->iobase + CRYPTO_SEG_CFG_REG); |
| |
| /* write seg_size */ |
| writel_relaxed(req->msize, pce_dev->iobase + CRYPTO_SEG_SIZE_REG); |
| |
| /* issue go to crypto */ |
| writel_relaxed(1 << CRYPTO_GO, pce_dev->iobase + CRYPTO_GOPROC_REG); |
| |
| /* |
| * barrier to ensure previous instructions |
| * (including GO) to CE finish before issue DMA transfer |
| * request. |
| */ |
| mb(); |
| return 0; |
| }; |
| |
| static int _ce_f8_setup(struct qce_device *pce_dev, struct qce_f8_req *req, |
| bool key_stream_mode, uint16_t npkts, uint16_t cipher_offset, |
| uint16_t cipher_size) |
| { |
| uint32_t cfg; |
| uint32_t ckey[OTA_KEY_SIZE/sizeof(uint32_t)]; |
| |
| if ((key_stream_mode && (req->data_len & 0xf || npkts > 1)) || |
| (req->bearer >= QCE_OTA_MAX_BEARER)) |
| return -EINVAL; |
| |
| /* write seg_cfg */ |
| cfg = (CRYPTO_ENCR_ALG_F8 << CRYPTO_ENCR_ALG) | (1 << CRYPTO_FIRST) | |
| (1 << CRYPTO_LAST); |
| if (req->algorithm == QCE_OTA_ALGO_KASUMI) |
| cfg |= (CRYPTO_ENCR_KEY_SZ_UEA1 << CRYPTO_ENCR_KEY_SZ); |
| else |
| cfg |= (CRYPTO_ENCR_KEY_SZ_UEA2 << CRYPTO_ENCR_KEY_SZ) ; |
| if (key_stream_mode) |
| cfg |= 1 << CRYPTO_F8_KEYSTREAM_ENABLE; |
| if (req->direction == QCE_OTA_DIR_DOWNLINK) |
| cfg |= 1 << CRYPTO_F8_DIRECTION; |
| writel_relaxed(cfg, pce_dev->iobase + CRYPTO_SEG_CFG_REG); |
| |
| /* write seg_size */ |
| writel_relaxed(req->data_len, pce_dev->iobase + CRYPTO_SEG_SIZE_REG); |
| |
| /* write 0 to auth_size, auth_offset */ |
| writel_relaxed(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| |
| /* write encr_seg_cfg seg_size, seg_offset */ |
| writel_relaxed((((uint32_t) cipher_size) << CRYPTO_ENCR_SEG_SIZE) | |
| (cipher_offset & 0xffff), |
| pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG); |
| |
| /* write keys */ |
| _byte_stream_to_net_words(ckey, &req->ckey[0], OTA_KEY_SIZE); |
| writel_relaxed(ckey[0], pce_dev->iobase + CRYPTO_DES_KEY0_REG); |
| writel_relaxed(ckey[1], pce_dev->iobase + CRYPTO_DES_KEY1_REG); |
| writel_relaxed(ckey[2], pce_dev->iobase + CRYPTO_DES_KEY2_REG); |
| writel_relaxed(ckey[3], pce_dev->iobase + CRYPTO_DES_KEY3_REG); |
| |
| /* write cntr0_iv0 for countC */ |
| writel_relaxed(req->count_c, pce_dev->iobase + CRYPTO_CNTR0_IV0_REG); |
| |
| /* write cntr1_iv1 for nPkts, and bearer */ |
| if (npkts == 1) |
| npkts = 0; |
| writel_relaxed(req->bearer << CRYPTO_CNTR1_IV1_REG_F8_BEARER | |
| npkts << CRYPTO_CNTR1_IV1_REG_F8_PKT_CNT, |
| pce_dev->iobase + CRYPTO_CNTR1_IV1_REG); |
| |
| /* issue go to crypto */ |
| writel_relaxed(1 << CRYPTO_GO, pce_dev->iobase + CRYPTO_GOPROC_REG); |
| |
| /* |
| * barrier to ensure previous instructions |
| * (including GO) to CE finish before issue DMA transfer |
| * request. |
| */ |
| mb(); |
| return 0; |
| }; |
| |
| int qce_aead_req(void *handle, struct qce_req *q_req) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| struct aead_request *areq = (struct aead_request *) q_req->areq; |
| struct crypto_aead *aead = crypto_aead_reqtfm(areq); |
| uint32_t ivsize = crypto_aead_ivsize(aead); |
| uint32_t totallen; |
| uint32_t pad_len; |
