| /** |
| * attrib.c - NTFS attribute operations. Part of the Linux-NTFS project. |
| * |
| * Copyright (c) 2001-2007 Anton Altaparmakov |
| * Copyright (c) 2002 Richard Russon |
| * |
| * This program/include file is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as published |
| * by the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program/include file is distributed in the hope that it will be |
| * useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program (in the main directory of the Linux-NTFS |
| * distribution in the file COPYING); if not, write to the Free Software |
| * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/buffer_head.h> |
| #include <linux/sched.h> |
| #include <linux/swap.h> |
| #include <linux/writeback.h> |
| |
| #include "attrib.h" |
| #include "debug.h" |
| #include "layout.h" |
| #include "lcnalloc.h" |
| #include "malloc.h" |
| #include "mft.h" |
| #include "ntfs.h" |
| #include "types.h" |
| |
| /** |
| * ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode |
| * @ni: ntfs inode for which to map (part of) a runlist |
| * @vcn: map runlist part containing this vcn |
| * @ctx: active attribute search context if present or NULL if not |
| * |
| * Map the part of a runlist containing the @vcn of the ntfs inode @ni. |
| * |
| * If @ctx is specified, it is an active search context of @ni and its base mft |
| * record. This is needed when ntfs_map_runlist_nolock() encounters unmapped |
| * runlist fragments and allows their mapping. If you do not have the mft |
| * record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock() |
| * will perform the necessary mapping and unmapping. |
| * |
| * Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and |
| * restores it before returning. Thus, @ctx will be left pointing to the same |
| * attribute on return as on entry. However, the actual pointers in @ctx may |
| * point to different memory locations on return, so you must remember to reset |
| * any cached pointers from the @ctx, i.e. after the call to |
| * ntfs_map_runlist_nolock(), you will probably want to do: |
| * m = ctx->mrec; |
| * a = ctx->attr; |
| * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that |
| * you cache ctx->mrec in a variable @m of type MFT_RECORD *. |
| * |
| * Return 0 on success and -errno on error. There is one special error code |
| * which is not an error as such. This is -ENOENT. It means that @vcn is out |
| * of bounds of the runlist. |
| * |
| * Note the runlist can be NULL after this function returns if @vcn is zero and |
| * the attribute has zero allocated size, i.e. there simply is no runlist. |
| * |
| * WARNING: If @ctx is supplied, regardless of whether success or failure is |
| * returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx |
| * is no longer valid, i.e. you need to either call |
| * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. |
| * In that case PTR_ERR(@ctx->mrec) will give you the error code for |
| * why the mapping of the old inode failed. |
| * |
| * Locking: - The runlist described by @ni must be locked for writing on entry |
| * and is locked on return. Note the runlist will be modified. |
| * - If @ctx is NULL, the base mft record of @ni must not be mapped on |
| * entry and it will be left unmapped on return. |
| * - If @ctx is not NULL, the base mft record must be mapped on entry |
| * and it will be left mapped on return. |
| */ |
| int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx) |
| { |
| VCN end_vcn; |
| unsigned long flags; |
| ntfs_inode *base_ni; |
| MFT_RECORD *m; |
| ATTR_RECORD *a; |
| runlist_element *rl; |
| struct page *put_this_page = NULL; |
| int err = 0; |
| bool ctx_is_temporary, ctx_needs_reset; |
| ntfs_attr_search_ctx old_ctx = { NULL, }; |
| |
| ntfs_debug("Mapping runlist part containing vcn 0x%llx.", |
| (unsigned long long)vcn); |
| if (!NInoAttr(ni)) |
| base_ni = ni; |
| else |
| base_ni = ni->ext.base_ntfs_ino; |
| if (!ctx) { |
| ctx_is_temporary = ctx_needs_reset = true; |
| m = map_mft_record(base_ni); |
| if (IS_ERR(m)) |
| return PTR_ERR(m); |
| ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| if (unlikely(!ctx)) { |
| err = -ENOMEM; |
| goto err_out; |
| } |
| } else { |
| VCN allocated_size_vcn; |
| |
| BUG_ON(IS_ERR(ctx->mrec)); |
| a = ctx->attr; |
| BUG_ON(!a->non_resident); |
| ctx_is_temporary = false; |
| end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); |
| read_lock_irqsave(&ni->size_lock, flags); |
| allocated_size_vcn = ni->allocated_size >> |
| ni->vol->cluster_size_bits; |
| read_unlock_irqrestore(&ni->size_lock, flags); |
| if (!a->data.non_resident.lowest_vcn && end_vcn <= 0) |
| end_vcn = allocated_size_vcn - 1; |
| /* |
| * If we already have the attribute extent containing @vcn in |
| * @ctx, no need to look it up again. We slightly cheat in |
| * that if vcn exceeds the allocated size, we will refuse to |
| * map the runlist below, so there is definitely no need to get |
| * the right attribute extent. |
| */ |
| if (vcn >= allocated_size_vcn || (a->type == ni->type && |
| a->name_length == ni->name_len && |
| !memcmp((u8*)a + le16_to_cpu(a->name_offset), |
| ni->name, ni->name_len) && |
| sle64_to_cpu(a->data.non_resident.lowest_vcn) |
| <= vcn && end_vcn >= vcn)) |
| ctx_needs_reset = false; |
| else { |
| /* Save the old search context. */ |
| old_ctx = *ctx; |
| /* |
| * If the currently mapped (extent) inode is not the |
| * base inode we will unmap it when we reinitialize the |
| * search context which means we need to get a |
| * reference to the page containing the mapped mft |
| * record so we do not accidentally drop changes to the |
| * mft record when it has not been marked dirty yet. |
| */ |
| if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino != |
| old_ctx.base_ntfs_ino) { |
| put_this_page = old_ctx.ntfs_ino->page; |
| page_cache_get(put_this_page); |
| } |
| /* |
| * Reinitialize the search context so we can lookup the |
| * needed attribute extent. |
| */ |
| ntfs_attr_reinit_search_ctx(ctx); |
| ctx_needs_reset = true; |
| } |
| } |
| if (ctx_needs_reset) { |
| err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| CASE_SENSITIVE, vcn, NULL, 0, ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) |
| err = -EIO; |
| goto err_out; |
| } |
| BUG_ON(!ctx->attr->non_resident); |
| } |
| a = ctx->attr; |
| /* |
| * Only decompress the mapping pairs if @vcn is inside it. Otherwise |
| * we get into problems when we try to map an out of bounds vcn because |
| * we then try to map the already mapped runlist fragment and |
| * ntfs_mapping_pairs_decompress() fails. |
| */ |
| end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1; |
| if (!a->data.non_resident.lowest_vcn && end_vcn == 1) |
| end_vcn = sle64_to_cpu(a->data.non_resident.allocated_size) >> |
| ni->vol->cluster_size_bits; |
| if (unlikely(vcn >= end_vcn)) { |
| err = -ENOENT; |
| goto err_out; |
| } |
| rl = ntfs_mapping_pairs_decompress(ni->vol, a, ni->runlist.rl); |
| if (IS_ERR(rl)) |
| err = PTR_ERR(rl); |
| else |
| ni->runlist.rl = rl; |
| err_out: |
| if (ctx_is_temporary) { |
| if (likely(ctx)) |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| } else if (ctx_needs_reset) { |
| /* |
| * If there is no attribute list, restoring the search context |
| * is acomplished simply by copying the saved context back over |
| * the caller supplied context. If there is an attribute list, |
| * things are more complicated as we need to deal with mapping |
| * of mft records and resulting potential changes in pointers. |
| */ |
| if (NInoAttrList(base_ni)) { |
| /* |
| * If the currently mapped (extent) inode is not the |
| * one we had before, we need to unmap it and map the |
| * old one. |
| */ |
| if (ctx->ntfs_ino != old_ctx.ntfs_ino) { |
| /* |
| * If the currently mapped inode is not the |
| * base inode, unmap it. |
| */ |
| if (ctx->base_ntfs_ino && ctx->ntfs_ino != |
| ctx->base_ntfs_ino) { |
| unmap_extent_mft_record(ctx->ntfs_ino); |
| ctx->mrec = ctx->base_mrec; |
| BUG_ON(!ctx->mrec); |
| } |
| /* |
| * If the old mapped inode is not the base |
| * inode, map it. |
| */ |
| if (old_ctx.base_ntfs_ino && |
| old_ctx.ntfs_ino != |
| old_ctx.base_ntfs_ino) { |
| retry_map: |
| ctx->mrec = map_mft_record( |
| old_ctx.ntfs_ino); |
| /* |
| * Something bad has happened. If out |
| * of memory retry till it succeeds. |
| * Any other errors are fatal and we |
| * return the error code in ctx->mrec. |
| * Let the caller deal with it... We |
| * just need to fudge things so the |
| * caller can reinit and/or put the |
| * search context safely. |
| */ |
| if (IS_ERR(ctx->mrec)) { |
| if (PTR_ERR(ctx->mrec) == |
| -ENOMEM) { |
| schedule(); |
| goto retry_map; |
| } else |
| old_ctx.ntfs_ino = |
| old_ctx. |
| base_ntfs_ino; |
| } |
| } |
| } |
| /* Update the changed pointers in the saved context. */ |
| if (ctx->mrec != old_ctx.mrec) { |
| if (!IS_ERR(ctx->mrec)) |
| old_ctx.attr = (ATTR_RECORD*)( |
| (u8*)ctx->mrec + |
| ((u8*)old_ctx.attr - |
| (u8*)old_ctx.mrec)); |
| old_ctx.mrec = ctx->mrec; |
| } |
| } |
| /* Restore the search context to the saved one. */ |
| *ctx = old_ctx; |
| /* |
| * We drop the reference on the page we took earlier. In the |
| * case that IS_ERR(ctx->mrec) is true this means we might lose |
| * some changes to the mft record that had been made between |
| * the last time it was marked dirty/written out and now. This |
| * at this stage is not a problem as the mapping error is fatal |
| * enough that the mft record cannot be written out anyway and |
| * the caller is very likely to shutdown the whole inode |
| * immediately and mark the volume dirty for chkdsk to pick up |
| * the pieces anyway. |
| */ |
| if (put_this_page) |
| page_cache_release(put_this_page); |
| } |
| return err; |
| } |
| |
| /** |
| * ntfs_map_runlist - map (a part of) a runlist of an ntfs inode |
| * @ni: ntfs inode for which to map (part of) a runlist |
| * @vcn: map runlist part containing this vcn |
| * |
| * Map the part of a runlist containing the @vcn of the ntfs inode @ni. |
| * |
| * Return 0 on success and -errno on error. There is one special error code |
| * which is not an error as such. This is -ENOENT. It means that @vcn is out |
| * of bounds of the runlist. |
| * |
| * Locking: - The runlist must be unlocked on entry and is unlocked on return. |
| * - This function takes the runlist lock for writing and may modify |
| * the runlist. |
| */ |
| int ntfs_map_runlist(ntfs_inode *ni, VCN vcn) |
| { |
| int err = 0; |
| |
| down_write(&ni->runlist.lock); |
| /* Make sure someone else didn't do the work while we were sleeping. */ |
| if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <= |
| LCN_RL_NOT_MAPPED)) |
| err = ntfs_map_runlist_nolock(ni, vcn, NULL); |
| up_write(&ni->runlist.lock); |
| return err; |
| } |
| |
| /** |
| * ntfs_attr_vcn_to_lcn_nolock - convert a vcn into a lcn given an ntfs inode |
| * @ni: ntfs inode of the attribute whose runlist to search |
| * @vcn: vcn to convert |
| * @write_locked: true if the runlist is locked for writing |
| * |
| * Find the virtual cluster number @vcn in the runlist of the ntfs attribute |
| * described by the ntfs inode @ni and return the corresponding logical cluster |
| * number (lcn). |
| * |
| * If the @vcn is not mapped yet, the attempt is made to map the attribute |
| * extent containing the @vcn and the vcn to lcn conversion is retried. |
| * |
| * If @write_locked is true the caller has locked the runlist for writing and |
| * if false for reading. |
| * |
| * Since lcns must be >= 0, we use negative return codes with special meaning: |
| * |
| * Return code Meaning / Description |
| * ========================================== |
| * LCN_HOLE Hole / not allocated on disk. |
| * LCN_ENOENT There is no such vcn in the runlist, i.e. @vcn is out of bounds. |
| * LCN_ENOMEM Not enough memory to map runlist. |
| * LCN_EIO Critical error (runlist/file is corrupt, i/o error, etc). |
