| /* |
| * Audio driver for the NeoMagic 256AV and 256ZX chipsets in native |
| * mode, with AC97 mixer support. |
| * |
| * Overall design and parts of this code stolen from vidc_*.c and |
| * skeleton.c. |
| * |
| * Yeah, there are a lot of magic constants in here. You tell ME what |
| * they are. I just get this stuff psychically, remember? |
| * |
| * This driver was written by someone who wishes to remain anonymous. |
| * It is in the public domain, so share and enjoy. Try to make a profit |
| * off of it; go on, I dare you. |
| * |
| * Changes: |
| * 11-10-2000 Bartlomiej Zolnierkiewicz <bkz@linux-ide.org> |
| * Added some __init |
| * 19-04-2001 Marcus Meissner <mm@caldera.de> |
| * Ported to 2.4 PCI API. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pm.h> |
| #include <linux/delay.h> |
| #include <linux/spinlock.h> |
| #include "sound_config.h" |
| #include "nm256.h" |
| #include "nm256_coeff.h" |
| |
| int nm256_debug; |
| static int force_load; |
| |
| /* |
| * The size of the playback reserve. When the playback buffer has less |
| * than NM256_PLAY_WMARK_SIZE bytes to output, we request a new |
| * buffer. |
| */ |
| #define NM256_PLAY_WMARK_SIZE 512 |
| |
| static struct audio_driver nm256_audio_driver; |
| |
| static int nm256_grabInterrupt (struct nm256_info *card); |
| static int nm256_releaseInterrupt (struct nm256_info *card); |
| static irqreturn_t nm256_interrupt (int irq, void *dev_id, struct pt_regs *dummy); |
| static irqreturn_t nm256_interrupt_zx (int irq, void *dev_id, struct pt_regs *dummy); |
| static int handle_pm_event (struct pm_dev *dev, pm_request_t rqst, void *data); |
| |
| /* These belong in linux/pci.h. */ |
| #define PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO 0x8005 |
| #define PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO 0x8006 |
| #define PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO 0x8016 |
| |
| /* List of cards. */ |
| static struct nm256_info *nmcard_list; |
| |
| /* Release the mapped-in memory for CARD. */ |
| static void |
| nm256_release_ports (struct nm256_info *card) |
| { |
| int x; |
| |
| for (x = 0; x < 2; x++) { |
| if (card->port[x].ptr != NULL) { |
| iounmap (card->port[x].ptr); |
| card->port[x].ptr = NULL; |
| } |
| } |
| } |
| |
| /* |
| * Map in the memory ports for CARD, if they aren't already mapped in |
| * and have been configured. If successful, a zero value is returned; |
| * otherwise any previously mapped-in areas are released and a non-zero |
| * value is returned. |
| * |
| * This is invoked twice, once for each port. Ideally it would only be |
| * called once, but we now need to map in the second port in order to |
| * check how much memory the card has on the 256ZX. |
| */ |
| static int |
| nm256_remap_ports (struct nm256_info *card) |
| { |
| int x; |
| |
| for (x = 0; x < 2; x++) { |
| if (card->port[x].ptr == NULL && card->port[x].end_offset > 0) { |
| u32 physaddr |
| = card->port[x].physaddr + card->port[x].start_offset; |
| u32 size |
| = card->port[x].end_offset - card->port[x].start_offset; |
| |
| card->port[x].ptr = ioremap_nocache (physaddr, size); |
| |
| if (card->port[x].ptr == NULL) { |
| printk (KERN_ERR "NM256: Unable to remap port %d\n", x + 1); |
| nm256_release_ports (card); |
| return -1; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* Locate the card in our list. */ |
