| /* |
| * High memory handling common code and variables. |
| * |
| * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de |
| * Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de |
| * |
| * |
| * Redesigned the x86 32-bit VM architecture to deal with |
| * 64-bit physical space. With current x86 CPUs this |
| * means up to 64 Gigabytes physical RAM. |
| * |
| * Rewrote high memory support to move the page cache into |
| * high memory. Implemented permanent (schedulable) kmaps |
| * based on Linus' idea. |
| * |
| * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/swap.h> |
| #include <linux/bio.h> |
| #include <linux/pagemap.h> |
| #include <linux/mempool.h> |
| #include <linux/blkdev.h> |
| #include <linux/init.h> |
| #include <linux/hash.h> |
| #include <linux/highmem.h> |
| #include <linux/blktrace_api.h> |
| #include <asm/tlbflush.h> |
| |
| static mempool_t *page_pool, *isa_page_pool; |
| |
| static void *page_pool_alloc_isa(gfp_t gfp_mask, void *data) |
| { |
| return alloc_page(gfp_mask | GFP_DMA); |
| } |
| |
| static void page_pool_free(void *page, void *data) |
| { |
| __free_page(page); |
| } |
| |
| /* |
| * Virtual_count is not a pure "count". |
| * 0 means that it is not mapped, and has not been mapped |
| * since a TLB flush - it is usable. |
| * 1 means that there are no users, but it has been mapped |
| * since the last TLB flush - so we can't use it. |
| * n means that there are (n-1) current users of it. |
| */ |
| #ifdef CONFIG_HIGHMEM |
| |
| static void *page_pool_alloc(gfp_t gfp_mask, void *data) |
| { |
| return alloc_page(gfp_mask); |
| } |
| |
| static int pkmap_count[LAST_PKMAP]; |
| static unsigned int last_pkmap_nr; |
| static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock); |
| |
| pte_t * pkmap_page_table; |
| |
| static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait); |
| |
| static void flush_all_zero_pkmaps(void) |
| { |
| int i; |
| |
| flush_cache_kmaps(); |
| |
| for (i = 0; i < LAST_PKMAP; i++) { |
| struct page *page; |
| |
| /* |
| * zero means we don't have anything to do, |
| * >1 means that it is still in use. Only |
| * a count of 1 means that it is free but |
| * needs to be unmapped |
| */ |
| if (pkmap_count[i] != 1) |
| continue; |
| pkmap_count[i] = 0; |
| |
| /* sanity check */ |
| if (pte_none(pkmap_page_table[i])) |
| BUG(); |
| |
| /* |
| * Don't need an atomic fetch-and-clear op here; |
| * no-one has the page mapped, and cannot get at |
| * its virtual address (and hence PTE) without first |
| * getting the kmap_lock (which is held here). |
| * So no dangers, even with speculative execution. |
| */ |
| page = pte_page(pkmap_page_table[i]); |
| pte_clear(&init_mm, (unsigned long)page_address(page), |
| &pkmap_page_table[i]); |
| |
| set_page_address(page, NULL); |
| } |
| flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP)); |
| } |
| |
| static inline unsigned long map_new_virtual(struct page *page) |
| { |
| unsigned long vaddr; |
| int count; |
| |
| start: |
| count = LAST_PKMAP; |
| /* Find an empty entry */ |
| for (;;) { |
| last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK; |