| * |
| * Locking: - The runlist must be locked on entry and is left locked on return. |
| * - If @write_locked is 'false', i.e. the runlist is locked for reading, |
| * the lock may be dropped inside the function so you cannot rely on |
| * the runlist still being the same when this function returns. |
| */ |
| LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn, |
| const bool write_locked) |
| { |
| LCN lcn; |
| unsigned long flags; |
| bool is_retry = false; |
| |
| ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.", |
| ni->mft_no, (unsigned long long)vcn, |
| write_locked ? "write" : "read"); |
| BUG_ON(!ni); |
| BUG_ON(!NInoNonResident(ni)); |
| BUG_ON(vcn < 0); |
| if (!ni->runlist.rl) { |
| read_lock_irqsave(&ni->size_lock, flags); |
| if (!ni->allocated_size) { |
| read_unlock_irqrestore(&ni->size_lock, flags); |
| return LCN_ENOENT; |
| } |
| read_unlock_irqrestore(&ni->size_lock, flags); |
| } |
| retry_remap: |
| /* Convert vcn to lcn. If that fails map the runlist and retry once. */ |
| lcn = ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn); |
| if (likely(lcn >= LCN_HOLE)) { |
| ntfs_debug("Done, lcn 0x%llx.", (long long)lcn); |
| return lcn; |
| } |
| if (lcn != LCN_RL_NOT_MAPPED) { |
| if (lcn != LCN_ENOENT) |
| lcn = LCN_EIO; |
| } else if (!is_retry) { |
| int err; |
| |
| if (!write_locked) { |
| up_read(&ni->runlist.lock); |
| down_write(&ni->runlist.lock); |
| if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) != |
| LCN_RL_NOT_MAPPED)) { |
| up_write(&ni->runlist.lock); |
| down_read(&ni->runlist.lock); |
| goto retry_remap; |
| } |
| } |
| err = ntfs_map_runlist_nolock(ni, vcn, NULL); |
| if (!write_locked) { |
| up_write(&ni->runlist.lock); |
| down_read(&ni->runlist.lock); |
| } |
| if (likely(!err)) { |
| is_retry = true; |
| goto retry_remap; |
| } |
| if (err == -ENOENT) |
| lcn = LCN_ENOENT; |
| else if (err == -ENOMEM) |
| lcn = LCN_ENOMEM; |
| else |
| lcn = LCN_EIO; |
| } |
| if (lcn != LCN_ENOENT) |
| ntfs_error(ni->vol->sb, "Failed with error code %lli.", |
| (long long)lcn); |
| return lcn; |
| } |
| |
| /** |
| * ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode |
| * @ni: ntfs inode describing the runlist to search |
| * @vcn: vcn to find |
| * @ctx: active attribute search context if present or NULL if not |
| * |
| * Find the virtual cluster number @vcn in the runlist described by the ntfs |
| * inode @ni and return the address of the runlist element containing the @vcn. |
| * |
| * If the @vcn is not mapped yet, the attempt is made to map the attribute |
| * extent containing the @vcn and the vcn to lcn conversion is retried. |
| * |
| * If @ctx is specified, it is an active search context of @ni and its base mft |
| * record. This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped |
| * runlist fragments and allows their mapping. If you do not have the mft |
| * record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock() |
| * will perform the necessary mapping and unmapping. |
| * |
| * Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and |
| * restores it before returning. Thus, @ctx will be left pointing to the same |
| * attribute on return as on entry. However, the actual pointers in @ctx may |
| * point to different memory locations on return, so you must remember to reset |
| * any cached pointers from the @ctx, i.e. after the call to |
| * ntfs_attr_find_vcn_nolock(), you will probably want to do: |
| * m = ctx->mrec; |
| * a = ctx->attr; |
| * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that |
| * you cache ctx->mrec in a variable @m of type MFT_RECORD *. |
| * Note you need to distinguish between the lcn of the returned runlist element |
| * being >= 0 and LCN_HOLE. In the later case you have to return zeroes on |
| * read and allocate clusters on write. |
| * |
| * Return the runlist element containing the @vcn on success and |
| * ERR_PTR(-errno) on error. You need to test the return value with IS_ERR() |
| * to decide if the return is success or failure and PTR_ERR() to get to the |
| * error code if IS_ERR() is true. |
| * |
| * The possible error return codes are: |
| * -ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds. |
| * -ENOMEM - Not enough memory to map runlist. |
| * -EIO - Critical error (runlist/file is corrupt, i/o error, etc). |
| * |
| * WARNING: If @ctx is supplied, regardless of whether success or failure is |
| * returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx |
| * is no longer valid, i.e. you need to either call |
| * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. |
| * In that case PTR_ERR(@ctx->mrec) will give you the error code for |
| * why the mapping of the old inode failed. |
| * |
| * Locking: - The runlist described by @ni must be locked for writing on entry |
| * and is locked on return. Note the runlist may be modified when |
| * needed runlist fragments need to be mapped. |
| * - If @ctx is NULL, the base mft record of @ni must not be mapped on |
| * entry and it will be left unmapped on return. |
| * - If @ctx is not NULL, the base mft record must be mapped on entry |
| * and it will be left mapped on return. |
| */ |
| runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn, |
| ntfs_attr_search_ctx *ctx) |
| { |
| unsigned long flags; |
| runlist_element *rl; |
| int err = 0; |
| bool is_retry = false; |
| |
| ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.", |
| ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out"); |
| BUG_ON(!ni); |
| BUG_ON(!NInoNonResident(ni)); |
| BUG_ON(vcn < 0); |
| if (!ni->runlist.rl) { |
| read_lock_irqsave(&ni->size_lock, flags); |
| if (!ni->allocated_size) { |
| read_unlock_irqrestore(&ni->size_lock, flags); |
| return ERR_PTR(-ENOENT); |
| } |
| read_unlock_irqrestore(&ni->size_lock, flags); |
| } |
| retry_remap: |
| rl = ni->runlist.rl; |
| if (likely(rl && vcn >= rl[0].vcn)) { |
| while (likely(rl->length)) { |
| if (unlikely(vcn < rl[1].vcn)) { |
| if (likely(rl->lcn >= LCN_HOLE)) { |
| ntfs_debug("Done."); |
| return rl; |
| } |
| break; |
| } |
| rl++; |
| } |
| if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) { |
| if (likely(rl->lcn == LCN_ENOENT)) |
| err = -ENOENT; |
| else |
| err = -EIO; |
| } |
| } |
| if (!err && !is_retry) { |
| /* |
| * If the search context is invalid we cannot map the unmapped |
| * region. |
| */ |
| if (IS_ERR(ctx->mrec)) |
| err = PTR_ERR(ctx->mrec); |
| else { |
| /* |
| * The @vcn is in an unmapped region, map the runlist |
| * and retry. |
| */ |
| err = ntfs_map_runlist_nolock(ni, vcn, ctx); |
| if (likely(!err)) { |
| is_retry = true; |
| goto retry_remap; |
| } |
| } |
| if (err == -EINVAL) |
| err = -EIO; |
| } else if (!err) |
| err = -EIO; |
| if (err != -ENOENT) |
| ntfs_error(ni->vol->sb, "Failed with error code %i.", err); |
| return ERR_PTR(err); |
| } |
| |
| /** |
| * ntfs_attr_find - find (next) attribute in mft record |
| * @type: attribute type to find |
| * @name: attribute name to find (optional, i.e. NULL means don't care) |
| * @name_len: attribute name length (only needed if @name present) |
| * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) |
| * @val: attribute value to find (optional, resident attributes only) |
| * @val_len: attribute value length |
| * @ctx: search context with mft record and attribute to search from |
| * |
| * You should not need to call this function directly. Use ntfs_attr_lookup() |
| * instead. |
| * |
| * ntfs_attr_find() takes a search context @ctx as parameter and searches the |
| * mft record specified by @ctx->mrec, beginning at @ctx->attr, for an |
| * attribute of @type, optionally @name and @val. |
| * |
| * If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will |
| * point to the found attribute. |
| * |
| * If the attribute is not found, ntfs_attr_find() returns -ENOENT and |
| * @ctx->attr will point to the attribute before which the attribute being |
| * searched for would need to be inserted if such an action were to be desired. |
| * |
| * On actual error, ntfs_attr_find() returns -EIO. In this case @ctx->attr is |
| * undefined and in particular do not rely on it not changing. |
| * |
| * If @ctx->is_first is 'true', the search begins with @ctx->attr itself. If it |
| * is 'false', the search begins after @ctx->attr. |
| * |
| * If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and |
| * @ctx->ntfs_ino must be set to the ntfs inode to which the mft record |
| * @ctx->mrec belongs. This is so we can get at the ntfs volume and hence at |
| * the upcase table. If @ic is CASE_SENSITIVE, the comparison is case |
| * sensitive. When @name is present, @name_len is the @name length in Unicode |
| * characters. |
| * |
| * If @name is not present (NULL), we assume that the unnamed attribute is |
| * being searched for. |
| * |
| * Finally, the resident attribute value @val is looked for, if present. If |
| * @val is not present (NULL), @val_len is ignored. |
| * |
| * ntfs_attr_find() only searches the specified mft record and it ignores the |
| * presence of an attribute list attribute (unless it is the one being searched |
| * for, obviously). If you need to take attribute lists into consideration, |
| * use ntfs_attr_lookup() instead (see below). This also means that you cannot |
| * use ntfs_attr_find() to search for extent records of non-resident |
| * attributes, as extents with lowest_vcn != 0 are usually described by the |
| * attribute list attribute only. - Note that it is possible that the first |
| * extent is only in the attribute list while the last extent is in the base |
| * mft record, so do not rely on being able to find the first extent in the |
| * base mft record. |
| * |
| * Warning: Never use @val when looking for attribute types which can be |
| * non-resident as this most likely will result in a crash! |
| */ |
| static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name, |
| const u32 name_len, const IGNORE_CASE_BOOL ic, |
| const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) |
| { |
| ATTR_RECORD *a; |
| ntfs_volume *vol = ctx->ntfs_ino->vol; |
| ntfschar *upcase = vol->upcase; |
| u32 upcase_len = vol->upcase_len; |
| |
| /* |
| * Iterate over attributes in mft record starting at @ctx->attr, or the |
| * attribute following that, if @ctx->is_first is 'true'. |
| */ |
| if (ctx->is_first) { |
| a = ctx->attr; |
| ctx->is_first = false; |
| } else |
| a = (ATTR_RECORD*)((u8*)ctx->attr + |
| le32_to_cpu(ctx->attr->length)); |
| for (;; a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) { |
| if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec + |
| le32_to_cpu(ctx->mrec->bytes_allocated)) |
| break; |
| ctx->attr = a; |
| if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) || |
| a->type == AT_END)) |
| return -ENOENT; |
| if (unlikely(!a->length)) |
| break; |
| if (a->type != type) |
| continue; |
| /* |
| * If @name is present, compare the two names. If @name is |
| * missing, assume we want an unnamed attribute. |
| */ |
| if (!name) { |
| /* The search failed if the found attribute is named. */ |
| if (a->name_length) |
| return -ENOENT; |
| } else if (!ntfs_are_names_equal(name, name_len, |
| (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)), |
| a->name_length, ic, upcase, upcase_len)) { |
| register int rc; |
| |
| rc = ntfs_collate_names(name, name_len, |
| (ntfschar*)((u8*)a + |
| le16_to_cpu(a->name_offset)), |
| a->name_length, 1, IGNORE_CASE, |
| upcase, upcase_len); |
| /* |
| * If @name collates before a->name, there is no |
| * matching attribute. |
| */ |
| if (rc == -1) |
| return -ENOENT; |
| /* If the strings are not equal, continue search. */ |
| if (rc) |
| continue; |
| rc = ntfs_collate_names(name, name_len, |
| (ntfschar*)((u8*)a + |
| le16_to_cpu(a->name_offset)), |
| a->name_length, 1, CASE_SENSITIVE, |
| upcase, upcase_len); |
| if (rc == -1) |
| return -ENOENT; |
| if (rc) |
| continue; |