| static struct nm256_info * |
| nm256_find_card (int dev) |
| { |
| struct nm256_info *card; |
| |
| for (card = nmcard_list; card != NULL; card = card->next_card) |
| if (card->dev[0] == dev || card->dev[1] == dev) |
| return card; |
| |
| return NULL; |
| } |
| |
| /* |
| * Ditto, but find the card struct corresponding to the mixer device DEV |
| * instead. |
| */ |
| static struct nm256_info * |
| nm256_find_card_for_mixer (int dev) |
| { |
| struct nm256_info *card; |
| |
| for (card = nmcard_list; card != NULL; card = card->next_card) |
| if (card->mixer_oss_dev == dev) |
| return card; |
| |
| return NULL; |
| } |
| |
| static int usecache; |
| static int buffertop; |
| |
| /* Check to see if we're using the bank of cached coefficients. */ |
| int |
| nm256_cachedCoefficients (struct nm256_info *card) |
| { |
| return usecache; |
| } |
| |
| /* The actual rates supported by the card. */ |
| static int samplerates[9] = { |
| 8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 99999999 |
| }; |
| |
| /* |
| * Set the card samplerate, word size and stereo mode to correspond to |
| * the settings in the CARD struct for the specified device in DEV. |
| * We keep two separate sets of information, one for each device; the |
| * hardware is not actually configured until a read or write is |
| * attempted. |
| */ |
| |
| static int |
| nm256_setInfo (int dev, struct nm256_info *card) |
| { |
| int x; |
| int w; |
| int targetrate; |
| |
| if (card->dev[0] == dev) |
| w = 0; |
| else if (card->dev[1] == dev) |
| w = 1; |
| else |
| return -ENODEV; |
| |
| targetrate = card->sinfo[w].samplerate; |
| |
| if ((card->sinfo[w].bits != 8 && card->sinfo[w].bits != 16) |
| || targetrate < samplerates[0] |
| || targetrate > samplerates[7]) |
| return -EINVAL; |
| |
| for (x = 0; x < 8; x++) |
| if (targetrate < ((samplerates[x] + samplerates[x + 1]) / 2)) |
| break; |
| |
| if (x < 8) { |
| u8 ratebits = ((x << 4) & NM_RATE_MASK); |
| if (card->sinfo[w].bits == 16) |
| ratebits |= NM_RATE_BITS_16; |
| if (card->sinfo[w].stereo) |
| ratebits |= NM_RATE_STEREO; |
| |
| card->sinfo[w].samplerate = samplerates[x]; |
| |
| |
| if (card->dev_for_play == dev && card->playing) { |
| if (nm256_debug) |
| printk (KERN_DEBUG "Setting play ratebits to 0x%x\n", |
| ratebits); |
| nm256_loadCoefficient (card, 0, x); |
| nm256_writePort8 (card, 2, |
| NM_PLAYBACK_REG_OFFSET + NM_RATE_REG_OFFSET, |
| ratebits); |
| } |
| |
| if (card->dev_for_record == dev && card->recording) { |
| if (nm256_debug) |
| printk (KERN_DEBUG "Setting record ratebits to 0x%x\n", |
| ratebits); |
| nm256_loadCoefficient (card, 1, x); |
| nm256_writePort8 (card, 2, |
| NM_RECORD_REG_OFFSET + NM_RATE_REG_OFFSET, |
| ratebits); |
| } |
| return 0; |
| } |
| else |
| return -EINVAL; |
| } |
| |
| /* Start the play process going. */ |
| static void |
| startPlay (struct nm256_info *card) |
| { |
| if (! card->playing) { |
| card->playing = 1; |
| if (nm256_grabInterrupt (card) == 0) { |
| nm256_setInfo (card->dev_for_play, card); |
| |
| /* Enable playback engine and interrupts. */ |
| nm256_writePort8 (card, 2, NM_PLAYBACK_ENABLE_REG, |
| NM_PLAYBACK_ENABLE_FLAG | NM_PLAYBACK_FREERUN); |
| |
| /* Enable both channels. */ |
| nm256_writePort16 (card, 2, NM_AUDIO_MUTE_REG, 0x0); |
| } |
| } |
| } |
| |
| /* |
| * Request one chunk of AMT bytes from the recording device. When the |