| if (!last_pkmap_nr) { |
| flush_all_zero_pkmaps(); |
| count = LAST_PKMAP; |
| } |
| if (!pkmap_count[last_pkmap_nr]) |
| break; /* Found a usable entry */ |
| if (--count) |
| continue; |
| |
| /* |
| * Sleep for somebody else to unmap their entries |
| */ |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| |
| __set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&pkmap_map_wait, &wait); |
| spin_unlock(&kmap_lock); |
| schedule(); |
| remove_wait_queue(&pkmap_map_wait, &wait); |
| spin_lock(&kmap_lock); |
| |
| /* Somebody else might have mapped it while we slept */ |
| if (page_address(page)) |
| return (unsigned long)page_address(page); |
| |
| /* Re-start */ |
| goto start; |
| } |
| } |
| vaddr = PKMAP_ADDR(last_pkmap_nr); |
| set_pte_at(&init_mm, vaddr, |
| &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot)); |
| |
| pkmap_count[last_pkmap_nr] = 1; |
| set_page_address(page, (void *)vaddr); |
| |
| return vaddr; |
| } |
| |
| void fastcall *kmap_high(struct page *page) |
| { |
| unsigned long vaddr; |
| |
| /* |
| * For highmem pages, we can't trust "virtual" until |
| * after we have the lock. |
| * |
| * We cannot call this from interrupts, as it may block |
| */ |
| spin_lock(&kmap_lock); |
| vaddr = (unsigned long)page_address(page); |
| if (!vaddr) |
| vaddr = map_new_virtual(page); |
| pkmap_count[PKMAP_NR(vaddr)]++; |
| if (pkmap_count[PKMAP_NR(vaddr)] < 2) |
| BUG(); |
| spin_unlock(&kmap_lock); |
| return (void*) vaddr; |
| } |
| |
| EXPORT_SYMBOL(kmap_high); |
| |
| void fastcall kunmap_high(struct page *page) |
| { |
| unsigned long vaddr; |
| unsigned long nr; |
| int need_wakeup; |
| |
| spin_lock(&kmap_lock); |
| vaddr = (unsigned long)page_address(page); |
| if (!vaddr) |
| BUG(); |
| nr = PKMAP_NR(vaddr); |
| |
| /* |
| * A count must never go down to zero |
| * without a TLB flush! |
| */ |
| need_wakeup = 0; |
| switch (--pkmap_count[nr]) { |
| case 0: |
| BUG(); |
| case 1: |
| /* |
| * Avoid an unnecessary wake_up() function call. |
| * The common case is pkmap_count[] == 1, but |
| * no waiters. |
| * The tasks queued in the wait-queue are guarded |
| * by both the lock in the wait-queue-head and by |
| * the kmap_lock. As the kmap_lock is held here, |
| * no need for the wait-queue-head's lock. Simply |
| * test if the queue is empty. |
| */ |
| need_wakeup = waitqueue_active(&pkmap_map_wait); |
| } |
| spin_unlock(&kmap_lock); |
| |
| /* do wake-up, if needed, race-free outside of the spin lock */ |
| if (need_wakeup) |
| wake_up(&pkmap_map_wait); |
| } |
| |
| EXPORT_SYMBOL(kunmap_high); |
| |
| #define POOL_SIZE 64 |
| |
| static __init int init_emergency_pool(void) |
| { |
| struct sysinfo i; |
| si_meminfo(&i); |
| si_swapinfo(&i); |
| |
| if (!i.totalhigh) |
| return 0; |
| |
| page_pool = mempool_create(POOL_SIZE, page_pool_alloc, page_pool_free, NULL); |
| if (!page_pool) |
| BUG(); |
| printk("highmem bounce pool size: %d pages\n", POOL_SIZE); |
| |
| return 0; |
| } |
| |
| __initcall(init_emergency_pool); |
| |
| /* |
| * highmem version, map in to vec |
| */ |
| static void bounce_copy_vec(struct bio_vec *to, unsigned char *vfrom) |