| } |
| /* |
| * The names match or @name not present and attribute is |
| * unnamed. If no @val specified, we have found the attribute |
| * and are done. |
| */ |
| if (!val) |
| return 0; |
| /* @val is present; compare values. */ |
| else { |
| register int rc; |
| |
| rc = memcmp(val, (u8*)a + le16_to_cpu( |
| a->data.resident.value_offset), |
| min_t(u32, val_len, le32_to_cpu( |
| a->data.resident.value_length))); |
| /* |
| * If @val collates before the current attribute's |
| * value, there is no matching attribute. |
| */ |
| if (!rc) { |
| register u32 avl; |
| |
| avl = le32_to_cpu( |
| a->data.resident.value_length); |
| if (val_len == avl) |
| return 0; |
| if (val_len < avl) |
| return -ENOENT; |
| } else if (rc < 0) |
| return -ENOENT; |
| } |
| } |
| ntfs_error(vol->sb, "Inode is corrupt. Run chkdsk."); |
| NVolSetErrors(vol); |
| return -EIO; |
| } |
| |
| /** |
| * load_attribute_list - load an attribute list into memory |
| * @vol: ntfs volume from which to read |
| * @runlist: runlist of the attribute list |
| * @al_start: destination buffer |
| * @size: size of the destination buffer in bytes |
| * @initialized_size: initialized size of the attribute list |
| * |
| * Walk the runlist @runlist and load all clusters from it copying them into |
| * the linear buffer @al. The maximum number of bytes copied to @al is @size |
| * bytes. Note, @size does not need to be a multiple of the cluster size. If |
| * @initialized_size is less than @size, the region in @al between |
| * @initialized_size and @size will be zeroed and not read from disk. |
| * |
| * Return 0 on success or -errno on error. |
| */ |
| int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start, |
| const s64 size, const s64 initialized_size) |
| { |
| LCN lcn; |
| u8 *al = al_start; |
| u8 *al_end = al + initialized_size; |
| runlist_element *rl; |
| struct buffer_head *bh; |
| struct super_block *sb; |
| unsigned long block_size; |
| unsigned long block, max_block; |
| int err = 0; |
| unsigned char block_size_bits; |
| |
| ntfs_debug("Entering."); |
| if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 || |
| initialized_size > size) |
| return -EINVAL; |
| if (!initialized_size) { |
| memset(al, 0, size); |
| return 0; |
| } |
| sb = vol->sb; |
| block_size = sb->s_blocksize; |
| block_size_bits = sb->s_blocksize_bits; |
| down_read(&runlist->lock); |
| rl = runlist->rl; |
| if (!rl) { |
| ntfs_error(sb, "Cannot read attribute list since runlist is " |
| "missing."); |
| goto err_out; |
| } |
| /* Read all clusters specified by the runlist one run at a time. */ |
| while (rl->length) { |
| lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn); |
| ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.", |
| (unsigned long long)rl->vcn, |
| (unsigned long long)lcn); |
| /* The attribute list cannot be sparse. */ |
| if (lcn < 0) { |
| ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed. Cannot " |
| "read attribute list."); |
| goto err_out; |
| } |
| block = lcn << vol->cluster_size_bits >> block_size_bits; |
| /* Read the run from device in chunks of block_size bytes. */ |
| max_block = block + (rl->length << vol->cluster_size_bits >> |
| block_size_bits); |
| ntfs_debug("max_block = 0x%lx.", max_block); |
| do { |
| ntfs_debug("Reading block = 0x%lx.", block); |
| bh = sb_bread(sb, block); |
| if (!bh) { |
| ntfs_error(sb, "sb_bread() failed. Cannot " |
| "read attribute list."); |
| goto err_out; |
| } |
| if (al + block_size >= al_end) |
| goto do_final; |
| memcpy(al, bh->b_data, block_size); |
| brelse(bh); |
| al += block_size; |
| } while (++block < max_block); |
| rl++; |
| } |
| if (initialized_size < size) { |
| initialize: |
| memset(al_start + initialized_size, 0, size - initialized_size); |
| } |
| done: |
| up_read(&runlist->lock); |
| return err; |
| do_final: |
| if (al < al_end) { |
| /* |
| * Partial block. |
| * |
| * Note: The attribute list can be smaller than its allocation |
| * by multiple clusters. This has been encountered by at least |
| * two people running Windows XP, thus we cannot do any |
| * truncation sanity checking here. (AIA) |
| */ |
| memcpy(al, bh->b_data, al_end - al); |
| brelse(bh); |
| if (initialized_size < size) |
| goto initialize; |
| goto done; |
| } |
| brelse(bh); |
| /* Real overflow! */ |
| ntfs_error(sb, "Attribute list buffer overflow. Read attribute list " |
| "is truncated."); |
| err_out: |
| err = -EIO; |
| goto done; |
| } |
| |
| /** |
| * ntfs_external_attr_find - find an attribute in the attribute list of an inode |
| * @type: attribute type to find |
| * @name: attribute name to find (optional, i.e. NULL means don't care) |
| * @name_len: attribute name length (only needed if @name present) |
| * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) |
| * @lowest_vcn: lowest vcn to find (optional, non-resident attributes only) |
| * @val: attribute value to find (optional, resident attributes only) |
| * @val_len: attribute value length |
| * @ctx: search context with mft record and attribute to search from |
| * |
| * You should not need to call this function directly. Use ntfs_attr_lookup() |
| * instead. |
| * |
| * Find an attribute by searching the attribute list for the corresponding |
| * attribute list entry. Having found the entry, map the mft record if the |
| * attribute is in a different mft record/inode, ntfs_attr_find() the attribute |
| * in there and return it. |
| * |
| * On first search @ctx->ntfs_ino must be the base mft record and @ctx must |
| * have been obtained from a call to ntfs_attr_get_search_ctx(). On subsequent |
| * calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is |
| * then the base inode). |
| * |
| * After finishing with the attribute/mft record you need to call |
| * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any |
| * mapped inodes, etc). |
| * |
| * If the attribute is found, ntfs_external_attr_find() returns 0 and |
| * @ctx->attr will point to the found attribute. @ctx->mrec will point to the |
| * mft record in which @ctx->attr is located and @ctx->al_entry will point to |
| * the attribute list entry for the attribute. |
| * |
| * If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and |
| * @ctx->attr will point to the attribute in the base mft record before which |
| * the attribute being searched for would need to be inserted if such an action |
| * were to be desired. @ctx->mrec will point to the mft record in which |
| * @ctx->attr is located and @ctx->al_entry will point to the attribute list |
| * entry of the attribute before which the attribute being searched for would |
| * need to be inserted if such an action were to be desired. |
| * |
| * Thus to insert the not found attribute, one wants to add the attribute to |
| * @ctx->mrec (the base mft record) and if there is not enough space, the |
| * attribute should be placed in a newly allocated extent mft record. The |
| * attribute list entry for the inserted attribute should be inserted in the |
| * attribute list attribute at @ctx->al_entry. |
| * |
| * On actual error, ntfs_external_attr_find() returns -EIO. In this case |
| * @ctx->attr is undefined and in particular do not rely on it not changing. |
| */ |
| static int ntfs_external_attr_find(const ATTR_TYPE type, |
| const ntfschar *name, const u32 name_len, |
| const IGNORE_CASE_BOOL ic, const VCN lowest_vcn, |
| const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) |
| { |
| ntfs_inode *base_ni, *ni; |
| ntfs_volume *vol; |
| ATTR_LIST_ENTRY *al_entry, *next_al_entry; |
| u8 *al_start, *al_end; |
| ATTR_RECORD *a; |
| ntfschar *al_name; |
| u32 al_name_len; |
| int err = 0; |
| static const char *es = " Unmount and run chkdsk."; |
| |
| ni = ctx->ntfs_ino; |
| base_ni = ctx->base_ntfs_ino; |
| ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type); |
| if (!base_ni) { |
| /* First call happens with the base mft record. */ |
| base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino; |
| ctx->base_mrec = ctx->mrec; |
| } |
| if (ni == base_ni) |
| ctx->base_attr = ctx->attr; |
| if (type == AT_END) |
| goto not_found; |
| vol = base_ni->vol; |
| al_start = base_ni->attr_list; |
| al_end = al_start + base_ni->attr_list_size; |
| if (!ctx->al_entry) |
| ctx->al_entry = (ATTR_LIST_ENTRY*)al_start; |
| /* |
| * Iterate over entries in attribute list starting at @ctx->al_entry, |
| * or the entry following that, if @ctx->is_first is 'true'. |
| */ |
| if (ctx->is_first) { |
| al_entry = ctx->al_entry; |
| ctx->is_first = false; |
| } else |
| al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry + |
| le16_to_cpu(ctx->al_entry->length)); |
| for (;; al_entry = next_al_entry) { |
| /* Out of bounds check. */ |
| if ((u8*)al_entry < base_ni->attr_list || |
| (u8*)al_entry > al_end) |
| break; /* Inode is corrupt. */ |
| ctx->al_entry = al_entry; |
| /* Catch the end of the attribute list. */ |
| if ((u8*)al_entry == al_end) |
| goto not_found; |
| if (!al_entry->length) |
| break; |
| if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + |
| le16_to_cpu(al_entry->length) > al_end) |
| break; |
| next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + |
| le16_to_cpu(al_entry->length)); |
| if (le32_to_cpu(al_entry->type) > le32_to_cpu(type)) |
| goto not_found; |
| if (type != al_entry->type) |
| continue; |
| /* |
| * If @name is present, compare the two names. If @name is |
| * missing, assume we want an unnamed attribute. |
| */ |
| al_name_len = al_entry->name_length; |
| al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset); |
| if (!name) { |
| if (al_name_len) |
| goto not_found; |
| } else if (!ntfs_are_names_equal(al_name, al_name_len, name, |
| name_len, ic, vol->upcase, vol->upcase_len)) { |
| register int rc; |
| |
| rc = ntfs_collate_names(name, name_len, al_name, |
| al_name_len, 1, IGNORE_CASE, |
| vol->upcase, vol->upcase_len); |
| /* |
| * If @name collates before al_name, there is no |
| * matching attribute. |
| */ |
| if (rc == -1) |
| goto not_found; |
| /* If the strings are not equal, continue search. */ |
| if (rc) |
| continue; |
| /* |
| * FIXME: Reverse engineering showed 0, IGNORE_CASE but |
| * that is inconsistent with ntfs_attr_find(). The |
| * subsequent rc checks were also different. Perhaps I |
| * made a mistake in one of the two. Need to recheck |
| * which is correct or at least see what is going on... |
| * (AIA) |
| */ |
| rc = ntfs_collate_names(name, name_len, al_name, |
| al_name_len, 1, CASE_SENSITIVE, |
| vol->upcase, vol->upcase_len); |
| if (rc == -1) |
| goto not_found; |
| if (rc) |
| continue; |
| } |
| /* |
| * The names match or @name not present and attribute is |
| * unnamed. Now check @lowest_vcn. Continue search if the |
| * next attribute list entry still fits @lowest_vcn. Otherwise |
| * we have reached the right one or the search has failed. |
| */ |
| if (lowest_vcn && (u8*)next_al_entry >= al_start && |
| (u8*)next_al_entry + 6 < al_end && |
| (u8*)next_al_entry + le16_to_cpu( |
| next_al_entry->length) <= al_end && |
| sle64_to_cpu(next_al_entry->lowest_vcn) <= |
| lowest_vcn && |
| next_al_entry->type == al_entry->type && |
| next_al_entry->name_length == al_name_len && |
| ntfs_are_names_equal((ntfschar*)((u8*) |
| next_al_entry + |
| next_al_entry->name_offset), |
| next_al_entry->name_length, |
| al_name, al_name_len, CASE_SENSITIVE, |
| vol->upcase, vol->upcase_len)) |
| continue; |
| if (MREF_LE(al_entry->mft_reference) == ni->mft_no) { |
| if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) { |
| ntfs_error(vol->sb, "Found stale mft " |
| "reference in attribute list " |
| "of base inode 0x%lx.%s", |
| base_ni->mft_no, es); |
| err = -EIO; |
| break; |
| } |
| } else { /* Mft references do not match. */ |
| /* If there is a mapped record unmap it first. */ |
| if (ni != base_ni) |
| unmap_extent_mft_record(ni); |
| /* Do we want the base record back? */ |
| if (MREF_LE(al_entry->mft_reference) == |