| * operation is complete, the data will be copied into BUFFER and the |
| * function DMAbuf_inputintr will be invoked. |
| */ |
| |
| static void |
| nm256_startRecording (struct nm256_info *card, char *buffer, u32 amt) |
| { |
| u32 endpos; |
| int enableEngine = 0; |
| u32 ringsize = card->recordBufferSize; |
| unsigned long flags; |
| |
| if (amt > (ringsize / 2)) { |
| /* |
| * Of course this won't actually work right, because the |
| * caller is going to assume we will give what we got asked |
| * for. |
| */ |
| printk (KERN_ERR "NM256: Read request too large: %d\n", amt); |
| amt = ringsize / 2; |
| } |
| |
| if (amt < 8) { |
| printk (KERN_ERR "NM256: Read request too small; %d\n", amt); |
| return; |
| } |
| |
| spin_lock_irqsave(&card->lock,flags); |
| /* |
| * If we're not currently recording, set up the start and end registers |
| * for the recording engine. |
| */ |
| if (! card->recording) { |
| card->recording = 1; |
| if (nm256_grabInterrupt (card) == 0) { |
| card->curRecPos = 0; |
| nm256_setInfo (card->dev_for_record, card); |
| nm256_writePort32 (card, 2, NM_RBUFFER_START, card->abuf2); |
| nm256_writePort32 (card, 2, NM_RBUFFER_END, |
| card->abuf2 + ringsize); |
| |
| nm256_writePort32 (card, 2, NM_RBUFFER_CURRP, |
| card->abuf2 + card->curRecPos); |
| enableEngine = 1; |
| } |
| else { |
| /* Not sure what else to do here. */ |
| spin_unlock_irqrestore(&card->lock,flags); |
| return; |
| } |
| } |
| |
| /* |
| * If we happen to go past the end of the buffer a bit (due to a |
| * delayed interrupt) it's OK. So might as well set the watermark |
| * right at the end of the data we want. |
| */ |
| endpos = card->abuf2 + ((card->curRecPos + amt) % ringsize); |
| |
| card->recBuf = buffer; |
| card->requestedRecAmt = amt; |
| nm256_writePort32 (card, 2, NM_RBUFFER_WMARK, endpos); |
| /* Enable recording engine and interrupts. */ |
| if (enableEngine) |
| nm256_writePort8 (card, 2, NM_RECORD_ENABLE_REG, |
| NM_RECORD_ENABLE_FLAG | NM_RECORD_FREERUN); |
| |
| spin_unlock_irqrestore(&card->lock,flags); |
| } |
| |
| /* Stop the play engine. */ |
| static void |
| stopPlay (struct nm256_info *card) |
| { |
| /* Shut off sound from both channels. */ |
| nm256_writePort16 (card, 2, NM_AUDIO_MUTE_REG, |
| NM_AUDIO_MUTE_LEFT | NM_AUDIO_MUTE_RIGHT); |
| /* Disable play engine. */ |
| nm256_writePort8 (card, 2, NM_PLAYBACK_ENABLE_REG, 0); |
| if (card->playing) { |
| nm256_releaseInterrupt (card); |
| |
| /* Reset the relevant state bits. */ |
| card->playing = 0; |
| card->curPlayPos = 0; |
| } |
| } |
| |
| /* Stop recording. */ |
| static void |
| stopRecord (struct nm256_info *card) |
| { |
| /* Disable recording engine. */ |
| nm256_writePort8 (card, 2, NM_RECORD_ENABLE_REG, 0); |
| |
| if (card->recording) { |
| nm256_releaseInterrupt (card); |
| |
| card->recording = 0; |
| card->curRecPos = 0; |
| } |
| } |
| |
| /* |
| * Ring buffers, man. That's where the hip-hop, wild-n-wooly action's at. |
| * 1972? (Well, I suppose it was cheep-n-easy to implement.) |
| * |
| * Write AMT bytes of BUFFER to the playback ring buffer, and start the |
| * playback engine running. It will only accept up to 1/2 of the total |
| * size of the ring buffer. No check is made that we're about to overwrite |
| * the currently-playing sample. |
| */ |
| |
| static void |
| nm256_write_block (struct nm256_info *card, char *buffer, u32 amt) |
