blob: 5989418ca043647aba497faa6d7d3d1332bd980d [file] [log] [blame]
#undef DEBUG
/*
* ARM performance counter support.
*
* Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
* Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
*
* This code is based on the sparc64 perf event code, which is in turn based
* on the x86 code. Callchain code is based on the ARM OProfile backtrace
* code.
*/
#define pr_fmt(fmt) "hw perfevents: " fmt
#include <linux/bitmap.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/perf_event.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/uaccess.h>
#include <linux/irq.h>
#include <linux/of.h>
#include <asm/cputype.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/pmu.h>
#include <asm/stacktrace.h>
#include <linux/cpu_pm.h>
/*
* ARMv6 supports a maximum of 3 events, starting from index 0. If we add
* another platform that supports more, we need to increase this to be the
* largest of all platforms.
*
* ARMv7 supports up to 32 events:
* cycle counter CCNT + 31 events counters CNT0..30.
* Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
*/
#define ARMPMU_MAX_HWEVENTS 32
static DEFINE_PER_CPU(u32, from_idle);
static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
#define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
/* Set at runtime when we know what CPU type we are. */
static struct arm_pmu *cpu_pmu;
static int per_cpu_irq;
enum arm_perf_pmu_ids
armpmu_get_pmu_id(void)
{
int id = -ENODEV;
if (cpu_pmu != NULL)
id = cpu_pmu->id;
return id;
}
EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
int perf_num_counters(void)
{
int max_events = 0;
if (cpu_pmu != NULL)
max_events = cpu_pmu->num_events;
return max_events;
}
EXPORT_SYMBOL_GPL(perf_num_counters);
#define HW_OP_UNSUPPORTED 0xFFFF
#define C(_x) \
PERF_COUNT_HW_CACHE_##_x
#define CACHE_OP_UNSUPPORTED 0xFFFF
static int
armpmu_map_cache_event(unsigned (*cache_map)
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX],
u64 config)
{
unsigned int cache_type, cache_op, cache_result, ret;
cache_type = (config >> 0) & 0xff;
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
return -EINVAL;
cache_op = (config >> 8) & 0xff;
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
return -EINVAL;
cache_result = (config >> 16) & 0xff;
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return -EINVAL;
ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
if (ret == CACHE_OP_UNSUPPORTED)
return -ENOENT;
return ret;
}
static int
armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
{
int mapping;
if (config >= PERF_COUNT_HW_MAX)
return -EINVAL;
mapping = (*event_map)[config];
return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
}
static int
armpmu_map_raw_event(u32 raw_event_mask, u64 config)
{
return (int)(config & raw_event_mask);
}
static int map_cpu_event(struct perf_event *event,
const unsigned (*event_map)[PERF_COUNT_HW_MAX],
unsigned (*cache_map)
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX],
u32 raw_event_mask)
{
u64 config = event->attr.config;
switch (event->attr.type) {
case PERF_TYPE_HARDWARE:
return armpmu_map_event(event_map, config);
case PERF_TYPE_HW_CACHE:
return armpmu_map_cache_event(cache_map, config);
case PERF_TYPE_RAW:
return armpmu_map_raw_event(raw_event_mask, config);
}
return -ENOENT;
}
int
armpmu_event_set_period(struct perf_event *event,
struct hw_perf_event *hwc,
int idx)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
s64 left = local64_read(&hwc->period_left);
s64 period = hwc->sample_period;
int ret = 0;
if (unlikely(left <= -period)) {
left = period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (unlikely(left <= 0)) {
left += period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (left > (s64)armpmu->max_period)
left = armpmu->max_period;
local64_set(&hwc->prev_count, (u64)-left);
armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
perf_event_update_userpage(event);
return ret;
}
u64
armpmu_event_update(struct perf_event *event,
struct hw_perf_event *hwc,
int idx)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
u64 delta, prev_raw_count, new_raw_count;
if (event->state <= PERF_EVENT_STATE_OFF)
return 0;
again:
prev_raw_count = local64_read(&hwc->prev_count);
new_raw_count = armpmu->read_counter(idx);
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count)
goto again;
delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
local64_add(delta, &event->count);
local64_sub(delta, &hwc->period_left);
return new_raw_count;
}
static void
armpmu_read(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
/* Don't read disabled counters! */
if (hwc->idx < 0)
return;
armpmu_event_update(event, hwc, hwc->idx);
}
static void
armpmu_stop(struct perf_event *event, int flags)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
/*
* ARM pmu always has to update the counter, so ignore
* PERF_EF_UPDATE, see comments in armpmu_start().