| { |
| unsigned long flags; |
| unsigned char *vto; |
| |
| local_irq_save(flags); |
| vto = kmap_atomic(to->bv_page, KM_BOUNCE_READ); |
| memcpy(vto + to->bv_offset, vfrom, to->bv_len); |
| kunmap_atomic(vto, KM_BOUNCE_READ); |
| local_irq_restore(flags); |
| } |
| |
| #else /* CONFIG_HIGHMEM */ |
| |
| #define bounce_copy_vec(to, vfrom) \ |
| memcpy(page_address((to)->bv_page) + (to)->bv_offset, vfrom, (to)->bv_len) |
| |
| #endif |
| |
| #define ISA_POOL_SIZE 16 |
| |
| /* |
| * gets called "every" time someone init's a queue with BLK_BOUNCE_ISA |
| * as the max address, so check if the pool has already been created. |
| */ |
| int init_emergency_isa_pool(void) |
| { |
| if (isa_page_pool) |
| return 0; |
| |
| isa_page_pool = mempool_create(ISA_POOL_SIZE, page_pool_alloc_isa, page_pool_free, NULL); |
| if (!isa_page_pool) |
| BUG(); |
| |
| printk("isa bounce pool size: %d pages\n", ISA_POOL_SIZE); |
| return 0; |
| } |
| |
| /* |
| * Simple bounce buffer support for highmem pages. Depending on the |
| * queue gfp mask set, *to may or may not be a highmem page. kmap it |
| * always, it will do the Right Thing |
| */ |
| static void copy_to_high_bio_irq(struct bio *to, struct bio *from) |
| { |
| unsigned char *vfrom; |
| struct bio_vec *tovec, *fromvec; |
| int i; |
| |
| __bio_for_each_segment(tovec, to, i, 0) { |
| fromvec = from->bi_io_vec + i; |
| |
| /* |
| * not bounced |
| */ |
| if (tovec->bv_page == fromvec->bv_page) |
| continue; |
| |
| /* |
| * fromvec->bv_offset and fromvec->bv_len might have been |
| * modified by the block layer, so use the original copy, |
| * bounce_copy_vec already uses tovec->bv_len |
| */ |
| vfrom = page_address(fromvec->bv_page) + tovec->bv_offset; |
| |
| flush_dcache_page(tovec->bv_page); |
| bounce_copy_vec(tovec, vfrom); |
| } |
| } |
| |
| static void bounce_end_io(struct bio *bio, mempool_t *pool, int err) |
| { |
| struct bio *bio_orig = bio->bi_private; |
| struct bio_vec *bvec, *org_vec; |
| int i; |
| |
| if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags)) |
| set_bit(BIO_EOPNOTSUPP, &bio_orig->bi_flags); |
| |
| /* |
| * free up bounce indirect pages used |
| */ |
| __bio_for_each_segment(bvec, bio, i, 0) { |
| org_vec = bio_orig->bi_io_vec + i; |
| if (bvec->bv_page == org_vec->bv_page) |
| continue; |
| |
| mempool_free(bvec->bv_page, pool); |
| dec_page_state(nr_bounce); |
| } |
| |
| bio_endio(bio_orig, bio_orig->bi_size, err); |
| bio_put(bio); |
| } |
| |
| static int bounce_end_io_write(struct bio *bio, unsigned int bytes_done,int err) |
| { |
| if (bio->bi_size) |
| return 1; |
| |
| bounce_end_io(bio, page_pool, err); |
| return 0; |
| } |
| |
| static int bounce_end_io_write_isa(struct bio *bio, unsigned int bytes_done, int err) |
| { |
| if (bio->bi_size) |
| return 1; |
| |
| bounce_end_io(bio, isa_page_pool, err); |
| return 0; |
| } |
| |
| static void __bounce_end_io_read(struct bio *bio, mempool_t *pool, int err) |
| { |
| struct bio *bio_orig = bio->bi_private; |
| |
| if (test_bit(BIO_UPTODATE, &bio->bi_flags)) |
| copy_to_high_bio_irq(bio_orig, bio); |
| |
| bounce_end_io(bio, pool, err); |
| } |