| base_ni->mft_no) { |
| ni = ctx->ntfs_ino = base_ni; |
| ctx->mrec = ctx->base_mrec; |
| } else { |
| /* We want an extent record. */ |
| ctx->mrec = map_extent_mft_record(base_ni, |
| le64_to_cpu( |
| al_entry->mft_reference), &ni); |
| if (IS_ERR(ctx->mrec)) { |
| ntfs_error(vol->sb, "Failed to map " |
| "extent mft record " |
| "0x%lx of base inode " |
| "0x%lx.%s", |
| MREF_LE(al_entry-> |
| mft_reference), |
| base_ni->mft_no, es); |
| err = PTR_ERR(ctx->mrec); |
| if (err == -ENOENT) |
| err = -EIO; |
| /* Cause @ctx to be sanitized below. */ |
| ni = NULL; |
| break; |
| } |
| ctx->ntfs_ino = ni; |
| } |
| ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + |
| le16_to_cpu(ctx->mrec->attrs_offset)); |
| } |
| /* |
| * ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the |
| * mft record containing the attribute represented by the |
| * current al_entry. |
| */ |
| /* |
| * We could call into ntfs_attr_find() to find the right |
| * attribute in this mft record but this would be less |
| * efficient and not quite accurate as ntfs_attr_find() ignores |
| * the attribute instance numbers for example which become |
| * important when one plays with attribute lists. Also, |
| * because a proper match has been found in the attribute list |
| * entry above, the comparison can now be optimized. So it is |
| * worth re-implementing a simplified ntfs_attr_find() here. |
| */ |
| a = ctx->attr; |
| /* |
| * Use a manual loop so we can still use break and continue |
| * with the same meanings as above. |
| */ |
| do_next_attr_loop: |
| if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec + |
| le32_to_cpu(ctx->mrec->bytes_allocated)) |
| break; |
| if (a->type == AT_END) |
| break; |
| if (!a->length) |
| break; |
| if (al_entry->instance != a->instance) |
| goto do_next_attr; |
| /* |
| * If the type and/or the name are mismatched between the |
| * attribute list entry and the attribute record, there is |
| * corruption so we break and return error EIO. |
| */ |
| if (al_entry->type != a->type) |
| break; |
| if (!ntfs_are_names_equal((ntfschar*)((u8*)a + |
| le16_to_cpu(a->name_offset)), a->name_length, |
| al_name, al_name_len, CASE_SENSITIVE, |
| vol->upcase, vol->upcase_len)) |
| break; |
| ctx->attr = a; |
| /* |
| * If no @val specified or @val specified and it matches, we |
| * have found it! |
| */ |
| if (!val || (!a->non_resident && le32_to_cpu( |
| a->data.resident.value_length) == val_len && |
| !memcmp((u8*)a + |
| le16_to_cpu(a->data.resident.value_offset), |
| val, val_len))) { |
| ntfs_debug("Done, found."); |
| return 0; |
| } |
| do_next_attr: |
| /* Proceed to the next attribute in the current mft record. */ |
| a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length)); |
| goto do_next_attr_loop; |
| } |
| if (!err) { |
| ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt " |
| "attribute list attribute.%s", base_ni->mft_no, |
| es); |
| err = -EIO; |
| } |
| if (ni != base_ni) { |
| if (ni) |
| unmap_extent_mft_record(ni); |
| ctx->ntfs_ino = base_ni; |
| ctx->mrec = ctx->base_mrec; |
| ctx->attr = ctx->base_attr; |
| } |
| if (err != -ENOMEM) |
| NVolSetErrors(vol); |
| return err; |
| not_found: |
| /* |
| * If we were looking for AT_END, we reset the search context @ctx and |
| * use ntfs_attr_find() to seek to the end of the base mft record. |
| */ |
| if (type == AT_END) { |
| ntfs_attr_reinit_search_ctx(ctx); |
| return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len, |
| ctx); |
| } |
| /* |
| * The attribute was not found. Before we return, we want to ensure |
| * @ctx->mrec and @ctx->attr indicate the position at which the |
| * attribute should be inserted in the base mft record. Since we also |
| * want to preserve @ctx->al_entry we cannot reinitialize the search |
| * context using ntfs_attr_reinit_search_ctx() as this would set |
| * @ctx->al_entry to NULL. Thus we do the necessary bits manually (see |
| * ntfs_attr_init_search_ctx() below). Note, we _only_ preserve |
| * @ctx->al_entry as the remaining fields (base_*) are identical to |
| * their non base_ counterparts and we cannot set @ctx->base_attr |
| * correctly yet as we do not know what @ctx->attr will be set to by |
| * the call to ntfs_attr_find() below. |
| */ |
| if (ni != base_ni) |
| unmap_extent_mft_record(ni); |
| ctx->mrec = ctx->base_mrec; |
| ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + |
| le16_to_cpu(ctx->mrec->attrs_offset)); |
| ctx->is_first = true; |
| ctx->ntfs_ino = base_ni; |
| ctx->base_ntfs_ino = NULL; |
| ctx->base_mrec = NULL; |
| ctx->base_attr = NULL; |
| /* |
| * In case there are multiple matches in the base mft record, need to |
| * keep enumerating until we get an attribute not found response (or |
| * another error), otherwise we would keep returning the same attribute |
| * over and over again and all programs using us for enumeration would |
| * lock up in a tight loop. |
| */ |
| do { |
| err = ntfs_attr_find(type, name, name_len, ic, val, val_len, |
| ctx); |
| } while (!err); |
| ntfs_debug("Done, not found."); |
| return err; |
| } |
| |
| /** |
| * ntfs_attr_lookup - find an attribute in an ntfs inode |
| * @type: attribute type to find |
| * @name: attribute name to find (optional, i.e. NULL means don't care) |
| * @name_len: attribute name length (only needed if @name present) |
| * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) |
| * @lowest_vcn: lowest vcn to find (optional, non-resident attributes only) |
| * @val: attribute value to find (optional, resident attributes only) |
| * @val_len: attribute value length |
| * @ctx: search context with mft record and attribute to search from |
| * |
| * Find an attribute in an ntfs inode. On first search @ctx->ntfs_ino must |
| * be the base mft record and @ctx must have been obtained from a call to |
| * ntfs_attr_get_search_ctx(). |
| * |
| * This function transparently handles attribute lists and @ctx is used to |
| * continue searches where they were left off at. |
| * |
| * After finishing with the attribute/mft record you need to call |
| * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any |
| * mapped inodes, etc). |
| * |
| * Return 0 if the search was successful and -errno if not. |
| * |
| * When 0, @ctx->attr is the found attribute and it is in mft record |
| * @ctx->mrec. If an attribute list attribute is present, @ctx->al_entry is |
| * the attribute list entry of the found attribute. |
| * |
| * When -ENOENT, @ctx->attr is the attribute which collates just after the |
| * attribute being searched for, i.e. if one wants to add the attribute to the |
| * mft record this is the correct place to insert it into. If an attribute |
| * list attribute is present, @ctx->al_entry is the attribute list entry which |
| * collates just after the attribute list entry of the attribute being searched |
| * for, i.e. if one wants to add the attribute to the mft record this is the |
| * correct place to insert its attribute list entry into. |
| * |
| * When -errno != -ENOENT, an error occured during the lookup. @ctx->attr is |
| * then undefined and in particular you should not rely on it not changing. |
| */ |
| int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name, |
| const u32 name_len, const IGNORE_CASE_BOOL ic, |
| const VCN lowest_vcn, const u8 *val, const u32 val_len, |
| ntfs_attr_search_ctx *ctx) |
| { |
| ntfs_inode *base_ni; |
| |
| ntfs_debug("Entering."); |
| BUG_ON(IS_ERR(ctx->mrec)); |
| if (ctx->base_ntfs_ino) |
| base_ni = ctx->base_ntfs_ino; |
| else |
| base_ni = ctx->ntfs_ino; |
| /* Sanity check, just for debugging really. */ |
| BUG_ON(!base_ni); |
| if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST) |
| return ntfs_attr_find(type, name, name_len, ic, val, val_len, |
| ctx); |
| return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn, |
| val, val_len, ctx); |
| } |
| |
| /** |
| * ntfs_attr_init_search_ctx - initialize an attribute search context |
| * @ctx: attribute search context to initialize |
| * @ni: ntfs inode with which to initialize the search context |
| * @mrec: mft record with which to initialize the search context |
| * |
| * Initialize the attribute search context @ctx with @ni and @mrec. |
| */ |
| static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx, |
| ntfs_inode *ni, MFT_RECORD *mrec) |
| { |
| *ctx = (ntfs_attr_search_ctx) { |
| .mrec = mrec, |
| /* Sanity checks are performed elsewhere. */ |
| .attr = (ATTR_RECORD*)((u8*)mrec + |
| le16_to_cpu(mrec->attrs_offset)), |
| .is_first = true, |
| .ntfs_ino = ni, |
| }; |
| } |
| |
| /** |
| * ntfs_attr_reinit_search_ctx - reinitialize an attribute search context |
| * @ctx: attribute search context to reinitialize |
| * |
| * Reinitialize the attribute search context @ctx, unmapping an associated |
| * extent mft record if present, and initialize the search context again. |
| * |
| * This is used when a search for a new attribute is being started to reset |
| * the search context to the beginning. |
| */ |
| void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx) |
| { |
| if (likely(!ctx->base_ntfs_ino)) { |
| /* No attribute list. */ |
| ctx->is_first = true; |
| /* Sanity checks are performed elsewhere. */ |
| ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + |
| le16_to_cpu(ctx->mrec->attrs_offset)); |
| /* |
| * This needs resetting due to ntfs_external_attr_find() which |
| * can leave it set despite having zeroed ctx->base_ntfs_ino. |
| */ |
| ctx->al_entry = NULL; |
| return; |
| } /* Attribute list. */ |
| if (ctx->ntfs_ino != ctx->base_ntfs_ino) |
| unmap_extent_mft_record(ctx->ntfs_ino); |
| ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec); |
| return; |
| } |
| |
| /** |
| * ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context |
| * @ni: ntfs inode with which to initialize the search context |
| * @mrec: mft record with which to initialize the search context |
| * |
| * Allocate a new attribute search context, initialize it with @ni and @mrec, |
| * and return it. Return NULL if allocation failed. |
| */ |
| ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec) |
| { |
| ntfs_attr_search_ctx *ctx; |
| |
| ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, GFP_NOFS); |
| if (ctx) |
| ntfs_attr_init_search_ctx(ctx, ni, mrec); |
| return ctx; |
| } |
| |
| /** |
| * ntfs_attr_put_search_ctx - release an attribute search context |
| * @ctx: attribute search context to free |
| * |
| * Release the attribute search context @ctx, unmapping an associated extent |
| * mft record if present. |
| */ |
| void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx) |
| { |
| if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino) |
| unmap_extent_mft_record(ctx->ntfs_ino); |
| kmem_cache_free(ntfs_attr_ctx_cache, ctx); |
| return; |
| } |
| |
| #ifdef NTFS_RW |
| |
| /** |
| * ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file |
| * @vol: ntfs volume to which the attribute belongs |
| * @type: attribute type which to find |
| * |
| * Search for the attribute definition record corresponding to the attribute |
| * @type in the $AttrDef system file. |
| * |
| * Return the attribute type definition record if found and NULL if not found. |
| */ |
| static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol, |
| const ATTR_TYPE type) |
| { |
| ATTR_DEF *ad; |
| |
| BUG_ON(!vol->attrdef); |
| BUG_ON(!type); |
| for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef < |
| vol->attrdef_size && ad->type; ++ad) { |
| /* We have not found it yet, carry on searching. */ |
| if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type))) |
| continue; |
| /* We found the attribute; return it. */ |
| if (likely(ad->type == type)) |
| return ad; |
| /* We have gone too far already. No point in continuing. */ |
| break; |
| } |
| /* Attribute not found. */ |
| ntfs_debug("Attribute type 0x%x not found in $AttrDef.", |
| le32_to_cpu(type)); |
| return NULL; |