*/
if (!(hwc->state & PERF_HES_STOPPED)) {
armpmu->disable(hwc, hwc->idx);
barrier(); /* why? */
armpmu_event_update(event, hwc, hwc->idx);
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
}
}
static void
armpmu_start(struct perf_event *event, int flags)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
/*
* ARM pmu always has to reprogram the period, so ignore
* PERF_EF_RELOAD, see the comment below.
*/
if (flags & PERF_EF_RELOAD)
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
hwc->state = 0;
/*
* Set the period again. Some counters can't be stopped, so when we
* were stopped we simply disabled the IRQ source and the counter
* may have been left counting. If we don't do this step then we may
* get an interrupt too soon or *way* too late if the overflow has
* happened since disabling.
*/
armpmu_event_set_period(event, hwc, hwc->idx);
armpmu->enable(hwc, hwc->idx, event->cpu);
}
static void
armpmu_del(struct perf_event *event, int flags)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct pmu_hw_events *hw_events = armpmu->get_hw_events();
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
WARN_ON(idx < 0);
armpmu_stop(event, PERF_EF_UPDATE);
hw_events->events[idx] = NULL;
clear_bit(idx, hw_events->used_mask);
/* Clear event constraints. */
if (armpmu->clear_event_constraints)
armpmu->clear_event_constraints(event);
perf_event_update_userpage(event);
}
static int
armpmu_add(struct perf_event *event, int flags)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct pmu_hw_events *hw_events = armpmu->get_hw_events();
struct hw_perf_event *hwc = &event->hw;
int idx;
int err = 0;
perf_pmu_disable(event->pmu);
/*
* Tests if event is constrained. If not sets it so that next
* collision can be detected.
*/
if (armpmu->test_set_event_constraints)
if (armpmu->test_set_event_constraints(event) < 0) {
pr_err("Event: %llx failed constraint check.\n",
event->attr.config);
event->state = PERF_EVENT_STATE_OFF;
err = -EPERM;
goto out;
}
/* If we don't have a space for the counter then finish early. */
idx = armpmu->get_event_idx(hw_events, hwc);
if (idx < 0) {
err = idx;
goto out;
}
/*
* If there is an event in the counter we are going to use then make
* sure it is disabled.
*/
event->hw.idx = idx;
armpmu->disable(hwc, idx);
hw_events->events[idx] = event;
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
if (flags & PERF_EF_START)
armpmu_start(event, PERF_EF_RELOAD);
/* Propagate our changes to the userspace mapping. */
perf_event_update_userpage(event);
out:
perf_pmu_enable(event->pmu);
return err;
}
static int
validate_event(struct pmu_hw_events *hw_events,
struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event fake_event = event->hw;
struct pmu *leader_pmu = event->group_leader->pmu;
if (is_software_event(event))
return 1;
if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
return 1;
return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
}
static int
validate_group(struct perf_event *event)
{
struct perf_event *sibling, *leader = event->group_leader;
struct pmu_hw_events fake_pmu;
DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
/*
* Initialise the fake PMU. We only need to populate the
* used_mask for the purposes of validation.
