| /* |
| * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation |
| * August 2002: added remote node KVA remap - Martin J. Bligh |
| * |
| * Copyright (C) 2002, IBM Corp. |
| * |
| * All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for more |
| * details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/bootmem.h> |
| #include <linux/mmzone.h> |
| #include <linux/highmem.h> |
| #include <linux/initrd.h> |
| #include <linux/nodemask.h> |
| #include <linux/module.h> |
| #include <linux/kexec.h> |
| #include <linux/pfn.h> |
| #include <linux/swap.h> |
| #include <linux/acpi.h> |
| |
| #include <asm/e820.h> |
| #include <asm/setup.h> |
| #include <asm/mmzone.h> |
| #include <bios_ebda.h> |
| |
| struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; |
| EXPORT_SYMBOL(node_data); |
| static bootmem_data_t node0_bdata; |
| |
| /* |
| * numa interface - we expect the numa architecture specific code to have |
| * populated the following initialisation. |
| * |
| * 1) node_online_map - the map of all nodes configured (online) in the system |
| * 2) node_start_pfn - the starting page frame number for a node |
| * 3) node_end_pfn - the ending page fram number for a node |
| */ |
| unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly; |
| unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly; |
| |
| |
| #ifdef CONFIG_DISCONTIGMEM |
| /* |
| * 4) physnode_map - the mapping between a pfn and owning node |
| * physnode_map keeps track of the physical memory layout of a generic |
| * numa node on a 256Mb break (each element of the array will |
| * represent 256Mb of memory and will be marked by the node id. so, |
| * if the first gig is on node 0, and the second gig is on node 1 |
| * physnode_map will contain: |
| * |
| * physnode_map[0-3] = 0; |
| * physnode_map[4-7] = 1; |
| * physnode_map[8- ] = -1; |
| */ |
| s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1}; |
| EXPORT_SYMBOL(physnode_map); |
| |
| void memory_present(int nid, unsigned long start, unsigned long end) |
| { |
| unsigned long pfn; |
| |
| printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n", |
| nid, start, end); |
| printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid); |
| printk(KERN_DEBUG " "); |
| for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) { |
| physnode_map[pfn / PAGES_PER_ELEMENT] = nid; |
| printk("%ld ", pfn); |
| } |
| printk("\n"); |
| } |
| |
| unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, |
| unsigned long end_pfn) |
| { |
| unsigned long nr_pages = end_pfn - start_pfn; |
| |
| if (!nr_pages) |
| return 0; |
| |
| return (nr_pages + 1) * sizeof(struct page); |
| } |
| #endif |
| |
| extern unsigned long find_max_low_pfn(void); |
| extern void add_one_highpage_init(struct page *, int, int); |
| extern unsigned long highend_pfn, highstart_pfn; |
| |
| #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) |
| |
| unsigned long node_remap_size[MAX_NUMNODES]; |
| static void *node_remap_start_vaddr[MAX_NUMNODES]; |
| void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); |
| |
| static unsigned long kva_start_pfn; |
| static unsigned long kva_pages; |
| /* |
| * FLAT - support for basic PC memory model with discontig enabled, essentially |
| * a single node with all available processors in it with a flat |
| * memory map. |
| */ |
| int __init get_memcfg_numa_flat(void) |
| { |
| printk("NUMA - single node, flat memory mode\n"); |
| |
| /* Run the memory configuration and find the top of memory. */ |
| find_max_pfn(); |
| node_start_pfn[0] = 0; |
| node_end_pfn[0] = max_pfn; |
| memory_present(0, 0, max_pfn); |
| |
| /* Indicate there is one node available. */ |
| nodes_clear(node_online_map); |
| node_set_online(0); |
| return 1; |
| } |
| |
| /* |