| uint32_t authsize = crypto_aead_authsize(aead); |
| int rc = 0; |
| |
| q_req->ivsize = ivsize; |
| if (q_req->dir == QCE_ENCRYPT) |
| q_req->cryptlen = areq->cryptlen; |
| else |
| q_req->cryptlen = areq->cryptlen - authsize; |
| |
| totallen = q_req->cryptlen + ivsize + areq->assoclen; |
| pad_len = ALIGN(totallen, ADM_CE_BLOCK_SIZE) - totallen; |
| |
| _chain_buffer_in_init(pce_dev); |
| _chain_buffer_out_init(pce_dev); |
| |
| pce_dev->assoc_nents = 0; |
| pce_dev->phy_iv_in = 0; |
| pce_dev->src_nents = 0; |
| pce_dev->dst_nents = 0; |
| |
| pce_dev->assoc_nents = count_sg(areq->assoc, areq->assoclen); |
| qce_dma_map_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents, |
| DMA_TO_DEVICE); |
| if (_chain_sg_buffer_in(pce_dev, areq->assoc, areq->assoclen) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| |
| /* cipher iv for input */ |
| pce_dev->phy_iv_in = dma_map_single(pce_dev->pdev, q_req->iv, |
| ivsize, DMA_TO_DEVICE); |
| if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_iv_in, ivsize) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| |
| /* for output, ignore associated data and cipher iv */ |
| if (_chain_pm_buffer_out(pce_dev, pce_dev->phy_ce_out_ignore, |
| ivsize + areq->assoclen) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| |
| /* cipher input */ |
| pce_dev->src_nents = count_sg(areq->src, q_req->cryptlen); |
| qce_dma_map_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| DMA_TO_DEVICE); |
| if (_chain_sg_buffer_in(pce_dev, areq->src, q_req->cryptlen) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| |
| /* cipher output */ |
| if (areq->src != areq->dst) { |
| pce_dev->dst_nents = count_sg(areq->dst, q_req->cryptlen); |
| qce_dma_map_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents, |
| DMA_FROM_DEVICE); |
| }; |
| if (_chain_sg_buffer_out(pce_dev, areq->dst, q_req->cryptlen) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| |
| /* pad data */ |
| if (pad_len) { |
| if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ce_pad, |
| pad_len) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| if (_chain_pm_buffer_out(pce_dev, pce_dev->phy_ce_pad, |
| pad_len) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| } |
| |
| /* finalize the ce_in and ce_out channels command lists */ |
| _ce_in_final(pce_dev, 1, ALIGN(totallen, ADM_CE_BLOCK_SIZE)); |
| _ce_out_final(pce_dev, 2, ALIGN(totallen, ADM_CE_BLOCK_SIZE)); |
| |
| /* set up crypto device */ |
| rc = _ce_setup(pce_dev, q_req, totallen, ivsize + areq->assoclen); |
| if (rc < 0) |
| goto bad; |
| |
| /* setup for callback, and issue command to adm */ |
| pce_dev->areq = q_req->areq; |
| pce_dev->qce_cb = q_req->qce_cb; |
| |
| pce_dev->chan_ce_in_cmd->complete_func = _aead_ce_in_call_back; |
| pce_dev->chan_ce_out_cmd->complete_func = _aead_ce_out_call_back; |
| |
| rc = _qce_start_dma(pce_dev, true, true); |
| if (rc == 0) |
| return 0; |
| bad: |
| if (pce_dev->assoc_nents) { |
| qce_dma_unmap_sg(pce_dev->pdev, areq->assoc, |
| pce_dev->assoc_nents, DMA_TO_DEVICE); |
| } |
