blob: b7ad01f1d02364a308d248fa6715b90529eb52e6 [file] [log] [blame]
/*
* drivers/gpu/ion/ion_system_heap.c
*
* Copyright (C) 2011 Google, Inc.
* Copyright (c) 2011-2014, The Linux Foundation. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <asm/page.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/ion.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include "ion_priv.h"
#include <linux/dma-mapping.h>
#include <trace/events/kmem.h>
static unsigned int high_order_gfp_flags = (GFP_HIGHUSER |
__GFP_NOWARN | __GFP_NORETRY |
__GFP_NO_KSWAPD) & ~__GFP_WAIT;
static unsigned int low_order_gfp_flags = (GFP_HIGHUSER |
__GFP_NOWARN);
static const unsigned int orders[] = {9, 8, 4, 0};
static const int num_orders = ARRAY_SIZE(orders);
static int order_to_index(unsigned int order)
{
int i;
for (i = 0; i < num_orders; i++)
if (order == orders[i])
return i;
BUG();
return -1;
}
static unsigned int order_to_size(int order)
{
return PAGE_SIZE << order;
}
struct ion_system_heap {
struct ion_heap heap;
struct ion_page_pool **uncached_pools;
struct ion_page_pool **cached_pools;
};
struct page_info {
struct page *page;
bool from_pool;
unsigned int order;
struct list_head list;
};
static struct page *alloc_buffer_page(struct ion_system_heap *heap,
struct ion_buffer *buffer,
unsigned long order,
bool *from_pool)
{
bool cached = ion_buffer_cached(buffer);
bool split_pages = ion_buffer_fault_user_mappings(buffer);
struct page *page;
struct ion_page_pool *pool;
if (!cached)
pool = heap->uncached_pools[order_to_index(order)];
else
pool = heap->cached_pools[order_to_index(order)];
page = ion_page_pool_alloc(pool, from_pool);
if (!page)
return 0;
if (split_pages)
split_page(page, order);
return page;
}
static void free_buffer_page(struct ion_system_heap *heap,
struct ion_buffer *buffer, struct page *page,
unsigned int order)
{
bool cached = ion_buffer_cached(buffer);
bool split_pages = ion_buffer_fault_user_mappings(buffer);
int i;
if ((buffer->flags & ION_FLAG_FREED_FROM_SHRINKER)) {
if (split_pages) {
for (i = 0; i < (1 << order); i++)
__free_page(page + i);
} else {
__free_pages(page, order);
}
} else {
struct ion_page_pool *pool;
if (cached)
pool = heap->cached_pools[order_to_index(order)];
else
pool = heap->uncached_pools[order_to_index(order)];
ion_page_pool_free(pool, page);
}
}
static struct page_info *alloc_largest_available(struct ion_system_heap *heap,
struct ion_buffer *buffer,
unsigned long size,
unsigned int max_order)
{
struct page *page;
struct page_info *info;
int i;
bool from_pool;
for (i = 0; i < num_orders; i++) {
if (size < order_to_size(orders[i]))
continue;
if (max_order < orders[i])
continue;
page = alloc_buffer_page(heap, buffer, orders[i], &from_pool);
if (!page)
continue;
info = kmalloc(sizeof(struct page_info), GFP_KERNEL);
if (info) {
info->page = page;
info->order = orders[i];
info->from_pool = from_pool;
}
return info;
}
return NULL;
}
static unsigned int process_info(struct page_info *info,
struct scatterlist *sg,
struct scatterlist *sg_sync,
struct pages_mem *data, unsigned int i)
{
struct page *page = info->page;
unsigned int j;
if (sg_sync) {
sg_set_page(sg_sync, page, (1 << info->order) * PAGE_SIZE, 0);
sg_dma_address(sg_sync) = page_to_phys(page);
}
sg_set_page(sg, page, (1 << info->order) * PAGE_SIZE, 0);
/*
* This is not correct - sg_dma_address needs a dma_addr_t
* that is valid for the the targeted device, but this works
* on the currently targeted hardware.