| * Find the highest page frame number we have available for the node |
| */ |
| static void __init find_max_pfn_node(int nid) |
| { |
| if (node_end_pfn[nid] > max_pfn) |
| node_end_pfn[nid] = max_pfn; |
| /* |
| * if a user has given mem=XXXX, then we need to make sure |
| * that the node _starts_ before that, too, not just ends |
| */ |
| if (node_start_pfn[nid] > max_pfn) |
| node_start_pfn[nid] = max_pfn; |
| BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]); |
| } |
| |
| /* |
| * Allocate memory for the pg_data_t for this node via a crude pre-bootmem |
| * method. For node zero take this from the bottom of memory, for |
| * subsequent nodes place them at node_remap_start_vaddr which contains |
| * node local data in physically node local memory. See setup_memory() |
| * for details. |
| */ |
| static void __init allocate_pgdat(int nid) |
| { |
| if (nid && node_has_online_mem(nid)) |
| NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid]; |
| else { |
| NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(min_low_pfn)); |
| min_low_pfn += PFN_UP(sizeof(pg_data_t)); |
| } |
| } |
| |
| #ifdef CONFIG_DISCONTIGMEM |
| /* |
| * In the discontig memory model, a portion of the kernel virtual area (KVA) |
| * is reserved and portions of nodes are mapped using it. This is to allow |
| * node-local memory to be allocated for structures that would normally require |
| * ZONE_NORMAL. The memory is allocated with alloc_remap() and callers |
| * should be prepared to allocate from the bootmem allocator instead. This KVA |
| * mechanism is incompatible with SPARSEMEM as it makes assumptions about the |
| * layout of memory that are broken if alloc_remap() succeeds for some of the |
| * map and fails for others |
| */ |
| static unsigned long node_remap_start_pfn[MAX_NUMNODES]; |
| static void *node_remap_end_vaddr[MAX_NUMNODES]; |
| static void *node_remap_alloc_vaddr[MAX_NUMNODES]; |
| static unsigned long node_remap_offset[MAX_NUMNODES]; |
| |
| void *alloc_remap(int nid, unsigned long size) |
| { |
| void *allocation = node_remap_alloc_vaddr[nid]; |
| |
| size = ALIGN(size, L1_CACHE_BYTES); |
| |
| if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid]) |
| return 0; |
| |
| node_remap_alloc_vaddr[nid] += size; |
| memset(allocation, 0, size); |
| |
| return allocation; |
| } |
| |
| void __init remap_numa_kva(void) |
| { |
| void *vaddr; |
| unsigned long pfn; |
| int node; |
| |
| for_each_online_node(node) { |
| for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) { |
| vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT); |
| set_pmd_pfn((ulong) vaddr, |
| node_remap_start_pfn[node] + pfn, |
| PAGE_KERNEL_LARGE); |
| } |
| } |
| } |
| |
| static unsigned long calculate_numa_remap_pages(void) |
| { |
| int nid; |
| unsigned long size, reserve_pages = 0; |
| unsigned long pfn; |
| |
| for_each_online_node(nid) { |
| unsigned old_end_pfn = node_end_pfn[nid]; |
| |
| /* |
| * The acpi/srat node info can show hot-add memroy zones |
| * where memory could be added but not currently present. |
| */ |
| if (node_start_pfn[nid] > max_pfn) |
| continue; |
| if (node_end_pfn[nid] > max_pfn) |
| node_end_pfn[nid] = max_pfn; |
| |
| /* ensure the remap includes space for the pgdat. */ |
| size = node_remap_size[nid] + sizeof(pg_data_t); |
| |
| /* convert size to large (pmd size) pages, rounding up */ |
| size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES; |
| /* now the roundup is correct, convert to PAGE_SIZE pages */ |
| size = size * PTRS_PER_PTE; |
| |
| /* |
| * Validate the region we are allocating only contains valid |
| * pages. |
| */ |
| for (pfn = node_end_pfn[nid] - size; |
| pfn < node_end_pfn[nid]; pfn++) |
| if (!page_is_ram(pfn)) |
| break; |
| |
| if (pfn != node_end_pfn[nid]) |
| size = 0; |
| |