| if (pce_dev->phy_iv_in) { |
| dma_unmap_single(pce_dev->pdev, pce_dev->phy_iv_in, |
| ivsize, DMA_TO_DEVICE); |
| } |
| if (pce_dev->src_nents) { |
| qce_dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| DMA_TO_DEVICE); |
| } |
| if (pce_dev->dst_nents) { |
| qce_dma_unmap_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents, |
| DMA_FROM_DEVICE); |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL(qce_aead_req); |
| |
| int qce_ablk_cipher_req(void *handle, struct qce_req *c_req) |
| { |
| int rc = 0; |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| struct ablkcipher_request *areq = (struct ablkcipher_request *) |
| c_req->areq; |
| |
| uint32_t pad_len = ALIGN(areq->nbytes, ADM_CE_BLOCK_SIZE) |
| - areq->nbytes; |
| |
| _chain_buffer_in_init(pce_dev); |
| _chain_buffer_out_init(pce_dev); |
| |
| pce_dev->src_nents = 0; |
| pce_dev->dst_nents = 0; |
| /* cipher input */ |
| pce_dev->src_nents = count_sg(areq->src, areq->nbytes); |
| |
| qce_dma_map_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| DMA_TO_DEVICE); |
| if (_chain_sg_buffer_in(pce_dev, areq->src, areq->nbytes) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| |
| /* cipher output */ |
| if (areq->src != areq->dst) { |
| pce_dev->dst_nents = count_sg(areq->dst, areq->nbytes); |
| qce_dma_map_sg(pce_dev->pdev, areq->dst, |
| pce_dev->dst_nents, DMA_FROM_DEVICE); |
| }; |
| if (_chain_sg_buffer_out(pce_dev, areq->dst, areq->nbytes) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| |
| /* pad data */ |
| if (pad_len) { |
| if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ce_pad, |
| pad_len) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| if (_chain_pm_buffer_out(pce_dev, pce_dev->phy_ce_pad, |
| pad_len) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| } |
| |
| /* finalize the ce_in and ce_out channels command lists */ |
| _ce_in_final(pce_dev, 1, areq->nbytes + pad_len); |
| _ce_out_final(pce_dev, 1, areq->nbytes + pad_len); |
| |
| #ifdef QCE_DEBUG |
| _ce_in_dump(pce_dev); |
| _ce_out_dump(pce_dev); |
| #endif |
| /* set up crypto device */ |
| rc = _ce_setup(pce_dev, c_req, areq->nbytes, 0); |
| if (rc < 0) |
| goto bad; |
| |
| /* setup for callback, and issue command to adm */ |
| pce_dev->areq = areq; |
| pce_dev->qce_cb = c_req->qce_cb; |
| pce_dev->chan_ce_in_cmd->complete_func = |
| _ablk_cipher_ce_in_call_back; |
| pce_dev->chan_ce_out_cmd->complete_func = |
| _ablk_cipher_ce_out_call_back; |
| rc = _qce_start_dma(pce_dev, true, true); |
| |
| if (rc == 0) |
| return 0; |
| bad: |
| if (pce_dev->dst_nents) { |
| qce_dma_unmap_sg(pce_dev->pdev, areq->dst, |
| pce_dev->dst_nents, DMA_FROM_DEVICE); |
| } |
| if (pce_dev->src_nents) { |
| qce_dma_unmap_sg(pce_dev->pdev, areq->src, |
| pce_dev->src_nents, |
| (areq->src == areq->dst) ? |
| DMA_BIDIRECTIONAL : |
| DMA_TO_DEVICE); |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL(qce_ablk_cipher_req); |
| |
| int qce_process_sha_req(void *handle, struct qce_sha_req *sreq) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| int rc; |