*/
memset(fake_used_mask, 0, sizeof(fake_used_mask));
fake_pmu.used_mask = fake_used_mask;
if (!validate_event(&fake_pmu, leader))
return -EINVAL;
list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
if (!validate_event(&fake_pmu, sibling))
return -EINVAL;
}
if (!validate_event(&fake_pmu, event))
return -EINVAL;
return 0;
}
static irqreturn_t armpmu_platform_irq(int irq, void *dev)
{
struct arm_pmu *armpmu = (struct arm_pmu *) dev;
struct platform_device *plat_device = armpmu->plat_device;
struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
return plat->handle_irq(irq, dev, armpmu->handle_irq);
}
static DEFINE_PER_CPU(u32, pmu_irq_cookie);
void enable_irq_callback(void *info)
{
int irq = *(unsigned int *)info;
enable_percpu_irq(irq, IRQ_TYPE_EDGE_RISING);
}
void disable_irq_callback(void *info)
{
int irq = *(unsigned int *)info;
disable_percpu_irq(irq);
}
int
multicore_request_irq(int irq, irq_handler_t *handle_irq)
{
int err = 0;
int cpu;
err = request_percpu_irq(irq, *handle_irq, "l1-armpmu",
&pmu_irq_cookie);
if (!err) {
for_each_cpu(cpu, cpu_online_mask) {
smp_call_function_single(cpu,
enable_irq_callback, &irq, 1);
}
}
return err;
}
#ifdef CONFIG_SMP
static __ref int armpmu_cpu_up(int cpu)
{
int ret = 0;
if (!cpumask_test_cpu(cpu, cpu_online_mask)) {
ret = cpu_up(cpu);
if (ret)
pr_err("Failed to bring up CPU: %d, ret: %d\n",
cpu, ret);
}
return ret;
}
#else
static inline int armpmu_cpu_up(int cpu)
{
return 0;
}
#endif
void __ref
multicore_free_irq(int irq)
{
int cpu;
struct irq_desc *desc = irq_to_desc(irq);
if (irq >= 0) {
for_each_cpu(cpu, desc->percpu_enabled) {
if (!armpmu_cpu_up(cpu))
smp_call_function_single(cpu,
disable_irq_callback, &irq, 1);
}
free_percpu_irq(irq, &pmu_irq_cookie);
}
}
struct arm_pmu_platdata multicore_data = {
.request_pmu_irq = multicore_request_irq,
.free_pmu_irq = multicore_free_irq,
};
int
armpmu_generic_request_irq(int irq, irq_handler_t *handle_irq)
{
return request_irq(irq, *handle_irq,
IRQF_DISABLED | IRQF_NOBALANCING,
"armpmu", NULL);
}
void
armpmu_generic_free_irq(int irq)
{
if (irq >= 0)
free_irq(irq, NULL);
}
static void
armpmu_release_hardware(struct arm_pmu *armpmu)
{
int i, irq, irqs;
struct platform_device *pmu_device = armpmu->plat_device;
irqs = min(pmu_device->num_resources, num_possible_cpus());
for (i = 0; i < irqs; ++i) {
if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
continue;
irq = platform_get_irq(pmu_device, i);
armpmu->free_pmu_irq(irq);
}
release_pmu(armpmu->type);
}
static int
armpmu_reserve_hardware(struct arm_pmu *armpmu)
{
struct arm_pmu_platdata *plat;
irq_handler_t handle_irq;
int i, err, irq, irqs;
struct platform_device *pmu_device = armpmu->plat_device;
if (!pmu_device)
return -ENODEV;
err = reserve_pmu(armpmu->type);
if (err) {
pr_warning("unable to reserve pmu\n");
return err;
}
plat = dev_get_platdata(&pmu_device->dev);
if (plat && plat->handle_irq)
handle_irq = armpmu_platform_irq;
else
handle_irq = armpmu->handle_irq;
if (plat && plat->request_pmu_irq)
armpmu->request_pmu_irq = plat->request_pmu_irq;
else if (!armpmu->request_pmu_irq)
armpmu->request_pmu_irq = armpmu_generic_request_irq;
if (plat && plat->free_pmu_irq)
armpmu->free_pmu_irq = plat->free_pmu_irq;
else if (!armpmu->free_pmu_irq)
armpmu->free_pmu_irq = armpmu_generic_free_irq;
irqs = min(pmu_device->num_resources, num_possible_cpus());
if (irqs < 1) {
pr_err("no irqs for PMUs defined\n");
return -ENODEV;
}
for (i = 0; i < irqs; ++i) {
err = 0;
irq = platform_get_irq(pmu_device, i);
if (irq < 0)
continue;
/*
* If we have a single PMU interrupt that we can't shift,
* assume that we're running on a uniprocessor machine and
* continue. Otherwise, continue without this interrupt.