| } |
| |
| /** |
| * ntfs_attr_size_bounds_check - check a size of an attribute type for validity |
| * @vol: ntfs volume to which the attribute belongs |
| * @type: attribute type which to check |
| * @size: size which to check |
| * |
| * Check whether the @size in bytes is valid for an attribute of @type on the |
| * ntfs volume @vol. This information is obtained from $AttrDef system file. |
| * |
| * Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not |
| * listed in $AttrDef. |
| */ |
| int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type, |
| const s64 size) |
| { |
| ATTR_DEF *ad; |
| |
| BUG_ON(size < 0); |
| /* |
| * $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not |
| * listed in $AttrDef. |
| */ |
| if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024)) |
| return -ERANGE; |
| /* Get the $AttrDef entry for the attribute @type. */ |
| ad = ntfs_attr_find_in_attrdef(vol, type); |
| if (unlikely(!ad)) |
| return -ENOENT; |
| /* Do the bounds check. */ |
| if (((sle64_to_cpu(ad->min_size) > 0) && |
| size < sle64_to_cpu(ad->min_size)) || |
| ((sle64_to_cpu(ad->max_size) > 0) && size > |
| sle64_to_cpu(ad->max_size))) |
| return -ERANGE; |
| return 0; |
| } |
| |
| /** |
| * ntfs_attr_can_be_non_resident - check if an attribute can be non-resident |
| * @vol: ntfs volume to which the attribute belongs |
| * @type: attribute type which to check |
| * |
| * Check whether the attribute of @type on the ntfs volume @vol is allowed to |
| * be non-resident. This information is obtained from $AttrDef system file. |
| * |
| * Return 0 if the attribute is allowed to be non-resident, -EPERM if not, and |
| * -ENOENT if the attribute is not listed in $AttrDef. |
| */ |
| int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type) |
| { |
| ATTR_DEF *ad; |
| |
| /* Find the attribute definition record in $AttrDef. */ |
| ad = ntfs_attr_find_in_attrdef(vol, type); |
| if (unlikely(!ad)) |
| return -ENOENT; |
| /* Check the flags and return the result. */ |
| if (ad->flags & ATTR_DEF_RESIDENT) |
| return -EPERM; |
| return 0; |
| } |
| |
| /** |
| * ntfs_attr_can_be_resident - check if an attribute can be resident |
| * @vol: ntfs volume to which the attribute belongs |
| * @type: attribute type which to check |
| * |
| * Check whether the attribute of @type on the ntfs volume @vol is allowed to |
| * be resident. This information is derived from our ntfs knowledge and may |
| * not be completely accurate, especially when user defined attributes are |
| * present. Basically we allow everything to be resident except for index |
| * allocation and $EA attributes. |
| * |
| * Return 0 if the attribute is allowed to be non-resident and -EPERM if not. |
| * |
| * Warning: In the system file $MFT the attribute $Bitmap must be non-resident |
| * otherwise windows will not boot (blue screen of death)! We cannot |
| * check for this here as we do not know which inode's $Bitmap is |
| * being asked about so the caller needs to special case this. |
| */ |
| int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type) |
| { |
| if (type == AT_INDEX_ALLOCATION) |
| return -EPERM; |
| return 0; |
| } |
| |
| /** |
| * ntfs_attr_record_resize - resize an attribute record |
| * @m: mft record containing attribute record |
| * @a: attribute record to resize |
| * @new_size: new size in bytes to which to resize the attribute record @a |
| * |
| * Resize the attribute record @a, i.e. the resident part of the attribute, in |
| * the mft record @m to @new_size bytes. |
| * |
| * Return 0 on success and -errno on error. The following error codes are |
| * defined: |
| * -ENOSPC - Not enough space in the mft record @m to perform the resize. |
| * |
| * Note: On error, no modifications have been performed whatsoever. |
| * |
| * Warning: If you make a record smaller without having copied all the data you |
| * are interested in the data may be overwritten. |
| */ |
| int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size) |
| { |
| ntfs_debug("Entering for new_size %u.", new_size); |
| /* Align to 8 bytes if it is not already done. */ |
| if (new_size & 7) |
| new_size = (new_size + 7) & ~7; |
| /* If the actual attribute length has changed, move things around. */ |
| if (new_size != le32_to_cpu(a->length)) { |
| u32 new_muse = le32_to_cpu(m->bytes_in_use) - |
| le32_to_cpu(a->length) + new_size; |
| /* Not enough space in this mft record. */ |
| if (new_muse > le32_to_cpu(m->bytes_allocated)) |
| return -ENOSPC; |
| /* Move attributes following @a to their new location. */ |
| memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length), |
| le32_to_cpu(m->bytes_in_use) - ((u8*)a - |
| (u8*)m) - le32_to_cpu(a->length)); |
| /* Adjust @m to reflect the change in used space. */ |
| m->bytes_in_use = cpu_to_le32(new_muse); |
| /* Adjust @a to reflect the new size. */ |
| if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length)) |
| a->length = cpu_to_le32(new_size); |
| } |
| return 0; |
| } |
| |
| /** |
| * ntfs_resident_attr_value_resize - resize the value of a resident attribute |
| * @m: mft record containing attribute record |
| * @a: attribute record whose value to resize |
| * @new_size: new size in bytes to which to resize the attribute value of @a |
| * |
| * Resize the value of the attribute @a in the mft record @m to @new_size bytes. |
| * If the value is made bigger, the newly allocated space is cleared. |
| * |
| * Return 0 on success and -errno on error. The following error codes are |
| * defined: |
| * -ENOSPC - Not enough space in the mft record @m to perform the resize. |
| * |
| * Note: On error, no modifications have been performed whatsoever. |
| * |
| * Warning: If you make a record smaller without having copied all the data you |
| * are interested in the data may be overwritten. |
| */ |
| int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a, |
| const u32 new_size) |
| { |
| u32 old_size; |
| |
| /* Resize the resident part of the attribute record. */ |
| if (ntfs_attr_record_resize(m, a, |
| le16_to_cpu(a->data.resident.value_offset) + new_size)) |
| return -ENOSPC; |
| /* |
| * The resize succeeded! If we made the attribute value bigger, clear |
| * the area between the old size and @new_size. |
| */ |
| old_size = le32_to_cpu(a->data.resident.value_length); |
| if (new_size > old_size) |
| memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) + |
| old_size, 0, new_size - old_size); |
| /* Finally update the length of the attribute value. */ |
| a->data.resident.value_length = cpu_to_le32(new_size); |
| return 0; |
| } |
| |
| /** |
| * ntfs_attr_make_non_resident - convert a resident to a non-resident attribute |
| * @ni: ntfs inode describing the attribute to convert |
| * @data_size: size of the resident data to copy to the non-resident attribute |
| * |
| * Convert the resident ntfs attribute described by the ntfs inode @ni to a |
| * non-resident one. |
| * |
| * @data_size must be equal to the attribute value size. This is needed since |
| * we need to know the size before we can map the mft record and our callers |
| * always know it. The reason we cannot simply read the size from the vfs |
| * inode i_size is that this is not necessarily uptodate. This happens when |
| * ntfs_attr_make_non_resident() is called in the ->truncate call path(s). |
| * |
| * Return 0 on success and -errno on error. The following error return codes |
| * are defined: |
| * -EPERM - The attribute is not allowed to be non-resident. |
| * -ENOMEM - Not enough memory. |
| * -ENOSPC - Not enough disk space. |
| * -EINVAL - Attribute not defined on the volume. |
| * -EIO - I/o error or other error. |
| * Note that -ENOSPC is also returned in the case that there is not enough |
| * space in the mft record to do the conversion. This can happen when the mft |
| * record is already very full. The caller is responsible for trying to make |
| * space in the mft record and trying again. FIXME: Do we need a separate |
| * error return code for this kind of -ENOSPC or is it always worth trying |
| * again in case the attribute may then fit in a resident state so no need to |
| * make it non-resident at all? Ho-hum... (AIA) |
| * |
| * NOTE to self: No changes in the attribute list are required to move from |
| * a resident to a non-resident attribute. |
| * |
| * Locking: - The caller must hold i_mutex on the inode. |
| */ |
| int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size) |
| { |
| s64 new_size; |
| struct inode *vi = VFS_I(ni); |
| ntfs_volume *vol = ni->vol; |
| ntfs_inode *base_ni; |
| MFT_RECORD *m; |
| ATTR_RECORD *a; |
| ntfs_attr_search_ctx *ctx; |
| struct page *page; |
| runlist_element *rl; |
| u8 *kaddr; |
| unsigned long flags; |
| int mp_size, mp_ofs, name_ofs, arec_size, err, err2; |
| u32 attr_size; |
| u8 old_res_attr_flags; |
| |
| /* Check that the attribute is allowed to be non-resident. */ |
| err = ntfs_attr_can_be_non_resident(vol, ni->type); |
| if (unlikely(err)) { |
| if (err == -EPERM) |
| ntfs_debug("Attribute is not allowed to be " |
| "non-resident."); |
| else |
| ntfs_debug("Attribute not defined on the NTFS " |
| "volume!"); |
| return err; |
| } |
| /* |
| * FIXME: Compressed and encrypted attributes are not supported when |
| * writing and we should never have gotten here for them. |
| */ |
| BUG_ON(NInoCompressed(ni)); |
| BUG_ON(NInoEncrypted(ni)); |
| /* |
| * The size needs to be aligned to a cluster boundary for allocation |
| * purposes. |
| */ |
| new_size = (data_size + vol->cluster_size - 1) & |
| ~(vol->cluster_size - 1); |
| if (new_size > 0) { |
| /* |
| * Will need the page later and since the page lock nests |
| * outside all ntfs locks, we need to get the page now. |
| */ |
| page = find_or_create_page(vi->i_mapping, 0, |
| mapping_gfp_mask(vi->i_mapping)); |
| if (unlikely(!page)) |
| return -ENOMEM; |
| /* Start by allocating clusters to hold the attribute value. */ |
| rl = ntfs_cluster_alloc(vol, 0, new_size >> |
| vol->cluster_size_bits, -1, DATA_ZONE, true); |
| if (IS_ERR(rl)) { |
| err = PTR_ERR(rl); |
| ntfs_debug("Failed to allocate cluster%s, error code " |
| "%i.", (new_size >> |
| vol->cluster_size_bits) > 1 ? "s" : "", |
| err); |
| goto page_err_out; |
| } |
| } else { |
| rl = NULL; |
| page = NULL; |
| } |
| /* Determine the size of the mapping pairs array. */ |
| mp_size = ntfs_get_size_for_mapping_pairs(vol, rl, 0, -1); |
| if (unlikely(mp_size < 0)) { |
| err = mp_size; |
| ntfs_debug("Failed to get size for mapping pairs array, error " |
| "code %i.", err); |
| goto rl_err_out; |
| } |
| down_write(&ni->runlist.lock); |
| if (!NInoAttr(ni)) |
| base_ni = ni; |
| else |
| base_ni = ni->ext.base_ntfs_ino; |
| m = map_mft_record(base_ni); |
| if (IS_ERR(m)) { |
| err = PTR_ERR(m); |
| m = NULL; |
| ctx = NULL; |
| goto err_out; |
| } |
| ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| if (unlikely(!ctx)) { |
| err = -ENOMEM; |
| goto err_out; |
| } |
| err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) |
| err = -EIO; |
| goto err_out; |
| } |
| m = ctx->mrec; |
| a = ctx->attr; |
| BUG_ON(NInoNonResident(ni)); |
| BUG_ON(a->non_resident); |
| /* |
| * Calculate new offsets for the name and the mapping pairs array. |
| */ |
| if (NInoSparse(ni) || NInoCompressed(ni)) |
| name_ofs = (offsetof(ATTR_REC, |
| data.non_resident.compressed_size) + |
| sizeof(a->data.non_resident.compressed_size) + |
| 7) & ~7; |
| else |
| name_ofs = (offsetof(ATTR_REC, |
| data.non_resident.compressed_size) + 7) & ~7; |
| mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7; |
| /* |
| * Determine the size of the resident part of the now non-resident |
| * attribute record. |
| */ |
| arec_size = (mp_ofs + mp_size + 7) & ~7; |
| /* |
| * If the page is not uptodate bring it uptodate by copying from the |
| * attribute value. |
| */ |
| attr_size = le32_to_cpu(a->data.resident.value_length); |
| BUG_ON(attr_size != data_size); |