| uint32_t pad_len = ALIGN(sreq->size, ADM_CE_BLOCK_SIZE) - sreq->size; |
| struct ahash_request *areq = (struct ahash_request *)sreq->areq; |
| |
| _chain_buffer_in_init(pce_dev); |
| pce_dev->src_nents = count_sg(sreq->src, sreq->size); |
| qce_dma_map_sg(pce_dev->pdev, sreq->src, pce_dev->src_nents, |
| DMA_TO_DEVICE); |
| |
| if (_chain_sg_buffer_in(pce_dev, sreq->src, sreq->size) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| |
| if (pad_len) { |
| if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ce_pad, |
| pad_len) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| } |
| _ce_in_final(pce_dev, 2, sreq->size + pad_len); |
| |
| #ifdef QCE_DEBUG |
| _ce_in_dump(pce_dev); |
| #endif |
| |
| rc = _sha_ce_setup(pce_dev, sreq); |
| |
| if (rc < 0) |
| goto bad; |
| |
| pce_dev->areq = areq; |
| pce_dev->qce_cb = sreq->qce_cb; |
| pce_dev->chan_ce_in_cmd->complete_func = _sha_ce_in_call_back; |
| |
| rc = _qce_start_dma(pce_dev, true, false); |
| |
| if (rc == 0) |
| return 0; |
| bad: |
| if (pce_dev->src_nents) { |
| qce_dma_unmap_sg(pce_dev->pdev, sreq->src, |
| pce_dev->src_nents, DMA_TO_DEVICE); |
| } |
| |
| return rc; |
| } |
| EXPORT_SYMBOL(qce_process_sha_req); |
| |
| /* |
| * crypto engine open function. |
| */ |
| void *qce_open(struct platform_device *pdev, int *rc) |
| { |
| struct qce_device *pce_dev; |
| struct resource *resource; |
| struct clk *ce_clk; |
| |
| pce_dev = kzalloc(sizeof(struct qce_device), GFP_KERNEL); |
| if (!pce_dev) { |
| *rc = -ENOMEM; |
| dev_err(&pdev->dev, "Can not allocate memory\n"); |
| return NULL; |
| } |
| pce_dev->pdev = &pdev->dev; |
| ce_clk = clk_get(pce_dev->pdev, "core_clk"); |
| if (IS_ERR(ce_clk)) { |
| kfree(pce_dev); |
| *rc = PTR_ERR(ce_clk); |
| return NULL; |
| } |
| pce_dev->ce_clk = ce_clk; |
| *rc = clk_enable(pce_dev->ce_clk); |
| if (*rc) { |
| kfree(pce_dev); |
| return NULL; |
| } |
| |
| resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!resource) { |
| *rc = -ENXIO; |
| dev_err(pce_dev->pdev, "Missing MEM resource\n"); |
| goto err; |
| }; |
| pce_dev->phy_iobase = resource->start; |
| pce_dev->iobase = ioremap_nocache(resource->start, |
| resource->end - resource->start + 1); |
| if (!pce_dev->iobase) { |
| *rc = -ENOMEM; |
| dev_err(pce_dev->pdev, "Can not map io memory\n"); |
| goto err; |
| } |
| |
| pce_dev->chan_ce_in_cmd = kzalloc(sizeof(struct msm_dmov_cmd), |
| GFP_KERNEL); |
| pce_dev->chan_ce_out_cmd = kzalloc(sizeof(struct msm_dmov_cmd), |
| GFP_KERNEL); |
| if (pce_dev->chan_ce_in_cmd == NULL || |
| pce_dev->chan_ce_out_cmd == NULL) { |
| dev_err(pce_dev->pdev, "Can not allocate memory\n"); |
| *rc = -ENOMEM; |
| goto err; |
| } |
| |
| resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, |
| "crypto_channels"); |
| if (!resource) { |
| *rc = -ENXIO; |
| dev_err(pce_dev->pdev, "Missing DMA channel resource\n"); |
| goto err; |
| }; |
| pce_dev->chan_ce_in = resource->start; |
| pce_dev->chan_ce_out = resource->end; |
| resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, |
| "crypto_crci_in"); |
| if (!resource) { |
| *rc = -ENXIO; |