*/
if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
irq, i);
continue;
}
err = armpmu->request_pmu_irq(irq, &handle_irq);
if (err) {
pr_warning("unable to request IRQ%d for %s perf "
"counters\n", irq, armpmu->name);
armpmu_release_hardware(cpu_pmu);
return err;
}
cpumask_set_cpu(i, &armpmu->active_irqs);
}
return 0;
}
static void
hw_perf_event_destroy(struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
atomic_t *active_events = &armpmu->active_events;
struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
armpmu_release_hardware(armpmu);
mutex_unlock(pmu_reserve_mutex);
}
}
static int
event_requires_mode_exclusion(struct perf_event_attr *attr)
{
return attr->exclude_idle || attr->exclude_user ||
attr->exclude_kernel || attr->exclude_hv;
}
static int
__hw_perf_event_init(struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int mapping, err;
mapping = armpmu->map_event(event);
if (mapping < 0) {
pr_debug("event %x:%llx not supported\n", event->attr.type,
event->attr.config);
return mapping;
}
/*
* We don't assign an index until we actually place the event onto
* hardware. Use -1 to signify that we haven't decided where to put it
* yet. For SMP systems, each core has it's own PMU so we can't do any
* clever allocation or constraints checking at this point.
*/
hwc->idx = -1;
hwc->config_base = 0;
hwc->config = 0;
hwc->event_base = 0;
/*
* Check whether we need to exclude the counter from certain modes.
*/
if ((!armpmu->set_event_filter ||
armpmu->set_event_filter(hwc, &event->attr)) &&
event_requires_mode_exclusion(&event->attr)) {
pr_debug("ARM performance counters do not support "
"mode exclusion\n");
return -EPERM;
}
/*
* Store the event encoding into the config_base field.
*/
hwc->config_base |= (unsigned long)mapping;
if (!hwc->sample_period) {
/*
* For non-sampling runs, limit the sample_period to half
* of the counter width. That way, the new counter value
* is far less likely to overtake the previous one unless
* you have some serious IRQ latency issues.
*/
hwc->sample_period = armpmu->max_period >> 1;
hwc->last_period = hwc->sample_period;
local64_set(&hwc->period_left, hwc->sample_period);
}
err = 0;
if (event->group_leader != event) {
err = validate_group(event);
if (err)
return -EINVAL;
}
return err;
}
static int armpmu_event_init(struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
int err = 0;
atomic_t *active_events = &armpmu->active_events;
/* does not support taken branch sampling */
if (has_branch_stack(event))
return -EOPNOTSUPP;
if (armpmu->map_event(event) == -ENOENT)
return -ENOENT;
event->destroy = hw_perf_event_destroy;
if (!atomic_inc_not_zero(active_events)) {
mutex_lock(&armpmu->reserve_mutex);
if (atomic_read(active_events) == 0)
err = armpmu_reserve_hardware(armpmu);
if (!err)
atomic_inc(active_events);
mutex_unlock(&armpmu->reserve_mutex);
}
if (err)
return err;
err = __hw_perf_event_init(event);
if (err)
hw_perf_event_destroy(event);
return err;
}
static void armpmu_enable(struct pmu *pmu)
{
struct arm_pmu *armpmu = to_arm_pmu(pmu);
struct pmu_hw_events *hw_events = armpmu->get_hw_events();
int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
int idx;
if (__get_cpu_var(from_idle)) {
for (idx = 0; idx <= cpu_pmu->num_events; ++idx) {
struct perf_event *event = hw_events->events[idx];
if (!event)
continue;
armpmu->enable(&event->hw, idx, event->cpu);
}
/* Reset bit so we don't needlessly re-enable counters.*/
__get_cpu_var(from_idle) = 0;
}
/* So we don't start the PMU before enabling counters after idle. */
barrier();
if (enabled)
armpmu->start();
}
static void armpmu_disable(struct pmu *pmu)
{
struct arm_pmu *armpmu = to_arm_pmu(pmu);
armpmu->stop();
}
static void armpmu_init(struct arm_pmu *armpmu)
{
atomic_set(&armpmu->active_events, 0);
mutex_init(&armpmu->reserve_mutex);
armpmu->pmu.pmu_enable = armpmu_enable;
armpmu->pmu.pmu_disable = armpmu_disable;
armpmu->pmu.event_init = armpmu_event_init;
armpmu->pmu.add = armpmu_add;
armpmu->pmu.del = armpmu_del;
armpmu->pmu.start = armpmu_start;
armpmu->pmu.stop = armpmu_stop;
armpmu->pmu.read = armpmu_read;
armpmu->pmu.events_across_hotplug = 1;
}
int armpmu_register(struct arm_pmu *armpmu, char *name, int type)
{
armpmu_init(armpmu);
return perf_pmu_register(&armpmu->pmu, name, type);
}
/* Include the PMU-specific implementations. */
#include "perf_event_xscale.c"
#include "perf_event_v6.c"
#include "perf_event_v7.c"
#include "perf_event_msm_krait.c"
#include "perf_event_msm.c"
/*
* Ensure the PMU has sane values out of reset.