| |
| static int bounce_end_io_read(struct bio *bio, unsigned int bytes_done, int err) |
| { |
| if (bio->bi_size) |
| return 1; |
| |
| __bounce_end_io_read(bio, page_pool, err); |
| return 0; |
| } |
| |
| static int bounce_end_io_read_isa(struct bio *bio, unsigned int bytes_done, int err) |
| { |
| if (bio->bi_size) |
| return 1; |
| |
| __bounce_end_io_read(bio, isa_page_pool, err); |
| return 0; |
| } |
| |
| static void __blk_queue_bounce(request_queue_t *q, struct bio **bio_orig, |
| mempool_t *pool) |
| { |
| struct page *page; |
| struct bio *bio = NULL; |
| int i, rw = bio_data_dir(*bio_orig); |
| struct bio_vec *to, *from; |
| |
| bio_for_each_segment(from, *bio_orig, i) { |
| page = from->bv_page; |
| |
| /* |
| * is destination page below bounce pfn? |
| */ |
| if (page_to_pfn(page) < q->bounce_pfn) |
| continue; |
| |
| /* |
| * irk, bounce it |
| */ |
| if (!bio) |
| bio = bio_alloc(GFP_NOIO, (*bio_orig)->bi_vcnt); |
| |
| to = bio->bi_io_vec + i; |
| |
| to->bv_page = mempool_alloc(pool, q->bounce_gfp); |
| to->bv_len = from->bv_len; |
| to->bv_offset = from->bv_offset; |
| inc_page_state(nr_bounce); |
| |
| if (rw == WRITE) { |
| char *vto, *vfrom; |
| |
| flush_dcache_page(from->bv_page); |
| vto = page_address(to->bv_page) + to->bv_offset; |
| vfrom = kmap(from->bv_page) + from->bv_offset; |
| memcpy(vto, vfrom, to->bv_len); |
| kunmap(from->bv_page); |
| } |
| } |
| |
| /* |
| * no pages bounced |
| */ |
| if (!bio) |
| return; |
| |
| /* |
| * at least one page was bounced, fill in possible non-highmem |
| * pages |
| */ |
| __bio_for_each_segment(from, *bio_orig, i, 0) { |
| to = bio_iovec_idx(bio, i); |
| if (!to->bv_page) { |
| to->bv_page = from->bv_page; |
| to->bv_len = from->bv_len; |
| to->bv_offset = from->bv_offset; |
| } |
| } |
| |
| bio->bi_bdev = (*bio_orig)->bi_bdev; |
| bio->bi_flags |= (1 << BIO_BOUNCED); |
| bio->bi_sector = (*bio_orig)->bi_sector; |
| bio->bi_rw = (*bio_orig)->bi_rw; |
| |
| bio->bi_vcnt = (*bio_orig)->bi_vcnt; |
| bio->bi_idx = (*bio_orig)->bi_idx; |
| bio->bi_size = (*bio_orig)->bi_size; |
| |
| if (pool == page_pool) { |
| bio->bi_end_io = bounce_end_io_write; |
| if (rw == READ) |
| bio->bi_end_io = bounce_end_io_read; |
| } else { |
| bio->bi_end_io = bounce_end_io_write_isa; |
| if (rw == READ) |
| bio->bi_end_io = bounce_end_io_read_isa; |
| } |
| |
| bio->bi_private = *bio_orig; |
| *bio_orig = bio; |
| } |
| |
| void blk_queue_bounce(request_queue_t *q, struct bio **bio_orig) |
| { |
| mempool_t *pool; |
| |
| /* |
| * for non-isa bounce case, just check if the bounce pfn is equal |
| * to or bigger than the highest pfn in the system -- in that case, |
| * don't waste time iterating over bio segments |
| */ |
| if (!(q->bounce_gfp & GFP_DMA)) { |
| if (q->bounce_pfn >= blk_max_pfn) |
| return; |
| pool = page_pool; |
| } else { |
| BUG_ON(!isa_page_pool); |
| pool = isa_page_pool; |
| } |
| |
| blk_add_trace_bio(q, *bio_orig, BLK_TA_BOUNCE); |
| |
| /* |
| * slow path |
| */ |
| __blk_queue_bounce(q, bio_orig, pool); |
| } |
| |
| EXPORT_SYMBOL(blk_queue_bounce); |
| |
| #if defined(HASHED_PAGE_VIRTUAL) |
| |