| { |
| u32 ringsize = card->playbackBufferSize; |
| u32 endstop; |
| unsigned long flags; |
| |
| if (amt > (ringsize / 2)) { |
| printk (KERN_ERR "NM256: Write request too large: %d\n", amt); |
| amt = (ringsize / 2); |
| } |
| |
| if (amt < NM256_PLAY_WMARK_SIZE) { |
| printk (KERN_ERR "NM256: Write request too small: %d\n", amt); |
| return; |
| } |
| |
| card->curPlayPos %= ringsize; |
| |
| card->requested_amt = amt; |
| |
| spin_lock_irqsave(&card->lock,flags); |
| |
| if ((card->curPlayPos + amt) >= ringsize) { |
| u32 rem = ringsize - card->curPlayPos; |
| |
| nm256_writeBuffer8 (card, buffer, 1, |
| card->abuf1 + card->curPlayPos, |
| rem); |
| if (amt > rem) |
| nm256_writeBuffer8 (card, buffer + rem, 1, card->abuf1, |
| amt - rem); |
| } |
| else |
| nm256_writeBuffer8 (card, buffer, 1, |
| card->abuf1 + card->curPlayPos, |
| amt); |
| |
| /* |
| * Setup the start-n-stop-n-limit registers, and start that engine |
| * goin'. |
| * |
| * Normally we just let it wrap around to avoid the click-click |
| * action scene. |
| */ |
| if (! card->playing) { |
| /* The PBUFFER_END register in this case points to one sample |
| before the end of the buffer. */ |
| int w = (card->dev_for_play == card->dev[0] ? 0 : 1); |
| int sampsize = (card->sinfo[w].bits == 16 ? 2 : 1); |
| |
| if (card->sinfo[w].stereo) |
| sampsize *= 2; |
| |
| /* Need to set the not-normally-changing-registers up. */ |
| nm256_writePort32 (card, 2, NM_PBUFFER_START, |
| card->abuf1 + card->curPlayPos); |
| nm256_writePort32 (card, 2, NM_PBUFFER_END, |
| card->abuf1 + ringsize - sampsize); |
| nm256_writePort32 (card, 2, NM_PBUFFER_CURRP, |
| card->abuf1 + card->curPlayPos); |
| } |
| endstop = (card->curPlayPos + amt - NM256_PLAY_WMARK_SIZE) % ringsize; |
| nm256_writePort32 (card, 2, NM_PBUFFER_WMARK, card->abuf1 + endstop); |
| |
| if (! card->playing) |
| startPlay (card); |
| |
| spin_unlock_irqrestore(&card->lock,flags); |
| } |
| |
| /* We just got a card playback interrupt; process it. */ |
| static void |
| nm256_get_new_block (struct nm256_info *card) |
| { |
| /* Check to see how much got played so far. */ |
| u32 amt = nm256_readPort32 (card, 2, NM_PBUFFER_CURRP) - card->abuf1; |
| |
| if (amt >= card->playbackBufferSize) { |
| printk (KERN_ERR "NM256: Sound playback pointer invalid!\n"); |
| amt = 0; |
| } |
| |
| if (amt < card->curPlayPos) |
| amt = (card->playbackBufferSize - card->curPlayPos) + amt; |
| else |
| amt -= card->curPlayPos; |
| |
| if (card->requested_amt > (amt + NM256_PLAY_WMARK_SIZE)) { |
| u32 endstop = |
| card->curPlayPos + card->requested_amt - NM256_PLAY_WMARK_SIZE; |
| nm256_writePort32 (card, 2, NM_PBUFFER_WMARK, card->abuf1 + endstop); |
| } |
| else { |
| card->curPlayPos += card->requested_amt; |
| /* Get a new block to write. This will eventually invoke |
| nm256_write_block () or stopPlay (). */ |
| DMAbuf_outputintr (card->dev_for_play, 1); |
| } |
| } |
| |
| /* |
| * Read the last-recorded block from the ring buffer, copy it into the |
| * saved buffer pointer, and invoke DMAuf_inputintr() with the recording |
| * device. |
| */ |
| |
| static void |
| nm256_read_block (struct nm256_info *card) |
| { |
| /* Grab the current position of the recording pointer. */ |
| u32 currptr = nm256_readPort32 (card, 2, NM_RBUFFER_CURRP) - card->abuf2; |
| u32 amtToRead = card->requestedRecAmt; |