* This requires SMP to be available, so exists as a separate initcall.
*/
static int __init
cpu_pmu_reset(void)
{
if (cpu_pmu && cpu_pmu->reset)
return on_each_cpu(cpu_pmu->reset, NULL, 1);
return 0;
}
arch_initcall(cpu_pmu_reset);
/*
* PMU platform driver and devicetree bindings.
*/
static struct of_device_id armpmu_of_device_ids[] = {
{.compatible = "arm,cortex-a9-pmu"},
{.compatible = "arm,cortex-a8-pmu"},
{.compatible = "arm,cortex-a7-pmu"},
{.compatible = "arm,cortex-a5-pmu"},
{.compatible = "arm,arm1136-pmu"},
{.compatible = "arm,arm1176-pmu"},
{.compatible = "qcom,krait-pmu"},
{},
};
static struct platform_device_id armpmu_plat_device_ids[] = {
{.name = "cpu-pmu"},
{},
};
static int __devinit armpmu_device_probe(struct platform_device *pdev)
{
if (!cpu_pmu)
return -ENODEV;
cpu_pmu->plat_device = pdev;
if (per_cpu_irq == 1)
cpu_pmu->plat_device->dev.platform_data = &multicore_data;
return 0;
}
static struct platform_driver armpmu_driver = {
.driver = {
.name = "cpu-pmu",
.of_match_table = armpmu_of_device_ids,
},
.probe = armpmu_device_probe,
.id_table = armpmu_plat_device_ids,
};
static int __init register_pmu_driver(void)
{
return platform_driver_register(&armpmu_driver);
}
device_initcall(register_pmu_driver);
static struct pmu_hw_events *armpmu_get_cpu_events(void)
{
return &__get_cpu_var(cpu_hw_events);
}
static void __init cpu_pmu_init(struct arm_pmu *armpmu)
{
int cpu;
for_each_possible_cpu(cpu) {
struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
events->events = per_cpu(hw_events, cpu);
events->used_mask = per_cpu(used_mask, cpu);
raw_spin_lock_init(&events->pmu_lock);
}
armpmu->get_hw_events = armpmu_get_cpu_events;
armpmu->type = ARM_PMU_DEVICE_CPU;
}
static int cpu_has_active_perf(int cpu)
{
struct pmu_hw_events *hw_events;
int enabled;
if (!cpu_pmu)
return 0;
hw_events = &per_cpu(cpu_hw_events, cpu);
enabled = bitmap_weight(hw_events->used_mask, cpu_pmu->num_events);
if (enabled)
/*Even one event's existence is good enough.*/
return 1;
return 0;
}
static void armpmu_update_counters(void)
{
struct pmu_hw_events *hw_events;
int idx;
if (!cpu_pmu)
return;
hw_events = cpu_pmu->get_hw_events();
for (idx = 0; idx <= cpu_pmu->num_events; ++idx) {
struct perf_event *event = hw_events->events[idx];
if (!event)
continue;
armpmu_read(event);
}
}
/*
* PMU hardware loses all context when a CPU goes offline.
* When a CPU is hotplugged back in, since some hardware registers are
* UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
* junk values out of them.