*/
sg_dma_address(sg) = page_to_phys(page);
if (data) {
for (j = 0; j < (1 << info->order); ++j)
data->pages[i++] = nth_page(page, j);
}
list_del(&info->list);
kfree(info);
return i;
}
static int ion_system_heap_allocate(struct ion_heap *heap,
struct ion_buffer *buffer,
unsigned long size, unsigned long align,
unsigned long flags)
{
struct ion_system_heap *sys_heap = container_of(heap,
struct ion_system_heap,
heap);
struct sg_table *table;
struct sg_table table_sync;
struct scatterlist *sg;
struct scatterlist *sg_sync;
int ret;
struct list_head pages;
struct list_head pages_from_pool;
struct page_info *info, *tmp_info;
int i = 0;
unsigned int nents_sync = 0;
unsigned long size_remaining = PAGE_ALIGN(size);
unsigned int max_order = orders[0];
struct pages_mem data;
unsigned int sz;
bool split_pages = ion_buffer_fault_user_mappings(buffer);
data.size = 0;
INIT_LIST_HEAD(&pages);
INIT_LIST_HEAD(&pages_from_pool);
while (size_remaining > 0) {
info = alloc_largest_available(sys_heap, buffer, size_remaining, max_order);
if (!info)
goto err;
sz = (1 << info->order) * PAGE_SIZE;
if (info->from_pool) {
list_add_tail(&info->list, &pages_from_pool);
} else {
list_add_tail(&info->list, &pages);
data.size += sz;
++nents_sync;
}
size_remaining -= sz;
max_order = info->order;
i++;
}
ret = ion_heap_alloc_pages_mem(&data);
if (ret)
goto err;
table = kmalloc(sizeof(struct sg_table), GFP_KERNEL);
if (!table)
goto err_free_data_pages;
if (split_pages)
ret = sg_alloc_table(table, PAGE_ALIGN(size) / PAGE_SIZE,
GFP_KERNEL);
else
ret = sg_alloc_table(table, i, GFP_KERNEL);
if (ret)
goto err1;
if (nents_sync) {
ret = sg_alloc_table(&table_sync, nents_sync, GFP_KERNEL);
if (ret)
goto err_free_sg;
}
i = 0;
sg = table->sgl;
sg_sync = table_sync.sgl;
/*
* We now have two separate lists. One list contains pages from the
* pool and the other pages from buddy. We want to merge these
* together while preserving the ordering of the pages (higher order
* first).
*/
do {
if (!list_empty(&pages))
info = list_first_entry(&pages, struct page_info, list);
else
info = NULL;
if (!list_empty(&pages_from_pool))
tmp_info = list_first_entry(&pages_from_pool,
struct page_info, list);
else
tmp_info = NULL;
if (info && tmp_info) {
if (info->order >= tmp_info->order) {
i = process_info(info, sg, sg_sync, &data, i);
sg_sync = sg_next(sg_sync);
} else {
i = process_info(tmp_info, sg, 0, 0, i);
}
} else if (info) {
i = process_info(info, sg, sg_sync, &data, i);
sg_sync = sg_next(sg_sync);
} else if (tmp_info) {
i = process_info(tmp_info, sg, 0, 0, i);
} else {
BUG();
}
sg = sg_next(sg);
} while (sg);
ret = ion_heap_pages_zero(data.pages, data.size >> PAGE_SHIFT);
if (ret) {
pr_err("Unable to zero pages\n");
goto err_free_sg2;
}
if (nents_sync)
dma_sync_sg_for_device(NULL, table_sync.sgl, table_sync.nents,
DMA_BIDIRECTIONAL);
buffer->priv_virt = table;
if (nents_sync)
sg_free_table(&table_sync);
ion_heap_free_pages_mem(&data);
return 0;
err_free_sg2:
/* We failed to zero buffers. Bypass pool */
buffer->flags |= ION_FLAG_FREED_FROM_SHRINKER;
for_each_sg(table->sgl, sg, table->nents, i)
free_buffer_page(sys_heap, buffer, sg_page(sg),
get_order(sg->length));
if (nents_sync)
sg_free_table(&table_sync);
err_free_sg:
sg_free_table(table);
err1:
kfree(table);
err_free_data_pages:
ion_heap_free_pages_mem(&data);
err:
list_for_each_entry_safe(info, tmp_info, &pages, list) {
free_buffer_page(sys_heap, buffer, info->page, info->order);
kfree(info);
}
list_for_each_entry_safe(info, tmp_info, &pages_from_pool, list) {
free_buffer_page(sys_heap, buffer, info->page, info->order);
kfree(info);
}
return -ENOMEM;
}
void ion_system_heap_free(struct ion_buffer *buffer)