| if (page && !PageUptodate(page)) { |
| kaddr = kmap_atomic(page, KM_USER0); |
| memcpy(kaddr, (u8*)a + |
| le16_to_cpu(a->data.resident.value_offset), |
| attr_size); |
| memset(kaddr + attr_size, 0, PAGE_CACHE_SIZE - attr_size); |
| kunmap_atomic(kaddr, KM_USER0); |
| flush_dcache_page(page); |
| SetPageUptodate(page); |
| } |
| /* Backup the attribute flag. */ |
| old_res_attr_flags = a->data.resident.flags; |
| /* Resize the resident part of the attribute record. */ |
| err = ntfs_attr_record_resize(m, a, arec_size); |
| if (unlikely(err)) |
| goto err_out; |
| /* |
| * Convert the resident part of the attribute record to describe a |
| * non-resident attribute. |
| */ |
| a->non_resident = 1; |
| /* Move the attribute name if it exists and update the offset. */ |
| if (a->name_length) |
| memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset), |
| a->name_length * sizeof(ntfschar)); |
| a->name_offset = cpu_to_le16(name_ofs); |
| /* Setup the fields specific to non-resident attributes. */ |
| a->data.non_resident.lowest_vcn = 0; |
| a->data.non_resident.highest_vcn = cpu_to_sle64((new_size - 1) >> |
| vol->cluster_size_bits); |
| a->data.non_resident.mapping_pairs_offset = cpu_to_le16(mp_ofs); |
| memset(&a->data.non_resident.reserved, 0, |
| sizeof(a->data.non_resident.reserved)); |
| a->data.non_resident.allocated_size = cpu_to_sle64(new_size); |
| a->data.non_resident.data_size = |
| a->data.non_resident.initialized_size = |
| cpu_to_sle64(attr_size); |
| if (NInoSparse(ni) || NInoCompressed(ni)) { |
| a->data.non_resident.compression_unit = 0; |
| if (NInoCompressed(ni) || vol->major_ver < 3) |
| a->data.non_resident.compression_unit = 4; |
| a->data.non_resident.compressed_size = |
| a->data.non_resident.allocated_size; |
| } else |
| a->data.non_resident.compression_unit = 0; |
| /* Generate the mapping pairs array into the attribute record. */ |
| err = ntfs_mapping_pairs_build(vol, (u8*)a + mp_ofs, |
| arec_size - mp_ofs, rl, 0, -1, NULL); |
| if (unlikely(err)) { |
| ntfs_debug("Failed to build mapping pairs, error code %i.", |
| err); |
| goto undo_err_out; |
| } |
| /* Setup the in-memory attribute structure to be non-resident. */ |
| ni->runlist.rl = rl; |
| write_lock_irqsave(&ni->size_lock, flags); |
| ni->allocated_size = new_size; |
| if (NInoSparse(ni) || NInoCompressed(ni)) { |
| ni->itype.compressed.size = ni->allocated_size; |
| if (a->data.non_resident.compression_unit) { |
| ni->itype.compressed.block_size = 1U << (a->data. |
| non_resident.compression_unit + |
| vol->cluster_size_bits); |
| ni->itype.compressed.block_size_bits = |
| ffs(ni->itype.compressed.block_size) - |
| 1; |
| ni->itype.compressed.block_clusters = 1U << |
| a->data.non_resident.compression_unit; |
| } else { |
| ni->itype.compressed.block_size = 0; |
| ni->itype.compressed.block_size_bits = 0; |
| ni->itype.compressed.block_clusters = 0; |
| } |
| vi->i_blocks = ni->itype.compressed.size >> 9; |
| } else |
| vi->i_blocks = ni->allocated_size >> 9; |
| write_unlock_irqrestore(&ni->size_lock, flags); |
| /* |
| * This needs to be last since the address space operations ->readpage |
| * and ->writepage can run concurrently with us as they are not |
| * serialized on i_mutex. Note, we are not allowed to fail once we flip |
| * this switch, which is another reason to do this last. |
| */ |
| NInoSetNonResident(ni); |
| /* Mark the mft record dirty, so it gets written back. */ |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| up_write(&ni->runlist.lock); |
| if (page) { |
| set_page_dirty(page); |
| unlock_page(page); |
| mark_page_accessed(page); |
| page_cache_release(page); |
| } |
| ntfs_debug("Done."); |
| return 0; |
| undo_err_out: |
| /* Convert the attribute back into a resident attribute. */ |
| a->non_resident = 0; |
| /* Move the attribute name if it exists and update the offset. */ |
| name_ofs = (offsetof(ATTR_RECORD, data.resident.reserved) + |
| sizeof(a->data.resident.reserved) + 7) & ~7; |
| if (a->name_length) |
| memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset), |
| a->name_length * sizeof(ntfschar)); |
| mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7; |
| a->name_offset = cpu_to_le16(name_ofs); |
| arec_size = (mp_ofs + attr_size + 7) & ~7; |
| /* Resize the resident part of the attribute record. */ |
| err2 = ntfs_attr_record_resize(m, a, arec_size); |
| if (unlikely(err2)) { |
| /* |
| * This cannot happen (well if memory corruption is at work it |
| * could happen in theory), but deal with it as well as we can. |
| * If the old size is too small, truncate the attribute, |
| * otherwise simply give it a larger allocated size. |
| * FIXME: Should check whether chkdsk complains when the |
| * allocated size is much bigger than the resident value size. |
| */ |
| arec_size = le32_to_cpu(a->length); |
| if ((mp_ofs + attr_size) > arec_size) { |
| err2 = attr_size; |
| attr_size = arec_size - mp_ofs; |
| ntfs_error(vol->sb, "Failed to undo partial resident " |
| "to non-resident attribute " |
| "conversion. Truncating inode 0x%lx, " |
| "attribute type 0x%x from %i bytes to " |
| "%i bytes to maintain metadata " |
| "consistency. THIS MEANS YOU ARE " |
| "LOSING %i BYTES DATA FROM THIS %s.", |
| vi->i_ino, |
| (unsigned)le32_to_cpu(ni->type), |
| err2, attr_size, err2 - attr_size, |
| ((ni->type == AT_DATA) && |
| !ni->name_len) ? "FILE": "ATTRIBUTE"); |
| write_lock_irqsave(&ni->size_lock, flags); |
| ni->initialized_size = attr_size; |
| i_size_write(vi, attr_size); |
| write_unlock_irqrestore(&ni->size_lock, flags); |
| } |
| } |
| /* Setup the fields specific to resident attributes. */ |
| a->data.resident.value_length = cpu_to_le32(attr_size); |
| a->data.resident.value_offset = cpu_to_le16(mp_ofs); |
| a->data.resident.flags = old_res_attr_flags; |
| memset(&a->data.resident.reserved, 0, |
| sizeof(a->data.resident.reserved)); |
| /* Copy the data from the page back to the attribute value. */ |
| if (page) { |
| kaddr = kmap_atomic(page, KM_USER0); |
| memcpy((u8*)a + mp_ofs, kaddr, attr_size); |
| kunmap_atomic(kaddr, KM_USER0); |
| } |
| /* Setup the allocated size in the ntfs inode in case it changed. */ |
| write_lock_irqsave(&ni->size_lock, flags); |
| ni->allocated_size = arec_size - mp_ofs; |
| write_unlock_irqrestore(&ni->size_lock, flags); |
| /* Mark the mft record dirty, so it gets written back. */ |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| err_out: |
| if (ctx) |
| ntfs_attr_put_search_ctx(ctx); |
| if (m) |
| unmap_mft_record(base_ni); |
| ni->runlist.rl = NULL; |
| up_write(&ni->runlist.lock); |
| rl_err_out: |
| if (rl) { |
| if (ntfs_cluster_free_from_rl(vol, rl) < 0) { |
| ntfs_error(vol->sb, "Failed to release allocated " |
| "cluster(s) in error code path. Run " |
| "chkdsk to recover the lost " |
| "cluster(s)."); |
| NVolSetErrors(vol); |
| } |
| ntfs_free(rl); |
| page_err_out: |
| unlock_page(page); |
| page_cache_release(page); |
| } |
| if (err == -EINVAL) |
| err = -EIO; |
| return err; |
| } |
| |
| /** |
| * ntfs_attr_extend_allocation - extend the allocated space of an attribute |
| * @ni: ntfs inode of the attribute whose allocation to extend |
| * @new_alloc_size: new size in bytes to which to extend the allocation to |
| * @new_data_size: new size in bytes to which to extend the data to |
| * @data_start: beginning of region which is required to be non-sparse |
| * |
| * Extend the allocated space of an attribute described by the ntfs inode @ni |
| * to @new_alloc_size bytes. If @data_start is -1, the whole extension may be |
| * implemented as a hole in the file (as long as both the volume and the ntfs |
| * inode @ni have sparse support enabled). If @data_start is >= 0, then the |
| * region between the old allocated size and @data_start - 1 may be made sparse |
| * but the regions between @data_start and @new_alloc_size must be backed by |
| * actual clusters. |
| * |
| * If @new_data_size is -1, it is ignored. If it is >= 0, then the data size |
| * of the attribute is extended to @new_data_size. Note that the i_size of the |
| * vfs inode is not updated. Only the data size in the base attribute record |
| * is updated. The caller has to update i_size separately if this is required. |
| * WARNING: It is a BUG() for @new_data_size to be smaller than the old data |
| * size as well as for @new_data_size to be greater than @new_alloc_size. |
| * |
| * For resident attributes this involves resizing the attribute record and if |
| * necessary moving it and/or other attributes into extent mft records and/or |
| * converting the attribute to a non-resident attribute which in turn involves |
| * extending the allocation of a non-resident attribute as described below. |
| * |
| * For non-resident attributes this involves allocating clusters in the data |
| * zone on the volume (except for regions that are being made sparse) and |
| * extending the run list to describe the allocated clusters as well as |
| * updating the mapping pairs array of the attribute. This in turn involves |
| * resizing the attribute record and if necessary moving it and/or other |
| * attributes into extent mft records and/or splitting the attribute record |
| * into multiple extent attribute records. |
| * |
| * Also, the attribute list attribute is updated if present and in some of the |
| * above cases (the ones where extent mft records/attributes come into play), |
| * an attribute list attribute is created if not already present. |
| * |
| * Return the new allocated size on success and -errno on error. In the case |
| * that an error is encountered but a partial extension at least up to |
| * @data_start (if present) is possible, the allocation is partially extended |
| * and this is returned. This means the caller must check the returned size to |
| * determine if the extension was partial. If @data_start is -1 then partial |
| * allocations are not performed. |
| * |
| * WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA. |
| * |
| * Locking: This function takes the runlist lock of @ni for writing as well as |
| * locking the mft record of the base ntfs inode. These locks are maintained |
| * throughout execution of the function. These locks are required so that the |
| * attribute can be resized safely and so that it can for example be converted |
| * from resident to non-resident safely. |
| * |
| * TODO: At present attribute list attribute handling is not implemented. |
| * |
| * TODO: At present it is not safe to call this function for anything other |
| * than the $DATA attribute(s) of an uncompressed and unencrypted file. |
| */ |
| s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size, |
| const s64 new_data_size, const s64 data_start) |
| { |
| VCN vcn; |
| s64 ll, allocated_size, start = data_start; |
| struct inode *vi = VFS_I(ni); |
| ntfs_volume *vol = ni->vol; |
| ntfs_inode *base_ni; |
| MFT_RECORD *m; |
| ATTR_RECORD *a; |
| ntfs_attr_search_ctx *ctx; |
| runlist_element *rl, *rl2; |
| unsigned long flags; |
| int err, mp_size; |
| u32 attr_len = 0; /* Silence stupid gcc warning. */ |
| bool mp_rebuilt; |
| |
| #ifdef DEBUG |
| read_lock_irqsave(&ni->size_lock, flags); |
| allocated_size = ni->allocated_size; |
| read_unlock_irqrestore(&ni->size_lock, flags); |
| ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " |
| "old_allocated_size 0x%llx, " |
| "new_allocated_size 0x%llx, new_data_size 0x%llx, " |
| "data_start 0x%llx.", vi->i_ino, |
| (unsigned)le32_to_cpu(ni->type), |
| (unsigned long long)allocated_size, |
| (unsigned long long)new_alloc_size, |
| (unsigned long long)new_data_size, |
| (unsigned long long)start); |
| #endif |
| retry_extend: |
| /* |
| * For non-resident attributes, @start and @new_size need to be aligned |
| * to cluster boundaries for allocation purposes. |
| */ |
| if (NInoNonResident(ni)) { |
| if (start > 0) |
| start &= ~(s64)vol->cluster_size_mask; |
| new_alloc_size = (new_alloc_size + vol->cluster_size - 1) & |
| ~(s64)vol->cluster_size_mask; |
| } |
| BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size); |
| /* Check if new size is allowed in $AttrDef. */ |
| err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size); |
| if (unlikely(err)) { |
| /* Only emit errors when the write will fail completely. */ |
| read_lock_irqsave(&ni->size_lock, flags); |
| allocated_size = ni->allocated_size; |
| read_unlock_irqrestore(&ni->size_lock, flags); |
| if (start < 0 || start >= allocated_size) { |
| if (err == -ERANGE) { |
| ntfs_error(vol->sb, "Cannot extend allocation " |
| "of inode 0x%lx, attribute " |
| "type 0x%x, because the new " |
| "allocation would exceed the " |
| "maximum allowed size for " |
| "this attribute type.", |
| vi->i_ino, (unsigned) |
| le32_to_cpu(ni->type)); |
| } else { |
| ntfs_error(vol->sb, "Cannot extend allocation " |
| "of inode 0x%lx, attribute " |
| "type 0x%x, because this " |
| "attribute type is not " |
| "defined on the NTFS volume. " |
| "Possible corruption! You " |
| "should run chkdsk!", |
| vi->i_ino, (unsigned) |
| le32_to_cpu(ni->type)); |
| } |
| } |
| /* Translate error code to be POSIX conformant for write(2). */ |
| if (err == -ERANGE) |
| err = -EFBIG; |
| else |
| err = -EIO; |
| return err; |
| } |
| if (!NInoAttr(ni)) |
| base_ni = ni; |
| else |
| base_ni = ni->ext.base_ntfs_ino; |
| /* |
| * We will be modifying both the runlist (if non-resident) and the mft |
| * record so lock them both down. |
| */ |
| down_write(&ni->runlist.lock); |
| m = map_mft_record(base_ni); |
| if (IS_ERR(m)) { |
| err = PTR_ERR(m); |
| m = NULL; |
| ctx = NULL; |
| goto err_out; |
| } |
| ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| if (unlikely(!ctx)) { |
| err = -ENOMEM; |
| goto err_out; |
| } |
| read_lock_irqsave(&ni->size_lock, flags); |
| allocated_size = ni->allocated_size; |
| read_unlock_irqrestore(&ni->size_lock, flags); |
| /* |
| * If non-resident, seek to the last extent. If resident, there is |
| * only one extent, so seek to that. |
| */ |
| vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits : |
| 0; |
| /* |
| * Abort if someone did the work whilst we waited for the locks. If we |
| * just converted the attribute from resident to non-resident it is |
| * likely that exactly this has happened already. We cannot quite |
| * abort if we need to update the data size. |
| */ |
| if (unlikely(new_alloc_size <= allocated_size)) { |
| ntfs_debug("Allocated size already exceeds requested size."); |
| new_alloc_size = allocated_size; |
| if (new_data_size < 0) |
| goto done; |
| /* |
| * We want the first attribute extent so that we can update the |
| * data size. |
| */ |
| vcn = 0; |
| } |
| err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| CASE_SENSITIVE, vcn, NULL, 0, ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) |
| err = -EIO; |
| goto err_out; |
| } |
| m = ctx->mrec; |
| a = ctx->attr; |
| /* Use goto to reduce indentation. */ |
| if (a->non_resident) |
| goto do_non_resident_extend; |
| BUG_ON(NInoNonResident(ni)); |
| /* The total length of the attribute value. */ |
| attr_len = le32_to_cpu(a->data.resident.value_length); |
| /* |
| * Extend the attribute record to be able to store the new attribute |
| * size. ntfs_attr_record_resize() will not do anything if the size is |
| * not changing. |
| */ |
| if (new_alloc_size < vol->mft_record_size && |
| !ntfs_attr_record_resize(m, a, |
| le16_to_cpu(a->data.resident.value_offset) + |
| new_alloc_size)) { |
| /* The resize succeeded! */ |
| write_lock_irqsave(&ni->size_lock, flags); |
| ni->allocated_size = le32_to_cpu(a->length) - |
| le16_to_cpu(a->data.resident.value_offset); |
| write_unlock_irqrestore(&ni->size_lock, flags); |
| if (new_data_size >= 0) { |
| BUG_ON(new_data_size < attr_len); |
| a->data.resident.value_length = |
| cpu_to_le32((u32)new_data_size); |
| } |
| goto flush_done; |
| } |
| /* |
| * We have to drop all the locks so we can call |
| * ntfs_attr_make_non_resident(). This could be optimised by try- |
| * locking the first page cache page and only if that fails dropping |
| * the locks, locking the page, and redoing all the locking and |
| * lookups. While this would be a huge optimisation, it is not worth |
| * it as this is definitely a slow code path. |
| */ |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| up_write(&ni->runlist.lock); |
| /* |
| * Not enough space in the mft record, try to make the attribute |
| * non-resident and if successful restart the extension process. |
| */ |
| err = ntfs_attr_make_non_resident(ni, attr_len); |
| if (likely(!err)) |
| goto retry_extend; |
| /* |
| * Could not make non-resident. If this is due to this not being |
| * permitted for this attribute type or there not being enough space, |
| * try to make other attributes non-resident. Otherwise fail. |
| */ |
| if (unlikely(err != -EPERM && err != -ENOSPC)) { |
| /* Only emit errors when the write will fail completely. */ |
| read_lock_irqsave(&ni->size_lock, flags); |
| allocated_size = ni->allocated_size; |
| read_unlock_irqrestore(&ni->size_lock, flags); |
| if (start < 0 || start >= allocated_size) |
| ntfs_error(vol->sb, "Cannot extend allocation of " |
| "inode 0x%lx, attribute type 0x%x, " |
| "because the conversion from resident " |
| "to non-resident attribute failed " |
| "with error code %i.", vi->i_ino, |
| (unsigned)le32_to_cpu(ni->type), err); |
| if (err != -ENOMEM) |
| err = -EIO; |
| goto conv_err_out; |
| } |
| /* TODO: Not implemented from here, abort. */ |
| read_lock_irqsave(&ni->size_lock, flags); |
| allocated_size = ni->allocated_size; |
| read_unlock_irqrestore(&ni->size_lock, flags); |
| if (start < 0 || start >= allocated_size) { |
| if (err == -ENOSPC) |
| ntfs_error(vol->sb, "Not enough space in the mft " |
| "record/on disk for the non-resident " |
| "attribute value. This case is not " |
| "implemented yet."); |
| else /* if (err == -EPERM) */ |
| ntfs_error(vol->sb, "This attribute type may not be " |
| "non-resident. This case is not " |
| "implemented yet."); |
| } |
| err = -EOPNOTSUPP; |
| goto conv_err_out; |
| #if 0 |
| // TODO: Attempt to make other attributes non-resident. |
| if (!err) |
| goto do_resident_extend; |
| /* |
| * Both the attribute list attribute and the standard information |
| * attribute must remain in the base inode. Thus, if this is one of |
| * these attributes, we have to try to move other attributes out into |
| * extent mft records instead. |
| */ |
| if (ni->type == AT_ATTRIBUTE_LIST || |
| ni->type == AT_STANDARD_INFORMATION) { |
| // TODO: Attempt to move other attributes into extent mft |
| // records. |
| err = -EOPNOTSUPP; |
| if (!err) |
| goto do_resident_extend; |
| goto err_out; |
| } |
| // TODO: Attempt to move this attribute to an extent mft record, but |
| // only if it is not already the only attribute in an mft record in |
| // which case there would be nothing to gain. |
| err = -EOPNOTSUPP; |
| if (!err) |
| goto do_resident_extend; |
| /* There is nothing we can do to make enough space. )-: */ |
| goto err_out; |
| #endif |
| do_non_resident_extend: |
| BUG_ON(!NInoNonResident(ni)); |
| if (new_alloc_size == allocated_size) { |
| BUG_ON(vcn); |
| goto alloc_done; |
| } |
| /* |
| * If the data starts after the end of the old allocation, this is a |
| * $DATA attribute and sparse attributes are enabled on the volume and |
| * for this inode, then create a sparse region between the old |
| * allocated size and the start of the data. Otherwise simply proceed |
| * with filling the whole space between the old allocated size and the |
| * new allocated size with clusters. |
| */ |
| if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA || |
| !NVolSparseEnabled(vol) || NInoSparseDisabled(ni)) |
| goto skip_sparse; |
| // TODO: This is not implemented yet. We just fill in with real |
| // clusters for now... |
| ntfs_debug("Inserting holes is not-implemented yet. Falling back to " |
| "allocating real clusters instead."); |
| skip_sparse: |
| rl = ni->runlist.rl; |
| if (likely(rl)) { |
| /* Seek to the end of the runlist. */ |
| while (rl->length) |
| rl++; |
| } |
| /* If this attribute extent is not mapped, map it now. */ |
| if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED || |
| (rl->lcn == LCN_ENOENT && rl > ni->runlist.rl && |
| (rl-1)->lcn == LCN_RL_NOT_MAPPED))) { |
| if (!rl && !allocated_size) |
| goto first_alloc; |
| rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); |
| if (IS_ERR(rl)) { |
| err = PTR_ERR(rl); |
| if (start < 0 || start >= allocated_size) |
| ntfs_error(vol->sb, "Cannot extend allocation " |
| "of inode 0x%lx, attribute " |
| "type 0x%x, because the " |
| "mapping of a runlist " |
| "fragment failed with error " |
| "code %i.", vi->i_ino, |
| (unsigned)le32_to_cpu(ni->type), |
| err); |
| if (err != -ENOMEM) |
| err = -EIO; |
| goto err_out; |
| } |
| ni->runlist.rl = rl; |
| /* Seek to the end of the runlist. */ |
| while (rl->length) |
| rl++; |
| } |
| /* |
| * We now know the runlist of the last extent is mapped and @rl is at |
| * the end of the runlist. We want to begin allocating clusters |
| * starting at the last allocated cluster to reduce fragmentation. If |
| * there are no valid LCNs in the attribute we let the cluster |
| * allocator choose the starting cluster. |
| */ |
| /* If the last LCN is a hole or simillar seek back to last real LCN. */ |
| while (rl->lcn < 0 && rl > ni->runlist.rl) |
| rl--; |
| first_alloc: |
| // FIXME: Need to implement partial allocations so at least part of the |
| // write can be performed when start >= 0. (Needed for POSIX write(2) |
| // conformance.) |
| rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits, |
| (new_alloc_size - allocated_size) >> |
| vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ? |
| rl->lcn + rl->length : -1, DATA_ZONE, true); |
| if (IS_ERR(rl2)) { |
| err = PTR_ERR(rl2); |
| if (start < 0 || start >= allocated_size) |
| ntfs_error(vol->sb, "Cannot extend allocation of " |
| "inode 0x%lx, attribute type 0x%x, " |
| "because the allocation of clusters " |
| "failed with error code %i.", vi->i_ino, |
| (unsigned)le32_to_cpu(ni->type), err); |
| if (err != -ENOMEM && err != -ENOSPC) |
| err = -EIO; |
| goto err_out; |
| } |
| rl = ntfs_runlists_merge(ni->runlist.rl, rl2); |
| if (IS_ERR(rl)) { |
| err = PTR_ERR(rl); |
| if (start < 0 || start >= allocated_size) |
| ntfs_error(vol->sb, "Cannot extend allocation of " |
| "inode 0x%lx, attribute type 0x%x, " |
| "because the runlist merge failed " |
| "with error code %i.", vi->i_ino, |
| (unsigned)le32_to_cpu(ni->type), err); |
| if (err != -ENOMEM) |
| err = -EIO; |
| if (ntfs_cluster_free_from_rl(vol, rl2)) { |
| ntfs_error(vol->sb, "Failed to release allocated " |
| "cluster(s) in error code path. Run " |
| "chkdsk to recover the lost " |
| "cluster(s)."); |
| NVolSetErrors(vol); |
| } |
| ntfs_free(rl2); |
| goto err_out; |
| } |
| ni->runlist.rl = rl; |
| ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size - |
| allocated_size) >> vol->cluster_size_bits); |
| /* Find the runlist element with which the attribute extent starts. */ |
| ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); |
| rl2 = ntfs_rl_find_vcn_nolock(rl, ll); |
| BUG_ON(!rl2); |
| BUG_ON(!rl2->length); |
| BUG_ON(rl2->lcn < LCN_HOLE); |
| mp_rebuilt = false; |
| /* Get the size for the new mapping pairs array for this extent. */ |
| mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); |
| if (unlikely(mp_size <= 0)) { |
| err = mp_size; |
| if (start < 0 || start >= allocated_size) |
| ntfs_error(vol->sb, "Cannot extend allocation of " |
| "inode 0x%lx, attribute type 0x%x, " |
| "because determining the size for the " |
| "mapping pairs failed with error code " |
| "%i.", vi->i_ino, |
| (unsigned)le32_to_cpu(ni->type), err); |
| err = -EIO; |
| goto undo_alloc; |
| } |
| /* Extend the attribute record to fit the bigger mapping pairs array. */ |
| attr_len = le32_to_cpu(a->length); |
| err = ntfs_attr_record_resize(m, a, mp_size + |
| le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); |
| if (unlikely(err)) { |
| BUG_ON(err != -ENOSPC); |
| // TODO: Deal with this by moving this extent to a new mft |
| // record or by starting a new extent in a new mft record, |
| // possibly by extending this extent partially and filling it |
| // and creating a new extent for the remainder, or by making |
| // other attributes non-resident and/or by moving other |
| // attributes out of this mft record. |
| if (start < 0 || start >= allocated_size) |
| ntfs_error(vol->sb, "Not enough space in the mft " |
| "record for the extended attribute " |
| "record. This case is not " |
| "implemented yet."); |
| err = -EOPNOTSUPP; |
| goto undo_alloc; |
| } |
| mp_rebuilt = true; |
| /* Generate the mapping pairs array directly into the attr record. */ |
| err = ntfs_mapping_pairs_build(vol, (u8*)a + |
| le16_to_cpu(a->data.non_resident.mapping_pairs_offset), |
| mp_size, rl2, ll, -1, NULL); |
| if (unlikely(err)) { |
| if (start < 0 || start >= allocated_size) |
| ntfs_error(vol->sb, "Cannot extend allocation of " |
| "inode 0x%lx, attribute type 0x%x, " |
| "because building the mapping pairs " |
| "failed with error code %i.", vi->i_ino, |
| (unsigned)le32_to_cpu(ni->type), err); |
| err = -EIO; |
| goto undo_alloc; |
| } |
| /* Update the highest_vcn. */ |
| a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> |
| vol->cluster_size_bits) - 1); |
| /* |
| * We now have extended the allocated size of the attribute. Reflect |
| * this in the ntfs_inode structure and the attribute record. |
| */ |
| if (a->data.non_resident.lowest_vcn) { |
| /* |
| * We are not in the first attribute extent, switch to it, but |
| * first ensure the changes will make it to disk later. |
| */ |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| ntfs_attr_reinit_search_ctx(ctx); |
| err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) |
| goto restore_undo_alloc; |
| /* @m is not used any more so no need to set it. */ |
| a = ctx->attr; |
| } |
| write_lock_irqsave(&ni->size_lock, flags); |
| ni->allocated_size = new_alloc_size; |
| a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); |
| /* |
| * FIXME: This would fail if @ni is a directory, $MFT, or an index, |
| * since those can have sparse/compressed set. For example can be |
| * set compressed even though it is not compressed itself and in that |
| * case the bit means that files are to be created compressed in the |
| * directory... At present this is ok as this code is only called for |
| * regular files, and only for their $DATA attribute(s). |
| * FIXME: The calculation is wrong if we created a hole above. For now |
| * it does not matter as we never create holes. |
| */ |
| if (NInoSparse(ni) || NInoCompressed(ni)) { |
| ni->itype.compressed.size += new_alloc_size - allocated_size; |
| a->data.non_resident.compressed_size = |
| cpu_to_sle64(ni->itype.compressed.size); |
| vi->i_blocks = ni->itype.compressed.size >> 9; |
| } else |
| vi->i_blocks = new_alloc_size >> 9; |
| write_unlock_irqrestore(&ni->size_lock, flags); |
| alloc_done: |
| if (new_data_size >= 0) { |
| BUG_ON(new_data_size < |
| sle64_to_cpu(a->data.non_resident.data_size)); |
| a->data.non_resident.data_size = cpu_to_sle64(new_data_size); |
| } |
| flush_done: |
| /* Ensure the changes make it to disk. */ |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| done: |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| up_write(&ni->runlist.lock); |
| ntfs_debug("Done, new_allocated_size 0x%llx.", |
| (unsigned long long)new_alloc_size); |
| return new_alloc_size; |
| restore_undo_alloc: |
| if (start < 0 || start >= allocated_size) |
| ntfs_error(vol->sb, "Cannot complete extension of allocation " |
| "of inode 0x%lx, attribute type 0x%x, because " |
| "lookup of first attribute extent failed with " |
| "error code %i.", vi->i_ino, |
| (unsigned)le32_to_cpu(ni->type), err); |
| if (err == -ENOENT) |
| err = -EIO; |
| ntfs_attr_reinit_search_ctx(ctx); |
| if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE, |
| allocated_size >> vol->cluster_size_bits, NULL, 0, |
| ctx)) { |
| ntfs_error(vol->sb, "Failed to find last attribute extent of " |
| "attribute in error code path. Run chkdsk to " |
| "recover."); |
| write_lock_irqsave(&ni->size_lock, flags); |
| ni->allocated_size = new_alloc_size; |
| /* |
| * FIXME: This would fail if @ni is a directory... See above. |
| * FIXME: The calculation is wrong if we created a hole above. |
| * For now it does not matter as we never create holes. |
| */ |
| if (NInoSparse(ni) || NInoCompressed(ni)) { |
| ni->itype.compressed.size += new_alloc_size - |
| allocated_size; |
| vi->i_blocks = ni->itype.compressed.size >> 9; |
| } else |
| vi->i_blocks = new_alloc_size >> 9; |
| write_unlock_irqrestore(&ni->size_lock, flags); |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| up_write(&ni->runlist.lock); |
| /* |
| * The only thing that is now wrong is the allocated size of the |
| * base attribute extent which chkdsk should be able to fix. |
| */ |
| NVolSetErrors(vol); |
| return err; |
| } |
| ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64( |
| (allocated_size >> vol->cluster_size_bits) - 1); |
| undo_alloc: |
| ll = allocated_size >> vol->cluster_size_bits; |
| if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) { |
| ntfs_error(vol->sb, "Failed to release allocated cluster(s) " |
| "in error code path. Run chkdsk to recover " |
| "the lost cluster(s)."); |
| NVolSetErrors(vol); |
| } |
| m = ctx->mrec; |
| a = ctx->attr; |
| /* |
| * If the runlist truncation fails and/or the search context is no |
| * longer valid, we cannot resize the attribute record or build the |
| * mapping pairs array thus we mark the inode bad so that no access to |
| * the freed clusters can happen. |
| */ |
| if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) { |
| ntfs_error(vol->sb, "Failed to %s in error code path. Run " |
| "chkdsk to recover.", IS_ERR(m) ? |
| "restore attribute search context" : |
| "truncate attribute runlist"); |
| NVolSetErrors(vol); |
| } else if (mp_rebuilt) { |
| if (ntfs_attr_record_resize(m, a, attr_len)) { |
| ntfs_error(vol->sb, "Failed to restore attribute " |
| "record in error code path. Run " |
| "chkdsk to recover."); |
| NVolSetErrors(vol); |
| } else /* if (success) */ { |
| if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( |
| a->data.non_resident. |
| mapping_pairs_offset), attr_len - |
| le16_to_cpu(a->data.non_resident. |
| mapping_pairs_offset), rl2, ll, -1, |
| NULL)) { |
| ntfs_error(vol->sb, "Failed to restore " |
| "mapping pairs array in error " |
| "code path. Run chkdsk to " |
| "recover."); |
| NVolSetErrors(vol); |
| } |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| } |
| } |
| err_out: |
| if (ctx) |
| ntfs_attr_put_search_ctx(ctx); |
| if (m) |
| unmap_mft_record(base_ni); |
| up_write(&ni->runlist.lock); |
| conv_err_out: |
| ntfs_debug("Failed. Returning error code %i.", err); |
| return err; |
| } |
| |
| /** |
| * ntfs_attr_set - fill (a part of) an attribute with a byte |
| * @ni: ntfs inode describing the attribute to fill |
| * @ofs: offset inside the attribute at which to start to fill |
| * @cnt: number of bytes to fill |
| * @val: the unsigned 8-bit value with which to fill the attribute |
| * |
| * Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at |
| * byte offset @ofs inside the attribute with the constant byte @val. |
| * |
| * This function is effectively like memset() applied to an ntfs attribute. |
| * Note thie function actually only operates on the page cache pages belonging |
| * to the ntfs attribute and it marks them dirty after doing the memset(). |
| * Thus it relies on the vm dirty page write code paths to cause the modified |
| * pages to be written to the mft record/disk. |
| * |
| * Return 0 on success and -errno on error. An error code of -ESPIPE means |
| * that @ofs + @cnt were outside the end of the attribute and no write was |
| * performed. |
| */ |
| int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val) |
| { |
| ntfs_volume *vol = ni->vol; |
| struct address_space *mapping; |
| struct page *page; |
| u8 *kaddr; |
| pgoff_t idx, end; |
| unsigned start_ofs, end_ofs, size; |
| |
| ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.", |
| (long long)ofs, (long long)cnt, val); |
| BUG_ON(ofs < 0); |
| BUG_ON(cnt < 0); |
| if (!cnt) |
| goto done; |
| /* |
| * FIXME: Compressed and encrypted attributes are not supported when |
| * writing and we should never have gotten here for them. |
| */ |
| BUG_ON(NInoCompressed(ni)); |
| BUG_ON(NInoEncrypted(ni)); |
| mapping = VFS_I(ni)->i_mapping; |
| /* Work out the starting index and page offset. */ |
| idx = ofs >> PAGE_CACHE_SHIFT; |
| start_ofs = ofs & ~PAGE_CACHE_MASK; |
| /* Work out the ending index and page offset. */ |
| end = ofs + cnt; |
| end_ofs = end & ~PAGE_CACHE_MASK; |
| /* If the end is outside the inode size return -ESPIPE. */ |
| if (unlikely(end > i_size_read(VFS_I(ni)))) { |
| ntfs_error(vol->sb, "Request exceeds end of attribute."); |
| return -ESPIPE; |
| } |
| end >>= PAGE_CACHE_SHIFT; |
| /* If there is a first partial page, need to do it the slow way. */ |
| if (start_ofs) { |
| page = read_mapping_page(mapping, idx, NULL); |
| if (IS_ERR(page)) { |
| ntfs_error(vol->sb, "Failed to read first partial " |
| "page (error, index 0x%lx).", idx); |
| return PTR_ERR(page); |
| } |
| /* |
| * If the last page is the same as the first page, need to |
| * limit the write to the end offset. |
| */ |
| size = PAGE_CACHE_SIZE; |
| if (idx == end) |
| size = end_ofs; |
| kaddr = kmap_atomic(page, KM_USER0); |
| memset(kaddr + start_ofs, val, size - start_ofs); |
| flush_dcache_page(page); |
| kunmap_atomic(kaddr, KM_USER0); |
| set_page_dirty(page); |
| page_cache_release(page); |
| balance_dirty_pages_ratelimited(mapping); |
| cond_resched(); |
| if (idx == end) |
| goto done; |
| idx++; |
| } |
| /* Do the whole pages the fast way. */ |
| for (; idx < end; idx++) { |
| /* Find or create the current page. (The page is locked.) */ |
| page = grab_cache_page(mapping, idx); |
| if (unlikely(!page)) { |
| ntfs_error(vol->sb, "Insufficient memory to grab " |
| "page (index 0x%lx).", idx); |
| return -ENOMEM; |
| } |
| kaddr = kmap_atomic(page, KM_USER0); |
| memset(kaddr, val, PAGE_CACHE_SIZE); |
| flush_dcache_page(page); |
| kunmap_atomic(kaddr, KM_USER0); |
| /* |
| * If the page has buffers, mark them uptodate since buffer |
| * state and not page state is definitive in 2.6 kernels. |
| */ |
| if (page_has_buffers(page)) { |
| struct buffer_head *bh, *head; |
| |
| bh = head = page_buffers(page); |
| do { |
| set_buffer_uptodate(bh); |
| } while ((bh = bh->b_this_page) != head); |
| } |
| /* Now that buffers are uptodate, set the page uptodate, too. */ |
| SetPageUptodate(page); |
| /* |
| * Set the page and all its buffers dirty and mark the inode |
| * dirty, too. The VM will write the page later on. |
| */ |
| set_page_dirty(page); |
| /* Finally unlock and release the page. */ |
| unlock_page(page); |
| page_cache_release(page); |
| balance_dirty_pages_ratelimited(mapping); |
| cond_resched(); |
| } |
| /* If there is a last partial page, need to do it the slow way. */ |
| if (end_ofs) { |
| page = read_mapping_page(mapping, idx, NULL); |
| if (IS_ERR(page)) { |
| ntfs_error(vol->sb, "Failed to read last partial page " |
| "(error, index 0x%lx).", idx); |
| return PTR_ERR(page); |
| } |
| kaddr = kmap_atomic(page, KM_USER0); |
| memset(kaddr, val, end_ofs); |
| flush_dcache_page(page); |
| kunmap_atomic(kaddr, KM_USER0); |
| set_page_dirty(page); |
| page_cache_release(page); |
| balance_dirty_pages_ratelimited(mapping); |
| cond_resched(); |
| } |
| done: |
| ntfs_debug("Done."); |
| return 0; |
| } |
| |
| #endif /* NTFS_RW */ |