*/
static int __cpuinit pmu_cpu_notify(struct notifier_block *b,
unsigned long action, void *hcpu)
{
int irq;
struct pmu *pmu;
int cpu = (int)hcpu;
switch ((action & ~CPU_TASKS_FROZEN)) {
case CPU_DOWN_PREPARE:
if (cpu_pmu && cpu_pmu->save_pm_registers)
smp_call_function_single(cpu,
cpu_pmu->save_pm_registers,
hcpu, 1);
break;
case CPU_STARTING:
if (cpu_pmu && cpu_pmu->reset)
cpu_pmu->reset(NULL);
if (cpu_pmu && cpu_pmu->restore_pm_registers)
smp_call_function_single(cpu,
cpu_pmu->restore_pm_registers,
hcpu, 1);
}
if (cpu_has_active_perf((int)hcpu)) {
switch ((action & ~CPU_TASKS_FROZEN)) {
case CPU_DOWN_PREPARE:
armpmu_update_counters();
/*
* If this is on a multicore CPU, we need
* to disarm the PMU IRQ before disappearing.
*/
if (cpu_pmu &&
cpu_pmu->plat_device->dev.platform_data) {
irq = platform_get_irq(cpu_pmu->plat_device, 0);
smp_call_function_single((int)hcpu,
disable_irq_callback, &irq, 1);
}
return NOTIFY_DONE;
case CPU_STARTING:
/*
* If this is on a multicore CPU, we need
* to arm the PMU IRQ before appearing.
*/
if (cpu_pmu &&
cpu_pmu->plat_device->dev.platform_data) {
irq = platform_get_irq(cpu_pmu->plat_device, 0);
enable_irq_callback(&irq);
}
if (cpu_pmu) {
__get_cpu_var(from_idle) = 1;
pmu = &cpu_pmu->pmu;
pmu->pmu_enable(pmu);
return NOTIFY_OK;
}
default:
return NOTIFY_DONE;
}
}
if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
return NOTIFY_DONE;
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata pmu_cpu_notifier = {
.notifier_call = pmu_cpu_notify,
};
/*TODO: Unify with pending patch from ARM */
static int perf_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
void *v)
{
struct pmu *pmu;
switch (cmd) {
case CPU_PM_ENTER:
if (cpu_pmu && cpu_pmu->save_pm_registers)
cpu_pmu->save_pm_registers((void *)smp_processor_id());
if (cpu_has_active_perf((int)v)) {
armpmu_update_counters();
pmu = &cpu_pmu->pmu;
pmu->pmu_disable(pmu);
}
break;
case CPU_PM_ENTER_FAILED:
case CPU_PM_EXIT:
if (cpu_pmu && cpu_pmu->restore_pm_registers)
cpu_pmu->restore_pm_registers(
(void *)smp_processor_id());
if (cpu_has_active_perf((int)v) && cpu_pmu->reset) {
/*
* Flip this bit so armpmu_enable knows it needs
* to re-enable active counters.
*/
__get_cpu_var(from_idle) = 1;
cpu_pmu->reset(NULL);
pmu = &cpu_pmu->pmu;
pmu->pmu_enable(pmu);
}
break;
}
return NOTIFY_OK;
}
static struct notifier_block perf_cpu_pm_notifier_block = {
.notifier_call = perf_cpu_pm_notifier,
};
#ifdef CONFIG_OF
static inline int get_dt_irq_prop(void)
{
struct device_node *np = NULL;
int err = -1;
np = of_find_matching_node(NULL, armpmu_of_device_ids);
if (np)
err = of_property_read_bool(np, "qcom,irq-is-percpu");
else
pr_err("Perf: can't find DT node.\n");
return err;
}
#else
static inline int get_dt_irq_prop(void) {return 0; }
#endif
/*
* CPU PMU identification and registration.