| printk("Reserving %ld pages of KVA for lmem_map of node %d\n", |
| size, nid); |
| node_remap_size[nid] = size; |
| node_remap_offset[nid] = reserve_pages; |
| reserve_pages += size; |
| printk("Shrinking node %d from %ld pages to %ld pages\n", |
| nid, node_end_pfn[nid], node_end_pfn[nid] - size); |
| |
| if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) { |
| /* |
| * Align node_end_pfn[] and node_remap_start_pfn[] to |
| * pmd boundary. remap_numa_kva will barf otherwise. |
| */ |
| printk("Shrinking node %d further by %ld pages for proper alignment\n", |
| nid, node_end_pfn[nid] & (PTRS_PER_PTE-1)); |
| size += node_end_pfn[nid] & (PTRS_PER_PTE-1); |
| } |
| |
| node_end_pfn[nid] -= size; |
| node_remap_start_pfn[nid] = node_end_pfn[nid]; |
| shrink_active_range(nid, old_end_pfn, node_end_pfn[nid]); |
| } |
| printk("Reserving total of %ld pages for numa KVA remap\n", |
| reserve_pages); |
| return reserve_pages; |
| } |
| |
| static void init_remap_allocator(int nid) |
| { |
| node_remap_start_vaddr[nid] = pfn_to_kaddr( |
| kva_start_pfn + node_remap_offset[nid]); |
| node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] + |
| (node_remap_size[nid] * PAGE_SIZE); |
| node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] + |
| ALIGN(sizeof(pg_data_t), PAGE_SIZE); |
| |
| printk ("node %d will remap to vaddr %08lx - %08lx\n", nid, |
| (ulong) node_remap_start_vaddr[nid], |
| (ulong) pfn_to_kaddr(highstart_pfn |
| + node_remap_offset[nid] + node_remap_size[nid])); |
| } |
| #else |
| void *alloc_remap(int nid, unsigned long size) |
| { |
| return NULL; |
| } |
| |
| static unsigned long calculate_numa_remap_pages(void) |
| { |
| return 0; |
| } |
| |
| static void init_remap_allocator(int nid) |
| { |
| } |
| |
| void __init remap_numa_kva(void) |
| { |
| } |
| #endif /* CONFIG_DISCONTIGMEM */ |
| |
| extern void setup_bootmem_allocator(void); |
| unsigned long __init setup_memory(void) |
| { |
| int nid; |
| unsigned long system_start_pfn, system_max_low_pfn; |
| unsigned long wasted_pages; |
| |
| /* |
| * When mapping a NUMA machine we allocate the node_mem_map arrays |
| * from node local memory. They are then mapped directly into KVA |
| * between zone normal and vmalloc space. Calculate the size of |
| * this space and use it to adjust the boundary between ZONE_NORMAL |
| * and ZONE_HIGHMEM. |
| */ |
| find_max_pfn(); |
| get_memcfg_numa(); |
| |
| kva_pages = calculate_numa_remap_pages(); |
| |
| /* partially used pages are not usable - thus round upwards */ |
| system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end); |
| |
| kva_start_pfn = find_max_low_pfn() - kva_pages; |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| /* Numa kva area is below the initrd */ |
| if (initrd_start) |
| kva_start_pfn = PFN_DOWN(initrd_start - PAGE_OFFSET) |
| - kva_pages; |
| #endif |
| |
| /* |
| * We waste pages past at the end of the KVA for no good reason other |
| * than how it is located. This is bad. |
| */ |
| wasted_pages = kva_start_pfn & (PTRS_PER_PTE-1); |
| kva_start_pfn -= wasted_pages; |
| kva_pages += wasted_pages; |
| |
| system_max_low_pfn = max_low_pfn = find_max_low_pfn(); |
| printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n", |
| kva_start_pfn, max_low_pfn); |
| printk("max_pfn = %ld\n", max_pfn); |
| #ifdef CONFIG_HIGHMEM |
| highstart_pfn = highend_pfn = max_pfn; |
| if (max_pfn > system_max_low_pfn) |
| highstart_pfn = system_max_low_pfn; |
| printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", |
| pages_to_mb(highend_pfn - highstart_pfn)); |
| num_physpages = highend_pfn; |
| high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; |
| #else |
| num_physpages = system_max_low_pfn; |
| high_memory = (void *) __va(system_max_low_pfn * PAGE_SIZE - 1) + 1; |
| #endif |