{
struct ion_heap *heap = buffer->heap;
struct ion_system_heap *sys_heap = container_of(heap,
struct ion_system_heap,
heap);
struct sg_table *table = buffer->sg_table;
struct scatterlist *sg;
LIST_HEAD(pages);
int i;
if (!(buffer->flags & ION_FLAG_FREED_FROM_SHRINKER))
ion_heap_buffer_zero(buffer);
for_each_sg(table->sgl, sg, table->nents, i)
free_buffer_page(sys_heap, buffer, sg_page(sg),
get_order(sg_dma_len(sg)));
sg_free_table(table);
kfree(table);
}
struct sg_table *ion_system_heap_map_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
return buffer->priv_virt;
}
void ion_system_heap_unmap_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
return;
}
static struct ion_heap_ops system_heap_ops = {
.allocate = ion_system_heap_allocate,
.free = ion_system_heap_free,
.map_dma = ion_system_heap_map_dma,
.unmap_dma = ion_system_heap_unmap_dma,
.map_kernel = ion_heap_map_kernel,
.unmap_kernel = ion_heap_unmap_kernel,
.map_user = ion_heap_map_user,
};
static int ion_system_heap_shrink(struct shrinker *shrinker,
struct shrink_control *sc) {
struct ion_heap *heap = container_of(shrinker, struct ion_heap,
shrinker);
struct ion_system_heap *sys_heap = container_of(heap,
struct ion_system_heap,
heap);
int nr_total = 0;
int nr_freed = 0;
int i;
if (sc->nr_to_scan == 0)
goto end;
/* shrink the free list first, no point in zeroing the memory if
we're just going to reclaim it. Also, skip any possible
page pooling */
nr_freed += ion_heap_freelist_drain_from_shrinker(
heap, sc->nr_to_scan * PAGE_SIZE) / PAGE_SIZE;
if (nr_freed >= sc->nr_to_scan)
goto end;
for (i = 0; i < num_orders; i++) {
nr_freed += ion_page_pool_shrink(sys_heap->uncached_pools[i],
sc->gfp_mask, sc->nr_to_scan);
if (nr_freed >= sc->nr_to_scan)
goto end;
nr_freed += ion_page_pool_shrink(sys_heap->cached_pools[i],
sc->gfp_mask, sc->nr_to_scan);
if (nr_freed >= sc->nr_to_scan)
goto end;
}
end:
/* total number of items is whatever the page pools are holding
plus whatever's in the freelist */
for (i = 0; i < num_orders; i++) {
nr_total += ion_page_pool_shrink(
sys_heap->uncached_pools[i], sc->gfp_mask, 0);
nr_total += ion_page_pool_shrink(
sys_heap->cached_pools[i], sc->gfp_mask, 0);
}
nr_total += ion_heap_freelist_size(heap) / PAGE_SIZE;
return nr_total;
}
static int ion_system_heap_debug_show(struct ion_heap *heap, struct seq_file *s,
void *unused)
{
struct ion_system_heap *sys_heap = container_of(heap,
struct ion_system_heap,
heap);
int i;
for (i = 0; i < num_orders; i++) {
struct ion_page_pool *pool = sys_heap->uncached_pools[i];
seq_printf(s,
"%d order %u highmem pages in uncached pool = %lu total\n",
pool->high_count, pool->order,
(1 << pool->order) * PAGE_SIZE * pool->high_count);
seq_printf(s,
"%d order %u lowmem pages in uncached pool = %lu total\n",
pool->low_count, pool->order,
(1 << pool->order) * PAGE_SIZE * pool->low_count);
}
for (i = 0; i < num_orders; i++) {
struct ion_page_pool *pool = sys_heap->cached_pools[i];
seq_printf(s,
"%d order %u highmem pages in cached pool = %lu total\n",
pool->high_count, pool->order,
(1 << pool->order) * PAGE_SIZE * pool->high_count);
seq_printf(s,
"%d order %u lowmem pages in cached pool = %lu total\n",
pool->low_count, pool->order,
(1 << pool->order) * PAGE_SIZE * pool->low_count);
}
return 0;
}
static void ion_system_heap_destroy_pools(struct ion_page_pool **pools)
{
int i;
for (i = 0; i < num_orders; i++)
if (pools[i])
ion_page_pool_destroy(pools[i]);
}
/**
* ion_system_heap_create_pools - Creates pools for all orders
*
* If this fails you don't need to destroy any pools. It's all or
* nothing. If it succeeds you'll eventually need to use
* ion_system_heap_destroy_pools to destroy the pools.