*/
static int __init
init_hw_perf_events(void)
{
unsigned long cpuid = read_cpuid_id();
unsigned long implementor = (cpuid & 0xFF000000) >> 24;
unsigned long part_number = (cpuid & 0xFFF0);
/* ARM Ltd CPUs. */
if (0x41 == implementor) {
switch (part_number) {
case 0xB360: /* ARM1136 */
case 0xB560: /* ARM1156 */
case 0xB760: /* ARM1176 */
cpu_pmu = armv6pmu_init();
break;
case 0xB020: /* ARM11mpcore */
cpu_pmu = armv6mpcore_pmu_init();
break;
case 0xC080: /* Cortex-A8 */
cpu_pmu = armv7_a8_pmu_init();
break;
case 0xC090: /* Cortex-A9 */
cpu_pmu = armv7_a9_pmu_init();
break;
case 0xC050: /* Cortex-A5 */
cpu_pmu = armv7_a5_pmu_init();
break;
case 0xC0F0: /* Cortex-A15 */
cpu_pmu = armv7_a15_pmu_init();
break;
case 0xC070: /* Cortex-A7 */
cpu_pmu = armv7_a7_pmu_init();
break;
}
/* Intel CPUs [xscale]. */
} else if (0x69 == implementor) {
part_number = (cpuid >> 13) & 0x7;
switch (part_number) {
case 1:
cpu_pmu = xscale1pmu_init();
break;
case 2:
cpu_pmu = xscale2pmu_init();
break;
}
/* Qualcomm CPUs */
} else if (0x51 == implementor) {
switch (part_number) {
case 0x00F0: /* 8x50 & 7x30*/
cpu_pmu = armv7_scorpion_pmu_init();
break;
case 0x02D0: /* 8x60 */
// fabricmon_pmu_init();
cpu_pmu = armv7_scorpionmp_pmu_init();
break;
case 0x0490: /* 8960 sim */
case 0x04D0: /* 8960 */
case 0x06F0: /* 8064 */
// fabricmon_pmu_init();
cpu_pmu = armv7_krait_pmu_init();
break;
}
}
if (cpu_pmu) {
pr_info("enabled with %s PMU driver, %d counters available\n",
cpu_pmu->name, cpu_pmu->num_events);
cpu_pmu_init(cpu_pmu);
register_cpu_notifier(&pmu_cpu_notifier);
armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
cpu_pm_register_notifier(&perf_cpu_pm_notifier_block);
per_cpu_irq = get_dt_irq_prop();
} else {
pr_info("no hardware support available\n");
}
return 0;
}
early_initcall(init_hw_perf_events);
/*
* Callchain handling code.
*/
/*
* The registers we're interested in are at the end of the variable
* length saved register structure. The fp points at the end of this
* structure so the address of this struct is:
* (struct frame_tail *)(xxx->fp)-1
*
* This code has been adapted from the ARM OProfile support.
*/
struct frame_tail {
struct frame_tail __user *fp;
unsigned long sp;
unsigned long lr;
} __attribute__((packed));
/*
* Get the return address for a single stackframe and return a pointer to the
* next frame tail.
*/
static struct frame_tail __user *
user_backtrace(struct frame_tail __user *tail,
struct perf_callchain_entry *entry)
{
struct frame_tail buftail;
/* Also check accessibility of one struct frame_tail beyond */
if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
return NULL;
if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
return NULL;
perf_callchain_store(entry, buftail.lr);
/*
* Frame pointers should strictly progress back up the stack
* (towards higher addresses).
*/
if (tail + 1 >= buftail.fp)
return NULL;
return buftail.fp - 1;
}
void
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
{
struct frame_tail __user *tail;
tail = (struct frame_tail __user *)regs->ARM_fp - 1;
while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
tail && !((unsigned long)tail & 0x3))
tail = user_backtrace(tail, entry);
}
/*
* Gets called by walk_stackframe() for every stackframe. This will be called
* whist unwinding the stackframe and is like a subroutine return so we use
* the PC.
*/
static int
callchain_trace(struct stackframe *fr,
void *data)
{
struct perf_callchain_entry *entry = data;
perf_callchain_store(entry, fr->pc);
return 0;
}
void
perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
{
struct stackframe fr;
fr.fp = regs->ARM_fp;
fr.sp = regs->ARM_sp;
fr.lr = regs->ARM_lr;
fr.pc = regs->ARM_pc;
walk_stackframe(&fr, callchain_trace, entry);
}