| dev_err(pce_dev->pdev, "Missing DMA crci in resource\n"); |
| goto err; |
| }; |
| pce_dev->crci_in = resource->start; |
| resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, |
| "crypto_crci_out"); |
| if (!resource) { |
| *rc = -ENXIO; |
| dev_err(pce_dev->pdev, "Missing DMA crci out resource\n"); |
| goto err; |
| }; |
| pce_dev->crci_out = resource->start; |
| resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, |
| "crypto_crci_hash"); |
| if (!resource) { |
| *rc = -ENXIO; |
| dev_err(pce_dev->pdev, "Missing DMA crci hash resource\n"); |
| goto err; |
| }; |
| pce_dev->crci_hash = resource->start; |
| pce_dev->coh_vmem = dma_alloc_coherent(pce_dev->pdev, |
| 2*PAGE_SIZE, &pce_dev->coh_pmem, GFP_KERNEL); |
| |
| if (pce_dev->coh_vmem == NULL) { |
| *rc = -ENOMEM; |
| dev_err(pce_dev->pdev, "Can not allocate coherent memory.\n"); |
| goto err; |
| } |
| _setup_cmd_template(pce_dev); |
| |
| pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| |
| if (_init_ce_engine(pce_dev)) { |
| *rc = -ENXIO; |
| clk_disable(pce_dev->ce_clk); |
| goto err; |
| } |
| *rc = 0; |
| clk_disable(pce_dev->ce_clk); |
| |
| pce_dev->err = 0; |
| |
| return pce_dev; |
| err: |
| if (pce_dev) |
| qce_close(pce_dev); |
| return NULL; |
| } |
| EXPORT_SYMBOL(qce_open); |
| |
| /* |
| * crypto engine close function. |
| */ |
| int qce_close(void *handle) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| |
| if (handle == NULL) |
| return -ENODEV; |
| if (pce_dev->iobase) |
| iounmap(pce_dev->iobase); |
| |
| if (pce_dev->coh_vmem) |
| dma_free_coherent(pce_dev->pdev, 2*PAGE_SIZE, pce_dev->coh_vmem, |
| pce_dev->coh_pmem); |
| kfree(pce_dev->chan_ce_in_cmd); |
| kfree(pce_dev->chan_ce_out_cmd); |
| |
| clk_put(pce_dev->ce_clk); |
| kfree(handle); |
| return 0; |
| } |
| EXPORT_SYMBOL(qce_close); |
| |
| int qce_hw_support(void *handle, struct ce_hw_support *ce_support) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| |
| if (ce_support == NULL) |
| return -EINVAL; |
| |
| if (pce_dev->hmac == 1) |
| ce_support->sha1_hmac_20 = true; |
| else |
| ce_support->sha1_hmac_20 = false; |
| ce_support->sha1_hmac = false; |
| ce_support->sha256_hmac = false; |
| ce_support->sha_hmac = false; |
| ce_support->cmac = false; |
| ce_support->aes_key_192 = true; |
| ce_support->aes_xts = false; |
| ce_support->aes_ccm = false; |
| ce_support->ota = pce_dev->ota; |
| ce_support->aligned_only = false; |
| ce_support->is_shared = false; |
| ce_support->bam = false; |
| return 0; |
| } |
| EXPORT_SYMBOL(qce_hw_support); |
| |
| int qce_f8_req(void *handle, struct qce_f8_req *req, |
| void *cookie, qce_comp_func_ptr_t qce_cb) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| bool key_stream_mode; |
| dma_addr_t dst; |
| int rc; |
| uint32_t pad_len = ALIGN(req->data_len, ADM_CE_BLOCK_SIZE) - |
| req->data_len; |
| |
| _chain_buffer_in_init(pce_dev); |
| _chain_buffer_out_init(pce_dev); |
| |
| key_stream_mode = (req->data_in == NULL); |
| |
| /* F8 cipher input */ |
| if (key_stream_mode) |
| pce_dev->phy_ota_src = 0; |
| else { |