| #define PA_HASH_ORDER 7 |
| |
| /* |
| * Describes one page->virtual association |
| */ |
| struct page_address_map { |
| struct page *page; |
| void *virtual; |
| struct list_head list; |
| }; |
| |
| /* |
| * page_address_map freelist, allocated from page_address_maps. |
| */ |
| static struct list_head page_address_pool; /* freelist */ |
| static spinlock_t pool_lock; /* protects page_address_pool */ |
| |
| /* |
| * Hash table bucket |
| */ |
| static struct page_address_slot { |
| struct list_head lh; /* List of page_address_maps */ |
| spinlock_t lock; /* Protect this bucket's list */ |
| } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER]; |
| |
| static struct page_address_slot *page_slot(struct page *page) |
| { |
| return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)]; |
| } |
| |
| void *page_address(struct page *page) |
| { |
| unsigned long flags; |
| void *ret; |
| struct page_address_slot *pas; |
| |
| if (!PageHighMem(page)) |
| return lowmem_page_address(page); |
| |
| pas = page_slot(page); |
| ret = NULL; |
| spin_lock_irqsave(&pas->lock, flags); |
| if (!list_empty(&pas->lh)) { |
| struct page_address_map *pam; |
| |
| list_for_each_entry(pam, &pas->lh, list) { |
| if (pam->page == page) { |
| ret = pam->virtual; |
| goto done; |
| } |
| } |
| } |
| done: |
| spin_unlock_irqrestore(&pas->lock, flags); |
| return ret; |
| } |
| |
| EXPORT_SYMBOL(page_address); |
| |
| void set_page_address(struct page *page, void *virtual) |
| { |
| unsigned long flags; |
| struct page_address_slot *pas; |
| struct page_address_map *pam; |
| |
| BUG_ON(!PageHighMem(page)); |
| |
| pas = page_slot(page); |
| if (virtual) { /* Add */ |
| BUG_ON(list_empty(&page_address_pool)); |
| |
| spin_lock_irqsave(&pool_lock, flags); |
| pam = list_entry(page_address_pool.next, |
| struct page_address_map, list); |
| list_del(&pam->list); |
| spin_unlock_irqrestore(&pool_lock, flags); |
| |
| pam->page = page; |
| pam->virtual = virtual; |
| |
| spin_lock_irqsave(&pas->lock, flags); |
| list_add_tail(&pam->list, &pas->lh); |
| spin_unlock_irqrestore(&pas->lock, flags); |
| } else { /* Remove */ |
| spin_lock_irqsave(&pas->lock, flags); |
| list_for_each_entry(pam, &pas->lh, list) { |
| if (pam->page == page) { |
| list_del(&pam->list); |
| spin_unlock_irqrestore(&pas->lock, flags); |
| spin_lock_irqsave(&pool_lock, flags); |
| list_add_tail(&pam->list, &page_address_pool); |
| spin_unlock_irqrestore(&pool_lock, flags); |
| goto done; |
| } |
| } |
| spin_unlock_irqrestore(&pas->lock, flags); |
| } |
| done: |
| return; |
| } |
| |
| static struct page_address_map page_address_maps[LAST_PKMAP]; |
| |
| void __init page_address_init(void) |
| { |
| int i; |
| |
| INIT_LIST_HEAD(&page_address_pool); |
| for (i = 0; i < ARRAY_SIZE(page_address_maps); i++) |
| list_add(&page_address_maps[i].list, &page_address_pool); |
| for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) { |
| INIT_LIST_HEAD(&page_address_htable[i].lh); |
| spin_lock_init(&page_address_htable[i].lock); |
| } |
| spin_lock_init(&pool_lock); |
| } |
| |
| #endif /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */ |