blob: fb1882cb3a8f6ba0d5a8a16dd5ed8fbc7d9bc298 [file] [log] [blame]
/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/leds.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/of_platform.h>
#include <linux/of_device.h>
#include <linux/spmi.h>
#include <linux/qpnp/pwm.h>
#include <linux/workqueue.h>
#define WLED_MOD_EN_REG(base, n) (base + 0x60 + n*0x10)
#define WLED_IDAC_DLY_REG(base, n) (WLED_MOD_EN_REG(base, n) + 0x01)
#define WLED_FULL_SCALE_REG(base, n) (WLED_IDAC_DLY_REG(base, n) + 0x01)
#define WLED_MOD_SRC_SEL_REG(base, n) (WLED_FULL_SCALE_REG(base, n) + 0x01)
/* wled control registers */
#define WLED_BRIGHTNESS_CNTL_LSB(base, n) (base + 0x40 + 2*n)
#define WLED_BRIGHTNESS_CNTL_MSB(base, n) (base + 0x41 + 2*n)
#define WLED_MOD_CTRL_REG(base) (base + 0x46)
#define WLED_SYNC_REG(base) (base + 0x47)
#define WLED_FDBCK_CTRL_REG(base) (base + 0x48)
#define WLED_SWITCHING_FREQ_REG(base) (base + 0x4C)
#define WLED_OVP_CFG_REG(base) (base + 0x4D)
#define WLED_BOOST_LIMIT_REG(base) (base + 0x4E)
#define WLED_CURR_SINK_REG(base) (base + 0x4F)
#define WLED_HIGH_POLE_CAP_REG(base) (base + 0x58)
#define WLED_CURR_SINK_MASK 0xE0
#define WLED_CURR_SINK_SHFT 0x05
#define WLED_SWITCH_FREQ_MASK 0x02
#define WLED_OVP_VAL_MASK 0x03
#define WLED_OVP_VAL_BIT_SHFT 0x00
#define WLED_BOOST_LIMIT_MASK 0x07
#define WLED_BOOST_LIMIT_BIT_SHFT 0x00
#define WLED_BOOST_ON 0x80
#define WLED_BOOST_OFF 0x00
#define WLED_EN_MASK 0x80
#define WLED_NO_MASK 0x00
#define WLED_CP_SELECT_MAX 0x03
#define WLED_CP_SELECT_MASK 0x02
#define WLED_USE_EXT_GEN_MOD_SRC 0x01
#define WLED_CTL_DLY_STEP 200
#define WLED_CTL_DLY_MAX 1400
#define WLED_MAX_CURR 25
#define WLED_MSB_MASK 0x0F
#define WLED_MAX_CURR_MASK 0x19
#define WLED_OP_FDBCK_MASK 0x07
#define WLED_OP_FDBCK_BIT_SHFT 0x00
#define WLED_MAX_LEVEL 255
#define WLED_8_BIT_MASK 0xFF
#define WLED_4_BIT_MASK 0x0F
#define WLED_8_BIT_SHFT 0x08
#define WLED_MAX_DUTY_CYCLE 0xFFF
#define WLED_SYNC_VAL 0x07
#define WLED_SYNC_RESET_VAL 0x00
#define WLED_DEFAULT_STRINGS 0x01
#define WLED_DEFAULT_OVP_VAL 0x02
#define WLED_BOOST_LIM_DEFAULT 0x03
#define WLED_CP_SEL_DEFAULT 0x00
#define WLED_CTRL_DLY_DEFAULT 0x00
#define WLED_SWITCH_FREQ_DEFAULT 0x02
#define FLASH_SAFETY_TIMER(base) (base + 0x40)
#define FLASH_MAX_CURR(base) (base + 0x41)
#define FLASH_LED_0_CURR(base) (base + 0x42)
#define FLASH_LED_1_CURR(base) (base + 0x43)
#define FLASH_CLAMP_CURR(base) (base + 0x44)
#define FLASH_LED_TMR_CTRL(base) (base + 0x48)
#define FLASH_HEADROOM(base) (base + 0x4A)
#define FLASH_STARTUP_DELAY(base) (base + 0x4B)
#define FLASH_MASK_ENABLE(base) (base + 0x4C)
#define FLASH_VREG_OK_FORCE(base) (base + 0x4F)
#define FLASH_ENABLE_CONTROL(base) (base + 0x46)
#define FLASH_LED_STROBE_CTRL(base) (base + 0x47)
#define FLASH_MAX_LEVEL 0x4F
#define FLASH_NO_MASK 0x00
#define FLASH_MASK_1 0x20
#define FLASH_MASK_REG_MASK 0xE0
#define FLASH_HEADROOM_MASK 0x03
#define FLASH_SAFETY_TIMER_MASK 0x7F
#define FLASH_CURRENT_MASK 0xFF
#define FLASH_TMR_MASK 0x03
#define FLASH_TMR_WATCHDOG 0x03
#define FLASH_TMR_SAFETY 0x00
#define FLASH_HW_VREG_OK 0x80
#define FLASH_VREG_MASK 0xC0
#define FLASH_STARTUP_DLY_MASK 0x02
#define FLASH_ENABLE_ALL 0xE0
#define FLASH_ENABLE_MODULE 0x80
#define FLASH_ENABLE_MODULE_MASK 0x80
#define FLASH_DISABLE_ALL 0x00
#define FLASH_ENABLE_MASK 0xE0
#define FLASH_ENABLE_LED_0 0x40
#define FLASH_ENABLE_LED_1 0x20
#define FLASH_INIT_MASK 0xE0
#define FLASH_STROBE_ALL 0xC0
#define FLASH_STROBE_MASK 0xC0
#define FLASH_LED_0_OUTPUT 0x80
#define FLASH_LED_1_OUTPUT 0x40
#define FLASH_CURRENT_PRGM_MIN 1
#define FLASH_CURRENT_PRGM_SHIFT 1
#define FLASH_DURATION_200ms 0x13
#define FLASH_CLAMP_200mA 0x0F
#define LED_TRIGGER_DEFAULT "none"
#define RGB_LED_SRC_SEL(base) (base + 0x45)
#define RGB_LED_EN_CTL(base) (base + 0x46)
#define RGB_LED_ATC_CTL(base) (base + 0x47)
#define RGB_MAX_LEVEL LED_FULL
#define RGB_LED_ENABLE_RED 0x80
#define RGB_LED_ENABLE_GREEN 0x40
#define RGB_LED_ENABLE_BLUE 0x20
#define RGB_LED_SOURCE_VPH_PWR 0x01
#define RGB_LED_ENABLE_MASK 0xE0
#define RGB_LED_SRC_MASK 0x03
#define QPNP_LED_PWM_FLAGS (PM_PWM_LUT_LOOP | PM_PWM_LUT_RAMP_UP)
#define PWM_LUT_MAX_SIZE 63
#define RGB_LED_DISABLE 0x00
/**
* enum qpnp_leds - QPNP supported led ids
* @QPNP_ID_WLED - White led backlight
*/
enum qpnp_leds {
QPNP_ID_WLED = 0,
QPNP_ID_FLASH1_LED0,
QPNP_ID_FLASH1_LED1,
QPNP_ID_RGB_RED,
QPNP_ID_RGB_GREEN,
QPNP_ID_RGB_BLUE,
QPNP_ID_MAX,
};
/* current boost limit */
enum wled_current_boost_limit {
WLED_CURR_LIMIT_105mA,
WLED_CURR_LIMIT_385mA,
WLED_CURR_LIMIT_525mA,
WLED_CURR_LIMIT_805mA,
WLED_CURR_LIMIT_980mA,
WLED_CURR_LIMIT_1260mA,
WLED_CURR_LIMIT_1400mA,
WLED_CURR_LIMIT_1680mA,
};
/* over voltage protection threshold */
enum wled_ovp_threshold {
WLED_OVP_35V,
WLED_OVP_32V,
WLED_OVP_29V,
WLED_OVP_37V,
};
/* switch frquency */
enum wled_switch_freq {
WLED_800kHz = 0,
WLED_960kHz,
WLED_1600kHz,
WLED_3200kHz,
};
enum flash_headroom {
HEADROOM_250mV = 0,
HEADROOM_300mV,
HEADROOM_400mV,
HEADROOM_500mV,
};
enum flash_startup_dly {
DELAY_10us = 0,
DELAY_32us,
DELAY_64us,
DELAY_128us,
};
enum rgb_mode {
RGB_MODE_PWM = 0,
RGB_MODE_LPG,
};
static u8 wled_debug_regs[] = {
/* common registers */
0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4d, 0x4e, 0x4f,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
/* LED1 */
0x60, 0x61, 0x62, 0x63, 0x66,
/* LED2 */
0x70, 0x71, 0x72, 0x73, 0x76,
/* LED3 */
0x80, 0x81, 0x82, 0x83, 0x86,
};
static u8 flash_debug_regs[] = {
0x40, 0x41, 0x42, 0x43, 0x44, 0x48, 0x49, 0x4b, 0x4c,
0x4f, 0x46, 0x47,
};
static u8 rgb_pwm_debug_regs[] = {
0x45, 0x46, 0x47,
};
/**
* wled_config_data - wled configuration data
* @num_strings - number of wled strings supported
* @ovp_val - over voltage protection threshold
* @boost_curr_lim - boot current limit
* @cp_select - high pole capacitance
* @ctrl_delay_us - delay in activation of led
* @dig_mod_gen_en - digital module generator
* @cs_out_en - current sink output enable
* @op_fdbck - selection of output as feedback for the boost
*/
struct wled_config_data {
u8 num_strings;
u8 ovp_val;
u8 boost_curr_lim;
u8 cp_select;
u8 ctrl_delay_us;
u8 switch_freq;
bool dig_mod_gen_en;
bool cs_out_en;
bool op_fdbck;
};
/**
* flash_config_data - flash configuration data
* @current_prgm - current to be programmed, scaled by max level
* @clamp_curr - clamp current to use
* @headroom - headroom value to use
* @duration - duration of the flash
* @enable_module - enable address for particular flash
* @trigger_flash - trigger flash
* @startup_dly - startup delay for flash
* @current_addr - address to write for current
* @second_addr - address of secondary flash to be written
* @safety_timer - enable safety timer or watchdog timer
*/
struct flash_config_data {
u8 current_prgm;
u8 clamp_curr;
u8 headroom;
u8 duration;
u8 enable_module;
u8 trigger_flash;
u8 startup_dly;
u16 current_addr;
u16 second_addr;
bool safety_timer;
};
/**
* rgb_config_data - rgb configuration data
* @lut_params - lut parameters to be used by pwm driver
* @pwm_device - pwm device
* @pwm_channel - pwm channel to be configured for led
* @pwm_period_us - period for pwm, in us
* @mode - mode the led operates in
*/
struct rgb_config_data {
struct lut_params lut_params;
struct pwm_device *pwm_dev;
int pwm_channel;
u32 pwm_period_us;
struct pwm_duty_cycles *duty_cycles;
u8 mode;
u8 enable;
};
/**
* struct qpnp_led_data - internal led data structure
* @led_classdev - led class device
* @delayed_work - delayed work for turning off the LED
* @id - led index
* @base_reg - base register given in device tree
* @lock - to protect the transactions
* @reg - cached value of led register
* @num_leds - number of leds in the module
* @max_current - maximum current supported by LED
* @default_on - true: default state max, false, default state 0
* @turn_off_delay_ms - number of msec before turning off the LED
*/
struct qpnp_led_data {
struct led_classdev cdev;
struct spmi_device *spmi_dev;
struct delayed_work dwork;
int id;
u16 base;
u8 reg;
u8 num_leds;
spinlock_t lock;
struct wled_config_data *wled_cfg;
struct flash_config_data *flash_cfg;
struct rgb_config_data *rgb_cfg;
int max_current;
bool default_on;
int turn_off_delay_ms;
};
static int
qpnp_led_masked_write(struct qpnp_led_data *led, u16 addr, u8 mask, u8 val)
{
int rc;
u8 reg;
rc = spmi_ext_register_readl(led->spmi_dev->ctrl, led->spmi_dev->sid,
addr, &reg, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Unable to read from addr=%x, rc(%d)\n", addr, rc);
}
reg &= ~mask;
reg |= val;
rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid,
addr, &reg, 1);
if (rc)
dev_err(&led->spmi_dev->dev,
"Unable to write to addr=%x, rc(%d)\n", addr, rc);
return rc;
}
static void qpnp_dump_regs(struct qpnp_led_data *led, u8 regs[], u8 array_size)
{
int i;
u8 val;
pr_debug("===== %s LED register dump start =====\n", led->cdev.name);
for (i = 0; i < array_size; i++) {
spmi_ext_register_readl(led->spmi_dev->ctrl,
led->spmi_dev->sid,
led->base + regs[i],
&val, sizeof(val));
pr_debug("0x%x = 0x%x\n", led->base + regs[i], val);
}
pr_debug("===== %s LED register dump end =====\n", led->cdev.name);
}
static int qpnp_wled_set(struct qpnp_led_data *led)
{
int rc, duty;
u8 level, val, i, num_wled_strings;
level = led->cdev.brightness;
if (level > WLED_MAX_LEVEL)
level = WLED_MAX_LEVEL;
if (level == 0) {
val = WLED_BOOST_OFF;
rc = spmi_ext_register_writel(led->spmi_dev->ctrl,
led->spmi_dev->sid, WLED_MOD_CTRL_REG(led->base),
&val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED write ctrl reg failed(%d)\n", rc);
return rc;
}
} else {
val = WLED_BOOST_ON;
rc = spmi_ext_register_writel(led->spmi_dev->ctrl,
led->spmi_dev->sid, WLED_MOD_CTRL_REG(led->base),
&val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED write ctrl reg failed(%d)\n", rc);
return rc;
}
}
duty = (WLED_MAX_DUTY_CYCLE * level) / WLED_MAX_LEVEL;
num_wled_strings = led->wled_cfg->num_strings;
/* program brightness control registers */
for (i = 0; i < num_wled_strings; i++) {
rc = qpnp_led_masked_write(led,
WLED_BRIGHTNESS_CNTL_MSB(led->base, i), WLED_MSB_MASK,
(duty >> WLED_8_BIT_SHFT) & WLED_4_BIT_MASK);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED set brightness MSB failed(%d)\n", rc);
return rc;
}
val = duty & WLED_8_BIT_MASK;
rc = spmi_ext_register_writel(led->spmi_dev->ctrl,
led->spmi_dev->sid,
WLED_BRIGHTNESS_CNTL_LSB(led->base, i), &val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED set brightness LSB failed(%d)\n", rc);
return rc;
}
}
/* sync */
val = WLED_SYNC_VAL;
rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid,
WLED_SYNC_REG(led->base), &val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED set sync reg failed(%d)\n", rc);
return rc;
}
val = WLED_SYNC_RESET_VAL;
rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid,
WLED_SYNC_REG(led->base), &val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED reset sync reg failed(%d)\n", rc);
return rc;
}
return 0;
}
static int qpnp_flash_set(struct qpnp_led_data *led)
{
int rc;
int val = led->cdev.brightness;
led->flash_cfg->current_prgm = (val * FLASH_MAX_LEVEL /
led->max_current);
led->flash_cfg->current_prgm =
led->flash_cfg->current_prgm >> FLASH_CURRENT_PRGM_SHIFT;
if (!led->flash_cfg->current_prgm)
led->flash_cfg->current_prgm = FLASH_CURRENT_PRGM_MIN;
/* Set led current */
if (val > 0) {
rc = qpnp_led_masked_write(led, FLASH_ENABLE_CONTROL(led->base),
FLASH_ENABLE_MODULE_MASK, FLASH_ENABLE_MODULE);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Enable reg write failed(%d)\n", rc);
return rc;
}
rc = qpnp_led_masked_write(led, led->flash_cfg->current_addr,
FLASH_CURRENT_MASK, led->flash_cfg->current_prgm);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Current reg write failed(%d)\n", rc);
return rc;
}
rc = qpnp_led_masked_write(led, led->flash_cfg->second_addr,
FLASH_CURRENT_MASK, led->flash_cfg->current_prgm);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Current reg write failed(%d)\n", rc);
return rc;
}
rc = qpnp_led_masked_write(led, FLASH_ENABLE_CONTROL(led->base),
FLASH_ENABLE_MASK,
FLASH_ENABLE_ALL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Enable reg write failed(%d)\n", rc);
return rc;
}
rc = qpnp_led_masked_write(led,
FLASH_LED_STROBE_CTRL(led->base),
FLASH_STROBE_MASK, FLASH_STROBE_ALL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"LED %d flash write failed(%d)\n", led->id, rc);
return rc;
}
rc = qpnp_led_masked_write(led, FLASH_VREG_OK_FORCE(led->base),
FLASH_VREG_MASK, FLASH_HW_VREG_OK);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Vreg OK reg write failed(%d)\n", rc);
return rc;
}
} else {
rc = qpnp_led_masked_write(led, FLASH_ENABLE_CONTROL(led->base),
FLASH_ENABLE_MASK,
FLASH_DISABLE_ALL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Enable reg write failed(%d)\n", rc);
return rc;
}
rc = qpnp_led_masked_write(led,
FLASH_LED_STROBE_CTRL(led->base),
FLASH_STROBE_MASK,
FLASH_DISABLE_ALL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"LED %d flash write failed(%d)\n", led->id, rc);
return rc;
}
}
qpnp_dump_regs(led, flash_debug_regs, ARRAY_SIZE(flash_debug_regs));
return 0;
}
static int qpnp_rgb_set(struct qpnp_led_data *led)
{
int duty_us;
int rc;
if (led->cdev.brightness) {
if (led->rgb_cfg->mode == RGB_MODE_PWM) {
duty_us = (led->rgb_cfg->pwm_period_us *
led->cdev.brightness) / LED_FULL;
rc = pwm_config(led->rgb_cfg->pwm_dev, duty_us,
led->rgb_cfg->pwm_period_us);
if (rc < 0) {
dev_err(&led->spmi_dev->dev, "Failed to " \
"configure pwm for new values\n");
return rc;
}
}
rc = qpnp_led_masked_write(led,
RGB_LED_EN_CTL(led->base),
led->rgb_cfg->enable, led->rgb_cfg->enable);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led enable reg\n");
return rc;
}
rc = pwm_enable(led->rgb_cfg->pwm_dev);
} else {
pwm_disable(led->rgb_cfg->pwm_dev);
rc = qpnp_led_masked_write(led,
RGB_LED_EN_CTL(led->base),
led->rgb_cfg->enable, RGB_LED_DISABLE);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led enable reg\n");
return rc;
}
}
qpnp_dump_regs(led, rgb_pwm_debug_regs, ARRAY_SIZE(rgb_pwm_debug_regs));
return 0;
}
static void qpnp_led_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
int rc;
struct qpnp_led_data *led;
led = container_of(led_cdev, struct qpnp_led_data, cdev);
if (value < LED_OFF || value > led->cdev.max_brightness) {
dev_err(&led->spmi_dev->dev, "Invalid brightness value\n");
return;
}
spin_lock(&led->lock);
led->cdev.brightness = value;
switch (led->id) {
case QPNP_ID_WLED:
rc = qpnp_wled_set(led);
if (rc < 0)
dev_err(&led->spmi_dev->dev,
"WLED set brightness failed (%d)\n", rc);
break;
case QPNP_ID_FLASH1_LED0:
case QPNP_ID_FLASH1_LED1:
rc = qpnp_flash_set(led);
if (rc < 0)
dev_err(&led->spmi_dev->dev,
"FLASH set brightness failed (%d)\n", rc);
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
rc = qpnp_rgb_set(led);
if (rc < 0)
dev_err(&led->spmi_dev->dev,
"RGB set brightness failed (%d)\n", rc);
break;
default:
dev_err(&led->spmi_dev->dev, "Invalid LED(%d)\n", led->id);
break;
}
spin_unlock(&led->lock);
}
static int __devinit qpnp_led_set_max_brightness(struct qpnp_led_data *led)
{
switch (led->id) {
case QPNP_ID_WLED:
led->cdev.max_brightness = WLED_MAX_LEVEL;
break;
case QPNP_ID_FLASH1_LED0:
case QPNP_ID_FLASH1_LED1:
led->cdev.max_brightness = led->max_current;
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
led->cdev.max_brightness = RGB_MAX_LEVEL;
break;
default:
dev_err(&led->spmi_dev->dev, "Invalid LED(%d)\n", led->id);
return -EINVAL;
}
return 0;
}
static enum led_brightness qpnp_led_get(struct led_classdev *led_cdev)
{
struct qpnp_led_data *led;
led = container_of(led_cdev, struct qpnp_led_data, cdev);
return led->cdev.brightness;
}
static void qpnp_led_turn_off_delayed(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct qpnp_led_data *led
= container_of(dwork, struct qpnp_led_data, dwork);
led->cdev.brightness = LED_OFF;
qpnp_led_set(&led->cdev, led->cdev.brightness);
}
static void qpnp_led_turn_off(struct qpnp_led_data *led)
{
INIT_DELAYED_WORK(&led->dwork, qpnp_led_turn_off_delayed);
schedule_delayed_work(&led->dwork,
msecs_to_jiffies(led->turn_off_delay_ms));
}
static int __devinit qpnp_wled_init(struct qpnp_led_data *led)
{
int rc, i;
u8 num_wled_strings;
num_wled_strings = led->wled_cfg->num_strings;
/* verify ranges */
if (led->wled_cfg->ovp_val > WLED_OVP_37V) {
dev_err(&led->spmi_dev->dev, "Invalid ovp value\n");
return -EINVAL;
}
if (led->wled_cfg->boost_curr_lim > WLED_CURR_LIMIT_1680mA) {
dev_err(&led->spmi_dev->dev, "Invalid boost current limit\n");
return -EINVAL;
}
if (led->wled_cfg->cp_select > WLED_CP_SELECT_MAX) {
dev_err(&led->spmi_dev->dev, "Invalid pole capacitance\n");
return -EINVAL;
}
if ((led->max_current > WLED_MAX_CURR)) {
dev_err(&led->spmi_dev->dev, "Invalid max current\n");
return -EINVAL;
}
if ((led->wled_cfg->ctrl_delay_us % WLED_CTL_DLY_STEP) ||
(led->wled_cfg->ctrl_delay_us > WLED_CTL_DLY_MAX)) {
dev_err(&led->spmi_dev->dev, "Invalid control delay\n");
return -EINVAL;
}
/* program over voltage protection threshold */
rc = qpnp_led_masked_write(led, WLED_OVP_CFG_REG(led->base),
WLED_OVP_VAL_MASK,
(led->wled_cfg->ovp_val << WLED_OVP_VAL_BIT_SHFT));
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED OVP reg write failed(%d)\n", rc);
return rc;
}
/* program current boost limit */
rc = qpnp_led_masked_write(led, WLED_BOOST_LIMIT_REG(led->base),
WLED_BOOST_LIMIT_MASK, led->wled_cfg->boost_curr_lim);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED boost limit reg write failed(%d)\n", rc);
return rc;
}
/* program output feedback */
rc = qpnp_led_masked_write(led, WLED_FDBCK_CTRL_REG(led->base),
WLED_OP_FDBCK_MASK,
(led->wled_cfg->op_fdbck << WLED_OP_FDBCK_BIT_SHFT));
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED fdbck ctrl reg write failed(%d)\n", rc);
return rc;
}
/* program switch frequency */
rc = qpnp_led_masked_write(led, WLED_SWITCHING_FREQ_REG(led->base),
WLED_SWITCH_FREQ_MASK, led->wled_cfg->switch_freq);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED switch freq reg write failed(%d)\n", rc);
return rc;
}
/* program current sink */
if (led->wled_cfg->cs_out_en) {
rc = qpnp_led_masked_write(led, WLED_CURR_SINK_REG(led->base),
WLED_CURR_SINK_MASK,
(((1 << led->wled_cfg->num_strings) - 1)
<< WLED_CURR_SINK_SHFT));
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED curr sink reg write failed(%d)\n", rc);
return rc;
}
}
/* program high pole capacitance */
rc = qpnp_led_masked_write(led, WLED_HIGH_POLE_CAP_REG(led->base),
WLED_CP_SELECT_MASK, led->wled_cfg->cp_select);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED pole cap reg write failed(%d)\n", rc);
return rc;
}
/* program modulator, current mod src and cabc */
for (i = 0; i < num_wled_strings; i++) {
rc = qpnp_led_masked_write(led, WLED_MOD_EN_REG(led->base, i),
WLED_NO_MASK, WLED_EN_MASK);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED mod enable reg write failed(%d)\n", rc);
return rc;
}
if (led->wled_cfg->dig_mod_gen_en) {
rc = qpnp_led_masked_write(led,
WLED_MOD_SRC_SEL_REG(led->base, i),
WLED_NO_MASK, WLED_USE_EXT_GEN_MOD_SRC);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED dig mod en reg write failed(%d)\n", rc);
}
}
rc = qpnp_led_masked_write(led,
WLED_FULL_SCALE_REG(led->base, i), WLED_MAX_CURR_MASK,
led->max_current);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED max current reg write failed(%d)\n", rc);
return rc;
}
}
/* dump wled registers */
qpnp_dump_regs(led, wled_debug_regs, ARRAY_SIZE(wled_debug_regs));
return 0;
}
static int __devinit qpnp_flash_init(struct qpnp_led_data *led)
{
int rc;
rc = qpnp_led_masked_write(led,
FLASH_LED_STROBE_CTRL(led->base),
FLASH_STROBE_MASK, FLASH_DISABLE_ALL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"LED %d flash write failed(%d)\n", led->id, rc);
return rc;
}
rc = qpnp_led_masked_write(led, FLASH_ENABLE_CONTROL(led->base),
FLASH_INIT_MASK, FLASH_ENABLE_MODULE);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Enable reg write failed(%d)\n", rc);
return rc;
}
/* Set flash safety timer */
rc = qpnp_led_masked_write(led, FLASH_SAFETY_TIMER(led->base),
FLASH_SAFETY_TIMER_MASK, led->flash_cfg->duration);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Safety timer reg write failed(%d)\n", rc);
return rc;
}
/* Set max current */
rc = qpnp_led_masked_write(led, FLASH_MAX_CURR(led->base),
FLASH_CURRENT_MASK, FLASH_MAX_LEVEL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Max current reg write failed(%d)\n", rc);
return rc;
}
/* Set clamp current */
rc = qpnp_led_masked_write(led, FLASH_CLAMP_CURR(led->base),
FLASH_CURRENT_MASK, led->flash_cfg->clamp_curr);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Clamp current reg write failed(%d)\n", rc);
return rc;
}
/* Set timer control - safety or watchdog */
if (led->flash_cfg->safety_timer)
rc = qpnp_led_masked_write(led, FLASH_LED_TMR_CTRL(led->base),
FLASH_TMR_MASK, FLASH_TMR_SAFETY);
else
rc = qpnp_led_masked_write(led, FLASH_LED_TMR_CTRL(led->base),
FLASH_TMR_MASK, FLASH_TMR_WATCHDOG);
if (rc) {
dev_err(&led->spmi_dev->dev,
"LED timer ctrl reg write failed(%d)\n", rc);
return rc;
}
/* Set headroom */
rc = qpnp_led_masked_write(led, FLASH_HEADROOM(led->base),
FLASH_HEADROOM_MASK, led->flash_cfg->headroom);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Headroom reg write failed(%d)\n", rc);
return rc;
}
/* Set mask enable */
rc = qpnp_led_masked_write(led, FLASH_MASK_ENABLE(led->base),
FLASH_MASK_REG_MASK, FLASH_MASK_1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Mask enable reg write failed(%d)\n", rc);
return rc;
}
/* Set startup delay */
rc = qpnp_led_masked_write(led, FLASH_STARTUP_DELAY(led->base),
FLASH_STARTUP_DLY_MASK, led->flash_cfg->startup_dly);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Startup delay reg write failed(%d)\n", rc);
return rc;
}
rc = qpnp_led_masked_write(led, FLASH_VREG_OK_FORCE(led->base),
FLASH_VREG_MASK, FLASH_HW_VREG_OK);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Vreg OK reg write failed(%d)\n", rc);
return rc;
}
/* Set led current and enable module */
rc = qpnp_led_masked_write(led, led->flash_cfg->current_addr,
FLASH_CURRENT_MASK, led->flash_cfg->current_prgm);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Current reg write failed(%d)\n", rc);
return rc;
}
rc = qpnp_led_masked_write(led, FLASH_ENABLE_CONTROL(led->base),
FLASH_ENABLE_MODULE_MASK, FLASH_DISABLE_ALL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Enable reg write failed(%d)\n", rc);
return rc;
}
/* dump flash registers */
qpnp_dump_regs(led, flash_debug_regs, ARRAY_SIZE(flash_debug_regs));
return 0;
}
static int __devinit qpnp_rgb_init(struct qpnp_led_data *led)
{
int rc, start_idx, idx_len;
rc = qpnp_led_masked_write(led, RGB_LED_SRC_SEL(led->base),
RGB_LED_SRC_MASK, RGB_LED_SOURCE_VPH_PWR);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led source select register\n");
return rc;
}
if (led->rgb_cfg->pwm_channel != -1) {
led->rgb_cfg->pwm_dev =
pwm_request(led->rgb_cfg->pwm_channel,
led->cdev.name);
if (IS_ERR_OR_NULL(led->rgb_cfg->pwm_dev)) {
dev_err(&led->spmi_dev->dev,
"could not acquire PWM Channel %d, " \
"error %ld\n",
led->rgb_cfg->pwm_channel,
PTR_ERR(led->rgb_cfg->pwm_dev));
led->rgb_cfg->pwm_dev = NULL;
return -ENODEV;
}
if (led->rgb_cfg->mode == RGB_MODE_LPG) {
start_idx =
led->rgb_cfg->duty_cycles->start_idx;
idx_len =
led->rgb_cfg->duty_cycles->num_duty_pcts;
if (idx_len >= PWM_LUT_MAX_SIZE &&
start_idx) {
dev_err(&led->spmi_dev->dev,
"Wrong LUT size or index\n");
return -EINVAL;
}
if ((start_idx + idx_len) >
PWM_LUT_MAX_SIZE) {
dev_err(&led->spmi_dev->dev,
"Exceed LUT limit\n");
return -EINVAL;
}
rc = pwm_lut_config(led->rgb_cfg->pwm_dev,
led->rgb_cfg->pwm_period_us,
led->rgb_cfg->duty_cycles->duty_pcts,
led->rgb_cfg->lut_params);
if (rc < 0) {
dev_err(&led->spmi_dev->dev, "Failed to " \
"configure pwm LUT\n");
return rc;
}
}
} else {
dev_err(&led->spmi_dev->dev,
"Invalid PWM channel\n");
return -EINVAL;
}
/* Initialize led for use in auto trickle charging mode */
rc = qpnp_led_masked_write(led, RGB_LED_ATC_CTL(led->base),
led->rgb_cfg->enable, led->rgb_cfg->enable);
return 0;
}
static int __devinit qpnp_led_initialize(struct qpnp_led_data *led)
{
int rc;
switch (led->id) {
case QPNP_ID_WLED:
rc = qpnp_wled_init(led);
if (rc)
dev_err(&led->spmi_dev->dev,
"WLED initialize failed(%d)\n", rc);
break;
case QPNP_ID_FLASH1_LED0:
case QPNP_ID_FLASH1_LED1:
rc = qpnp_flash_init(led);
if (rc)
dev_err(&led->spmi_dev->dev,
"FLASH initialize failed(%d)\n", rc);
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
rc = qpnp_rgb_init(led);
if (rc)
dev_err(&led->spmi_dev->dev,
"RGB initialize failed(%d)\n", rc);
break;
default:
dev_err(&led->spmi_dev->dev, "Invalid LED(%d)\n", led->id);
return -EINVAL;
}
return 0;
}
static int __devinit qpnp_get_common_configs(struct qpnp_led_data *led,
struct device_node *node)
{
int rc;
u32 val;
const char *temp_string;
led->cdev.default_trigger = LED_TRIGGER_DEFAULT;
rc = of_property_read_string(node, "linux,default-trigger",
&temp_string);
if (!rc)
led->cdev.default_trigger = temp_string;
else if (rc != -EINVAL)
return rc;
led->default_on = false;
rc = of_property_read_string(node, "qcom,default-state",
&temp_string);
if (!rc) {
if (strncmp(temp_string, "on", sizeof("on")) == 0)
led->default_on = true;
} else if (rc != -EINVAL)
return rc;
led->turn_off_delay_ms = 0;
rc = of_property_read_u32(node, "qcom,turn-off-delay-ms", &val);
if (!rc)
led->turn_off_delay_ms = val;
else if (rc != -EINVAL)
return rc;
return 0;
}
/*
* Handlers for alternative sources of platform_data
*/
static int __devinit qpnp_get_config_wled(struct qpnp_led_data *led,
struct device_node *node)
{
u32 val;
int rc;
led->wled_cfg = devm_kzalloc(&led->spmi_dev->dev,
sizeof(struct wled_config_data), GFP_KERNEL);
if (!led->wled_cfg) {
dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
led->wled_cfg->num_strings = WLED_DEFAULT_STRINGS;
rc = of_property_read_u32(node, "qcom,num-strings", &val);
if (!rc)
led->wled_cfg->num_strings = (u8) val;
else if (rc != -EINVAL)
return rc;
led->wled_cfg->ovp_val = WLED_DEFAULT_OVP_VAL;
rc = of_property_read_u32(node, "qcom,ovp-val", &val);
if (!rc)
led->wled_cfg->ovp_val = (u8) val;
else if (rc != -EINVAL)
return rc;
led->wled_cfg->boost_curr_lim = WLED_BOOST_LIM_DEFAULT;
rc = of_property_read_u32(node, "qcom,boost-curr-lim", &val);
if (!rc)
led->wled_cfg->boost_curr_lim = (u8) val;
else if (rc != -EINVAL)
return rc;
led->wled_cfg->cp_select = WLED_CP_SEL_DEFAULT;
rc = of_property_read_u32(node, "qcom,cp-sel", &val);
if (!rc)
led->wled_cfg->cp_select = (u8) val;
else if (rc != -EINVAL)
return rc;
led->wled_cfg->ctrl_delay_us = WLED_CTRL_DLY_DEFAULT;
rc = of_property_read_u32(node, "qcom,ctrl-delay-us", &val);
if (!rc)
led->wled_cfg->ctrl_delay_us = (u8) val;
else if (rc != -EINVAL)
return rc;
led->wled_cfg->switch_freq = WLED_SWITCH_FREQ_DEFAULT;
rc = of_property_read_u32(node, "qcom,switch-freq", &val);
if (!rc)
led->wled_cfg->switch_freq = (u8) val;
else if (rc != -EINVAL)
return rc;
led->wled_cfg->dig_mod_gen_en =
of_property_read_bool(node, "qcom,dig-mod-gen-en");
led->wled_cfg->cs_out_en =
of_property_read_bool(node, "qcom,cs-out-en");
led->wled_cfg->op_fdbck =
of_property_read_bool(node, "qcom,op-fdbck");
return 0;
}
static int __devinit qpnp_get_config_flash(struct qpnp_led_data *led,
struct device_node *node)
{
int rc;
u32 val;
led->flash_cfg = devm_kzalloc(&led->spmi_dev->dev,
sizeof(struct flash_config_data), GFP_KERNEL);
if (!led->flash_cfg) {
dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
if (led->id == QPNP_ID_FLASH1_LED0) {
led->flash_cfg->enable_module = FLASH_ENABLE_ALL;
led->flash_cfg->current_addr = FLASH_LED_0_CURR(led->base);
led->flash_cfg->second_addr = FLASH_LED_1_CURR(led->base);
led->flash_cfg->trigger_flash = FLASH_LED_0_OUTPUT;
} else if (led->id == QPNP_ID_FLASH1_LED1) {
led->flash_cfg->enable_module = FLASH_ENABLE_ALL;
led->flash_cfg->current_addr = FLASH_LED_1_CURR(led->base);
led->flash_cfg->second_addr = FLASH_LED_0_CURR(led->base);
led->flash_cfg->trigger_flash = FLASH_LED_1_OUTPUT;
} else {
dev_err(&led->spmi_dev->dev, "Unknown flash LED name given\n");
return -EINVAL;
}
rc = of_property_read_u32(node, "qcom,current", &val);
if (!rc)
led->flash_cfg->current_prgm = (val *
FLASH_MAX_LEVEL / led->max_current);
else
return -EINVAL;
rc = of_property_read_u32(node, "qcom,headroom", &val);
if (!rc)
led->flash_cfg->headroom = (u8) val;
else if (rc == -EINVAL)
led->flash_cfg->headroom = HEADROOM_300mV;
else
return rc;
rc = of_property_read_u32(node, "qcom,duration", &val);
if (!rc)
led->flash_cfg->duration = (((u8) val) - 10) / 10;
else if (rc == -EINVAL)
led->flash_cfg->duration = FLASH_DURATION_200ms;
else
return rc;
rc = of_property_read_u32(node, "qcom,clamp-curr", &val);
if (!rc)
led->flash_cfg->clamp_curr = (val *
FLASH_MAX_LEVEL / led->max_current);
else if (rc == -EINVAL)
led->flash_cfg->clamp_curr = FLASH_CLAMP_200mA;
else
return rc;
rc = of_property_read_u32(node, "qcom,startup-dly", &val);
if (!rc)
led->flash_cfg->startup_dly = (u8) val;
else if (rc == -EINVAL)
led->flash_cfg->startup_dly = DELAY_32us;
else
return rc;
led->flash_cfg->safety_timer =
of_property_read_bool(node, "qcom,safety-timer");
return 0;
}
static int __devinit qpnp_get_config_rgb(struct qpnp_led_data *led,
struct device_node *node)
{
struct property *prop;
int rc, i;
u32 val;
u8 *temp_cfg;
led->rgb_cfg = devm_kzalloc(&led->spmi_dev->dev,
sizeof(struct rgb_config_data), GFP_KERNEL);
if (!led->rgb_cfg) {
dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
if (led->id == QPNP_ID_RGB_RED)
led->rgb_cfg->enable = RGB_LED_ENABLE_RED;
else if (led->id == QPNP_ID_RGB_GREEN)
led->rgb_cfg->enable = RGB_LED_ENABLE_GREEN;
else if (led->id == QPNP_ID_RGB_BLUE)
led->rgb_cfg->enable = RGB_LED_ENABLE_BLUE;
else
return -EINVAL;
rc = of_property_read_u32(node, "qcom,mode", &val);
if (!rc)
led->rgb_cfg->mode = (u8) val;
else
return rc;
rc = of_property_read_u32(node, "qcom,pwm-channel", &val);
if (!rc)
led->rgb_cfg->pwm_channel = (u8) val;
else
return rc;
rc = of_property_read_u32(node, "qcom,pwm-us", &val);
if (!rc)
led->rgb_cfg->pwm_period_us = val;
else
return rc;
if (led->rgb_cfg->mode == RGB_MODE_LPG) {
led->rgb_cfg->duty_cycles =
devm_kzalloc(&led->spmi_dev->dev,
sizeof(struct pwm_duty_cycles), GFP_KERNEL);
if (!led->rgb_cfg->duty_cycles) {
dev_err(&led->spmi_dev->dev,
"Unable to allocate memory\n");
return -ENOMEM;
}
rc = of_property_read_u32(node, "qcom,duty-ms", &val);
if (!rc)
led->rgb_cfg->duty_cycles->duty_ms = (u8) val;
else
return rc;
prop = of_find_property(node, "qcom,duty-pcts",
&led->rgb_cfg->duty_cycles->num_duty_pcts);
if (!prop) {
dev_err(&led->spmi_dev->dev, "Looking up property " \
"node qcom,duty-pcts failed\n");
return -ENODEV;
} else if (!led->rgb_cfg->duty_cycles->num_duty_pcts) {
dev_err(&led->spmi_dev->dev, "Invalid length of " \
"duty pcts\n");
return -EINVAL;
}
led->rgb_cfg->duty_cycles->duty_pcts =
devm_kzalloc(&led->spmi_dev->dev,
sizeof(int) * led->rgb_cfg->duty_cycles->num_duty_pcts,
GFP_KERNEL);
if (!led->rgb_cfg->duty_cycles->duty_pcts) {
dev_err(&led->spmi_dev->dev,
"Unable to allocate memory\n");
return -ENOMEM;
}
temp_cfg = devm_kzalloc(&led->spmi_dev->dev,
led->rgb_cfg->duty_cycles->num_duty_pcts *
sizeof(u8), GFP_KERNEL);
if (!temp_cfg) {
dev_err(&led->spmi_dev->dev, "Failed to allocate " \
"memory for duty pcts\n");
return -ENOMEM;
}
memcpy(temp_cfg, prop->value,
led->rgb_cfg->duty_cycles->num_duty_pcts);
for (i = 0; i < led->rgb_cfg->duty_cycles->num_duty_pcts; i++)
led->rgb_cfg->duty_cycles->duty_pcts[i] =
(int) temp_cfg[i];
rc = of_property_read_u32(node, "qcom,start-idx", &val);
if (!rc) {
led->rgb_cfg->lut_params.start_idx = (u8) val;
led->rgb_cfg->duty_cycles->start_idx = (u8) val;