| u32 ringsize = card->recordBufferSize; |
| |
| if (currptr >= card->recordBufferSize) { |
| printk (KERN_ERR "NM256: Sound buffer record pointer invalid!\n"); |
| currptr = 0; |
| } |
| |
| /* |
| * This test is probably redundant; we shouldn't be here unless |
| * it's true. |
| */ |
| if (card->recording) { |
| /* If we wrapped around, copy everything from the start of our |
| recording buffer to the end of the buffer. */ |
| if (currptr < card->curRecPos) { |
| u32 amt = min (ringsize - card->curRecPos, amtToRead); |
| |
| nm256_readBuffer8 (card, card->recBuf, 1, |
| card->abuf2 + card->curRecPos, |
| amt); |
| amtToRead -= amt; |
| card->curRecPos += amt; |
| card->recBuf += amt; |
| if (card->curRecPos == ringsize) |
| card->curRecPos = 0; |
| } |
| |
| if ((card->curRecPos < currptr) && (amtToRead > 0)) { |
| u32 amt = min (currptr - card->curRecPos, amtToRead); |
| nm256_readBuffer8 (card, card->recBuf, 1, |
| card->abuf2 + card->curRecPos, amt); |
| card->curRecPos = ((card->curRecPos + amt) % ringsize); |
| } |
| card->recBuf = NULL; |
| card->requestedRecAmt = 0; |
| DMAbuf_inputintr (card->dev_for_record); |
| } |
| } |
| |
| /* |
| * Initialize the hardware. |
| */ |
| static void |
| nm256_initHw (struct nm256_info *card) |
| { |
| /* Reset everything. */ |
| nm256_writePort8 (card, 2, 0x0, 0x11); |
| nm256_writePort16 (card, 2, 0x214, 0); |
| |
| stopRecord (card); |
| stopPlay (card); |
| } |
| |
| /* |
| * Handle a potential interrupt for the device referred to by DEV_ID. |
| * |
| * I don't like the cut-n-paste job here either between the two routines, |
| * but there are sufficient differences between the two interrupt handlers |
| * that parameterizing it isn't all that great either. (Could use a macro, |
| * I suppose...yucky bleah.) |
| */ |
| |
| static irqreturn_t |
| nm256_interrupt (int irq, void *dev_id, struct pt_regs *dummy) |
| { |
| struct nm256_info *card = (struct nm256_info *)dev_id; |
| u16 status; |
| static int badintrcount; |
| int handled = 0; |
| |
| if ((card == NULL) || (card->magsig != NM_MAGIC_SIG)) { |
| printk (KERN_ERR "NM256: Bad card pointer\n"); |
| return IRQ_NONE; |
| } |
| |
| status = nm256_readPort16 (card, 2, NM_INT_REG); |
| |
| /* Not ours. */ |
| if (status == 0) { |
| if (badintrcount++ > 1000) { |
| /* |
| * I'm not sure if the best thing is to stop the card from |
| * playing or just release the interrupt (after all, we're in |
| * a bad situation, so doing fancy stuff may not be such a good |
| * idea). |
| * |
| * I worry about the card engine continuing to play noise |
| * over and over, however--that could become a very |
| * obnoxious problem. And we know that when this usually |
| * happens things are fairly safe, it just means the user's |
| * inserted a PCMCIA card and someone's spamming us with IRQ 9s. |
| */ |
| |
| handled = 1; |
| if (card->playing) |
| stopPlay (card); |
| if (card->recording) |
| stopRecord (card); |
| badintrcount = 0; |
| } |
| return IRQ_RETVAL(handled); |
| } |
| |
| badintrcount = 0; |
| |
| /* Rather boring; check for individual interrupts and process them. */ |
| |
| if (status & NM_PLAYBACK_INT) { |
| handled = 1; |
| status &= ~NM_PLAYBACK_INT; |
| NM_ACK_INT (card, NM_PLAYBACK_INT); |
| |
| if (card->playing) |
| nm256_get_new_block (card); |
| } |
| |
| if (status & NM_RECORD_INT) { |
| handled = 1; |
| status &= ~NM_RECORD_INT; |