| pce_dev->phy_ota_src = dma_map_single(pce_dev->pdev, |
| req->data_in, req->data_len, |
| (req->data_in == req->data_out) ? |
| DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ota_src, |
| req->data_len) < 0) { |
| pce_dev->phy_ota_dst = 0; |
| rc = -ENOMEM; |
| goto bad; |
| } |
| } |
| |
| /* F8 cipher output */ |
| if (req->data_in != req->data_out) { |
| dst = dma_map_single(pce_dev->pdev, req->data_out, |
| req->data_len, DMA_FROM_DEVICE); |
| pce_dev->phy_ota_dst = dst; |
| } else { |
| dst = pce_dev->phy_ota_src; |
| pce_dev->phy_ota_dst = 0; |
| } |
| if (_chain_pm_buffer_out(pce_dev, dst, req->data_len) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| |
| pce_dev->ota_size = req->data_len; |
| |
| /* pad data */ |
| if (pad_len) { |
| if (!key_stream_mode && _chain_pm_buffer_in(pce_dev, |
| pce_dev->phy_ce_pad, pad_len) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| if (_chain_pm_buffer_out(pce_dev, pce_dev->phy_ce_pad, |
| pad_len) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| } |
| |
| /* finalize the ce_in and ce_out channels command lists */ |
| if (!key_stream_mode) |
| _ce_in_final(pce_dev, 1, req->data_len + pad_len); |
| _ce_out_final(pce_dev, 1, req->data_len + pad_len); |
| |
| /* set up crypto device */ |
| rc = _ce_f8_setup(pce_dev, req, key_stream_mode, 1, 0, req->data_len); |
| if (rc < 0) |
| goto bad; |
| |
| /* setup for callback, and issue command to adm */ |
| pce_dev->areq = cookie; |
| pce_dev->qce_cb = qce_cb; |
| |
| if (!key_stream_mode) |
| pce_dev->chan_ce_in_cmd->complete_func = _f8_ce_in_call_back; |
| |
| pce_dev->chan_ce_out_cmd->complete_func = _f8_ce_out_call_back; |
| |
| rc = _qce_start_dma(pce_dev, !(key_stream_mode), true); |
| if (rc == 0) |
| return 0; |
| bad: |
| if (pce_dev->phy_ota_dst != 0) |
| dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_dst, |
| req->data_len, DMA_FROM_DEVICE); |
| if (pce_dev->phy_ota_src != 0) |
| dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src, |
| req->data_len, |
| (req->data_in == req->data_out) ? |
| DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| return rc; |
| } |
| EXPORT_SYMBOL(qce_f8_req); |
| |
| int qce_f8_multi_pkt_req(void *handle, struct qce_f8_multi_pkt_req *mreq, |
| void *cookie, qce_comp_func_ptr_t qce_cb) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| uint16_t num_pkt = mreq->num_pkt; |
| uint16_t cipher_start = mreq->cipher_start; |
| uint16_t cipher_size = mreq->cipher_size; |
| struct qce_f8_req *req = &mreq->qce_f8_req; |
| uint32_t total; |
| uint32_t pad_len; |
| dma_addr_t dst = 0; |
| int rc = 0; |
| |
| total = num_pkt * req->data_len; |
| pad_len = ALIGN(total, ADM_CE_BLOCK_SIZE) - total; |
| |
| _chain_buffer_in_init(pce_dev); |
| _chain_buffer_out_init(pce_dev); |
| |
| /* F8 cipher input */ |
| pce_dev->phy_ota_src = dma_map_single(pce_dev->pdev, |
| req->data_in, total, |
| (req->data_in == req->data_out) ? |
| DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ota_src, |
| total) < 0) { |
| pce_dev->phy_ota_dst = 0; |
| rc = -ENOMEM; |
| goto bad; |