} else
return rc;
led->rgb_cfg->lut_params.idx_len =
led->rgb_cfg->duty_cycles->num_duty_pcts;
led->rgb_cfg->lut_params.lut_pause_hi = 0;
led->rgb_cfg->lut_params.lut_pause_lo = 0;
led->rgb_cfg->lut_params.ramp_step_ms = 255;
led->rgb_cfg->lut_params.flags = QPNP_LED_PWM_FLAGS;
}
return 0;
}
static int __devinit qpnp_leds_probe(struct spmi_device *spmi)
{
struct qpnp_led_data *led, *led_array;
struct resource *led_resource;
struct device_node *node, *temp;
int rc, i, num_leds = 0, parsed_leds = 0;
const char *led_label;
node = spmi->dev.of_node;
if (node == NULL)
return -ENODEV;
temp = NULL;
while ((temp = of_get_next_child(node, temp)))
num_leds++;
if (!num_leds)
return -ECHILD;
led_array = devm_kzalloc(&spmi->dev,
(sizeof(struct qpnp_led_data) * num_leds), GFP_KERNEL);
if (!led_array) {
dev_err(&spmi->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
for_each_child_of_node(node, temp) {
led = &led_array[parsed_leds];
led->num_leds = num_leds;
led->spmi_dev = spmi;
led_resource = spmi_get_resource(spmi, NULL, IORESOURCE_MEM, 0);
if (!led_resource) {
dev_err(&spmi->dev, "Unable to get LED base address\n");
rc = -ENXIO;
goto fail_id_check;
}
led->base = led_resource->start;
rc = of_property_read_string(temp, "label", &led_label);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Failure reading label, rc = %d\n", rc);
goto fail_id_check;
}
rc = of_property_read_string(temp, "linux,name",
&led->cdev.name);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Failure reading led name, rc = %d\n", rc);
goto fail_id_check;
}
rc = of_property_read_u32(temp, "qcom,max-current",
&led->max_current);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Failure reading max_current, rc = %d\n", rc);
goto fail_id_check;
}
rc = of_property_read_u32(temp, "qcom,id", &led->id);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Failure reading led id, rc = %d\n", rc);
goto fail_id_check;
}
rc = qpnp_get_common_configs(led, temp);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failure reading common led configuration," \
" rc = %d\n", rc);
goto fail_id_check;
}
led->cdev.brightness_set = qpnp_led_set;
led->cdev.brightness_get = qpnp_led_get;
if (strncmp(led_label, "wled", sizeof("wled")) == 0) {
rc = qpnp_get_config_wled(led, temp);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Unable to read wled config data\n");
goto fail_id_check;
}
} else if (strncmp(led_label, "flash", sizeof("flash"))
== 0) {
rc = qpnp_get_config_flash(led, temp);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Unable to read flash config data\n");
goto fail_id_check;
}
} else if (strncmp(led_label, "rgb", sizeof("rgb")) == 0) {
rc = qpnp_get_config_rgb(led, temp);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Unable to read rgb config data\n");
goto fail_id_check;
}
} else {
dev_err(&led->spmi_dev->dev, "No LED matching label\n");
rc = -EINVAL;
goto fail_id_check;
}
spin_lock_init(&led->lock);
rc = qpnp_led_initialize(led);
if (rc < 0)
goto fail_id_check;
rc = qpnp_led_set_max_brightness(led);
if (rc < 0)
goto fail_id_check;
rc = led_classdev_register(&spmi->dev, &led->cdev);
if (rc) {
dev_err(&spmi->dev, "unable to register led %d,rc=%d\n",
led->id, rc);
goto fail_id_check;
}
/* configure default state */
if (led->default_on) {
led->cdev.brightness = led->cdev.max_brightness;
if (led->turn_off_delay_ms > 0)
qpnp_led_turn_off(led);
} else
led->cdev.brightness = LED_OFF;
qpnp_led_set(&led->cdev, led->cdev.brightness);
parsed_leds++;
}
dev_set_drvdata(&spmi->dev, led_array);
return 0;
fail_id_check:
for (i = 0; i < parsed_leds; i++)
led_classdev_unregister(&led_array[i].cdev);
return rc;
}
static int __devexit qpnp_leds_remove(struct spmi_device *spmi)
{
struct qpnp_led_data *led_array = dev_get_drvdata(&spmi->dev);
int i, parsed_leds = led_array->num_leds;
for (i = 0; i < parsed_leds; i++)
led_classdev_unregister(&led_array[i].cdev);
return 0;
}
static struct of_device_id spmi_match_table[] = {
{ .compatible = "qcom,leds-qpnp",
}
};
static struct spmi_driver qpnp_leds_driver = {
.driver = {
.name = "qcom,leds-qpnp",
.of_match_table = spmi_match_table,
},
.probe = qpnp_leds_probe,
.remove = __devexit_p(qpnp_leds_remove),
};
static int __init qpnp_led_init(void)
{
return spmi_driver_register(&qpnp_leds_driver);
}
module_init(qpnp_led_init);
static void __exit qpnp_led_exit(void)
{
spmi_driver_unregister(&qpnp_leds_driver);
}
module_exit(qpnp_led_exit);
MODULE_DESCRIPTION("QPNP LEDs driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("leds:leds-qpnp");