| printk(KERN_NOTICE "%ldMB LOWMEM available.\n", |
| pages_to_mb(system_max_low_pfn)); |
| printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n", |
| min_low_pfn, max_low_pfn, highstart_pfn); |
| |
| printk("Low memory ends at vaddr %08lx\n", |
| (ulong) pfn_to_kaddr(max_low_pfn)); |
| for_each_online_node(nid) { |
| init_remap_allocator(nid); |
| |
| allocate_pgdat(nid); |
| } |
| printk("High memory starts at vaddr %08lx\n", |
| (ulong) pfn_to_kaddr(highstart_pfn)); |
| for_each_online_node(nid) |
| find_max_pfn_node(nid); |
| |
| memset(NODE_DATA(0), 0, sizeof(struct pglist_data)); |
| NODE_DATA(0)->bdata = &node0_bdata; |
| setup_bootmem_allocator(); |
| return max_low_pfn; |
| } |
| |
| void __init numa_kva_reserve(void) |
| { |
| if (kva_pages) |
| reserve_bootmem(PFN_PHYS(kva_start_pfn), PFN_PHYS(kva_pages), |
| BOOTMEM_DEFAULT); |
| } |
| |
| void __init zone_sizes_init(void) |
| { |
| int nid; |
| unsigned long max_zone_pfns[MAX_NR_ZONES]; |
| memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); |
| max_zone_pfns[ZONE_DMA] = |
| virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; |
| max_zone_pfns[ZONE_NORMAL] = max_low_pfn; |
| #ifdef CONFIG_HIGHMEM |
| max_zone_pfns[ZONE_HIGHMEM] = highend_pfn; |
| #endif |
| |
| /* If SRAT has not registered memory, register it now */ |
| if (find_max_pfn_with_active_regions() == 0) { |
| for_each_online_node(nid) { |
| if (node_has_online_mem(nid)) |
| add_active_range(nid, node_start_pfn[nid], |
| node_end_pfn[nid]); |
| } |
| } |
| |
| free_area_init_nodes(max_zone_pfns); |
| return; |
| } |
| |
| void __init set_highmem_pages_init(int bad_ppro) |
| { |
| #ifdef CONFIG_HIGHMEM |
| struct zone *zone; |
| struct page *page; |
| |
| for_each_zone(zone) { |
| unsigned long node_pfn, zone_start_pfn, zone_end_pfn; |
| |
| if (!is_highmem(zone)) |
| continue; |
| |
| zone_start_pfn = zone->zone_start_pfn; |
| zone_end_pfn = zone_start_pfn + zone->spanned_pages; |
| |
| printk("Initializing %s for node %d (%08lx:%08lx)\n", |
| zone->name, zone_to_nid(zone), |
| zone_start_pfn, zone_end_pfn); |
| |
| for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) { |
| if (!pfn_valid(node_pfn)) |
| continue; |
| page = pfn_to_page(node_pfn); |
| add_one_highpage_init(page, node_pfn, bad_ppro); |
| } |
| } |
| totalram_pages += totalhigh_pages; |
| #endif |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| static int paddr_to_nid(u64 addr) |
| { |
| int nid; |
| unsigned long pfn = PFN_DOWN(addr); |
| |
| for_each_node(nid) |
| if (node_start_pfn[nid] <= pfn && |
| pfn < node_end_pfn[nid]) |
| return nid; |
| |
| return -1; |
| } |
| |
| /* |
| * This function is used to ask node id BEFORE memmap and mem_section's |
| * initialization (pfn_to_nid() can't be used yet). |
| * If _PXM is not defined on ACPI's DSDT, node id must be found by this. |
| */ |
| int memory_add_physaddr_to_nid(u64 addr) |
| { |
| int nid = paddr_to_nid(addr); |
| return (nid >= 0) ? nid : 0; |
| } |
| |
| EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); |
| #endif |
| |
| #ifndef CONFIG_HAVE_ARCH_PARSE_SRAT |
| /* |
| * XXX FIXME: Make SLIT table parsing available to 32-bit NUMA |
| * |
| * These stub functions are needed to compile 32-bit NUMA when SRAT is |
| * not set. There are functions in srat_64.c for parsing this table |
| * and it may be possible to make them common functions. |
| */ |
| void acpi_numa_slit_init (struct acpi_table_slit *slit) |
| { |
| printk(KERN_INFO "ACPI: No support for parsing SLIT table\n"); |
| } |
| |
| void acpi_numa_processor_affinity_init (struct acpi_srat_cpu_affinity *pa) |
| { |
| } |
| |
| void acpi_numa_memory_affinity_init (struct acpi_srat_mem_affinity *ma) |
| { |
| } |
| |
| void acpi_numa_arch_fixup(void) |
| { |
| } |
| #endif /* CONFIG_HAVE_ARCH_PARSE_SRAT */ |