| } |
| /* F8 cipher output */ |
| if (req->data_in != req->data_out) { |
| dst = dma_map_single(pce_dev->pdev, req->data_out, total, |
| DMA_FROM_DEVICE); |
| pce_dev->phy_ota_dst = dst; |
| } else { |
| dst = pce_dev->phy_ota_src; |
| pce_dev->phy_ota_dst = 0; |
| } |
| if (_chain_pm_buffer_out(pce_dev, dst, total) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| |
| pce_dev->ota_size = total; |
| |
| /* pad data */ |
| if (pad_len) { |
| if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ce_pad, |
| pad_len) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| if (_chain_pm_buffer_out(pce_dev, pce_dev->phy_ce_pad, |
| pad_len) < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| } |
| |
| /* finalize the ce_in and ce_out channels command lists */ |
| _ce_in_final(pce_dev, 1, total + pad_len); |
| _ce_out_final(pce_dev, 1, total + pad_len); |
| |
| |
| /* set up crypto device */ |
| rc = _ce_f8_setup(pce_dev, req, false, num_pkt, cipher_start, |
| cipher_size); |
| if (rc) |
| goto bad ; |
| |
| /* setup for callback, and issue command to adm */ |
| pce_dev->areq = cookie; |
| pce_dev->qce_cb = qce_cb; |
| |
| pce_dev->chan_ce_in_cmd->complete_func = _f8_ce_in_call_back; |
| pce_dev->chan_ce_out_cmd->complete_func = _f8_ce_out_call_back; |
| |
| rc = _qce_start_dma(pce_dev, true, true); |
| if (rc == 0) |
| return 0; |
| bad: |
| if (pce_dev->phy_ota_dst) |
| dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_dst, total, |
| DMA_FROM_DEVICE); |
| dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src, total, |
| (req->data_in == req->data_out) ? |
| DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| return rc; |
| } |
| EXPORT_SYMBOL(qce_f8_multi_pkt_req); |
| |
| int qce_f9_req(void *handle, struct qce_f9_req *req, void *cookie, |
| qce_comp_func_ptr_t qce_cb) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| int rc; |
| uint32_t pad_len = ALIGN(req->msize, ADM_CE_BLOCK_SIZE) - req->msize; |
| |
| pce_dev->phy_ota_src = dma_map_single(pce_dev->pdev, req->message, |
| req->msize, DMA_TO_DEVICE); |
| |
| _chain_buffer_in_init(pce_dev); |
| rc = _chain_pm_buffer_in(pce_dev, pce_dev->phy_ota_src, req->msize); |
| if (rc < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| |
| pce_dev->ota_size = req->msize; |
| if (pad_len) { |
| rc = _chain_pm_buffer_in(pce_dev, pce_dev->phy_ce_pad, |
| pad_len); |
| if (rc < 0) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| } |
| _ce_in_final(pce_dev, 2, req->msize + pad_len); |
| rc = _ce_f9_setup(pce_dev, req); |
| if (rc < 0) |
| goto bad; |
| |
| /* setup for callback, and issue command to adm */ |
| pce_dev->areq = cookie; |
| pce_dev->qce_cb = qce_cb; |
| |
| pce_dev->chan_ce_in_cmd->complete_func = _f9_ce_in_call_back; |
| |
| rc = _qce_start_dma(pce_dev, true, false); |
| if (rc == 0) |
| return 0; |
| bad: |
| dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src, |
| req->msize, DMA_TO_DEVICE); |
| return rc; |
| } |
| EXPORT_SYMBOL(qce_f9_req); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("Crypto Engine driver"); |
| |