*/
static int ion_system_heap_create_pools(struct ion_page_pool **pools)
{
int i;
for (i = 0; i < num_orders; i++) {
struct ion_page_pool *pool;
gfp_t gfp_flags = low_order_gfp_flags;
if (orders[i])
gfp_flags = high_order_gfp_flags;
pool = ion_page_pool_create(gfp_flags, orders[i]);
if (!pool)
goto err_create_pool;
pools[i] = pool;
}
return 0;
err_create_pool:
ion_system_heap_destroy_pools(pools);
return 1;
}
struct ion_heap *ion_system_heap_create(struct ion_platform_heap *unused)
{
struct ion_system_heap *heap;
int pools_size = sizeof(struct ion_page_pool *) * num_orders;
heap = kzalloc(sizeof(struct ion_system_heap), GFP_KERNEL);
if (!heap)
return ERR_PTR(-ENOMEM);
heap->heap.ops = &system_heap_ops;
heap->heap.type = ION_HEAP_TYPE_SYSTEM;
heap->heap.flags = ION_HEAP_FLAG_DEFER_FREE;
heap->uncached_pools = kzalloc(pools_size, GFP_KERNEL);
if (!heap->uncached_pools)
goto err_alloc_uncached_pools;
heap->cached_pools = kzalloc(pools_size, GFP_KERNEL);
if (!heap->cached_pools)
goto err_alloc_cached_pools;
if (ion_system_heap_create_pools(heap->uncached_pools))
goto err_create_uncached_pools;
if (ion_system_heap_create_pools(heap->cached_pools))
goto err_create_cached_pools;
heap->heap.shrinker.shrink = ion_system_heap_shrink;
heap->heap.shrinker.seeks = DEFAULT_SEEKS;
heap->heap.shrinker.batch = 0;
register_shrinker(&heap->heap.shrinker);
heap->heap.debug_show = ion_system_heap_debug_show;
return &heap->heap;
err_create_cached_pools:
ion_system_heap_destroy_pools(heap->uncached_pools);
err_create_uncached_pools:
kfree(heap->cached_pools);
err_alloc_cached_pools:
kfree(heap->uncached_pools);
err_alloc_uncached_pools:
kfree(heap);
return ERR_PTR(-ENOMEM);
}
void ion_system_heap_destroy(struct ion_heap *heap)
{
struct ion_system_heap *sys_heap = container_of(heap,
struct ion_system_heap,
heap);
ion_system_heap_destroy_pools(sys_heap->uncached_pools);
ion_system_heap_destroy_pools(sys_heap->cached_pools);
kfree(sys_heap->uncached_pools);
kfree(sys_heap->cached_pools);
kfree(sys_heap);
}
struct kmalloc_buffer_info {
struct sg_table *table;
void *vaddr;
};
static int ion_system_contig_heap_allocate(struct ion_heap *heap,
struct ion_buffer *buffer,
unsigned long len,
unsigned long align,
unsigned long flags)
{
int ret;
struct kmalloc_buffer_info *info;
info = kmalloc(sizeof(struct kmalloc_buffer_info), GFP_KERNEL);
if (!info) {
ret = -ENOMEM;
goto out;
}
info->table = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
if (!info->table) {
ret = -ENOMEM;
goto kfree_info;
}
ret = sg_alloc_table(info->table, 1, GFP_KERNEL);
if (ret)
goto kfree_table;
info->vaddr = kzalloc(len, GFP_KERNEL);
if (!info->vaddr) {
ret = -ENOMEM;
goto sg_free_table;
}
sg_set_page(info->table->sgl, virt_to_page(info->vaddr), len,
0);
sg_dma_address(info->table->sgl) = virt_to_phys(info->vaddr);
dma_sync_sg_for_device(NULL, info->table->sgl, 1, DMA_BIDIRECTIONAL);
buffer->priv_virt = info;
return 0;
sg_free_table:
sg_free_table(info->table);
kfree_table:
kfree(info->table);
kfree_info:
kfree(info);
out:
return ret;
}
void ion_system_contig_heap_free(struct ion_buffer *buffer)
{
struct kmalloc_buffer_info *info = buffer->priv_virt;
sg_free_table(info->table);
kfree(info->table);
kfree(info->vaddr);
}
static int ion_system_contig_heap_phys(struct ion_heap *heap,
struct ion_buffer *buffer,
ion_phys_addr_t *addr, size_t *len)
{
struct kmalloc_buffer_info *info = buffer->priv_virt;
*addr = virt_to_phys(info->vaddr);
*len = buffer->size;
return 0;
}
struct sg_table *ion_system_contig_heap_map_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
struct kmalloc_buffer_info *info = buffer->priv_virt;
return info->table;
}
void ion_system_contig_heap_unmap_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
}
static struct ion_heap_ops kmalloc_ops = {
.allocate = ion_system_contig_heap_allocate,
.free = ion_system_contig_heap_free,
.phys = ion_system_contig_heap_phys,
.map_dma = ion_system_contig_heap_map_dma,
.unmap_dma = ion_system_contig_heap_unmap_dma,
.map_kernel = ion_heap_map_kernel,
.unmap_kernel = ion_heap_unmap_kernel,
.map_user = ion_heap_map_user,
};
struct ion_heap *ion_system_contig_heap_create(struct ion_platform_heap *unused)
{
struct ion_heap *heap;
heap = kzalloc(sizeof(struct ion_heap), GFP_KERNEL);
if (!heap)
return ERR_PTR(-ENOMEM);
heap->ops = &kmalloc_ops;
heap->type = ION_HEAP_TYPE_SYSTEM_CONTIG;
return heap;
}
void ion_system_contig_heap_destroy(struct ion_heap *heap)
{
kfree(heap);
}