| NM_ACK_INT (card, NM_RECORD_INT); |
| |
| if (card->recording) |
| nm256_read_block (card); |
| } |
| |
| if (status & NM_MISC_INT_1) { |
| u8 cbyte; |
| |
| handled = 1; |
| status &= ~NM_MISC_INT_1; |
| printk (KERN_ERR "NM256: Got misc interrupt #1\n"); |
| NM_ACK_INT (card, NM_MISC_INT_1); |
| nm256_writePort16 (card, 2, NM_INT_REG, 0x8000); |
| cbyte = nm256_readPort8 (card, 2, 0x400); |
| nm256_writePort8 (card, 2, 0x400, cbyte | 2); |
| } |
| |
| if (status & NM_MISC_INT_2) { |
| u8 cbyte; |
| |
| handled = 1; |
| status &= ~NM_MISC_INT_2; |
| printk (KERN_ERR "NM256: Got misc interrupt #2\n"); |
| NM_ACK_INT (card, NM_MISC_INT_2); |
| cbyte = nm256_readPort8 (card, 2, 0x400); |
| nm256_writePort8 (card, 2, 0x400, cbyte & ~2); |
| } |
| |
| /* Unknown interrupt. */ |
| if (status) { |
| handled = 1; |
| printk (KERN_ERR "NM256: Fire in the hole! Unknown status 0x%x\n", |
| status); |
| /* Pray. */ |
| NM_ACK_INT (card, status); |
| } |
| return IRQ_RETVAL(handled); |
| } |
| |
| /* |
| * Handle a potential interrupt for the device referred to by DEV_ID. |
| * This handler is for the 256ZX, and is very similar to the non-ZX |
| * routine. |
| */ |
| |
| static irqreturn_t |
| nm256_interrupt_zx (int irq, void *dev_id, struct pt_regs *dummy) |
| { |
| struct nm256_info *card = (struct nm256_info *)dev_id; |
| u32 status; |
| static int badintrcount; |
| int handled = 0; |
| |
| if ((card == NULL) || (card->magsig != NM_MAGIC_SIG)) { |
| printk (KERN_ERR "NM256: Bad card pointer\n"); |
| return IRQ_NONE; |
| } |
| |
| status = nm256_readPort32 (card, 2, NM_INT_REG); |
| |
| /* Not ours. */ |
| if (status == 0) { |
| if (badintrcount++ > 1000) { |
| printk (KERN_ERR "NM256: Releasing interrupt, over 1000 invalid interrupts\n"); |
| /* |
| * I'm not sure if the best thing is to stop the card from |
| * playing or just release the interrupt (after all, we're in |
| * a bad situation, so doing fancy stuff may not be such a good |
| * idea). |
| * |
| * I worry about the card engine continuing to play noise |
| * over and over, however--that could become a very |
| * obnoxious problem. And we know that when this usually |
| * happens things are fairly safe, it just means the user's |
| * inserted a PCMCIA card and someone's spamming us with |
| * IRQ 9s. |
| */ |
| |
| handled = 1; |
| if (card->playing) |
| stopPlay (card); |
| if (card->recording) |
| stopRecord (card); |
| badintrcount = 0; |
| } |
| return IRQ_RETVAL(handled); |
| } |
| |
| badintrcount = 0; |
| |
| /* Rather boring; check for individual interrupts and process them. */ |
| |
| if (status & NM2_PLAYBACK_INT) { |
| handled = 1; |
| status &= ~NM2_PLAYBACK_INT; |
| NM2_ACK_INT (card, NM2_PLAYBACK_INT); |
| |
| if (card->playing) |
| nm256_get_new_block (card); |
| } |
| |
| if (status & NM2_RECORD_INT) { |
| handled = 1; |
| status &= ~NM2_RECORD_INT; |
| NM2_ACK_INT (card, NM2_RECORD_INT); |
| |
| if (card->recording) |
| nm256_read_block (card); |
| } |
| |
| if (status & NM2_MISC_INT_1) { |
| u8 cbyte; |
| |
| handled = 1; |
| status &= ~NM2_MISC_INT_1; |
| printk (KERN_ERR "NM256: Got misc interrupt #1\n"); |
| NM2_ACK_INT (card, NM2_MISC_INT_1); |
| cbyte = nm256_readPort8 (card, 2, 0x400); |
| nm256_writePort8 (card, 2, 0x400, cbyte | 2); |
| } |
| |
| if (status & NM2_MISC_INT_2) { |
| u8 cbyte; |
| |
| handled = 1; |
| status &= ~NM2_MISC_INT_2; |
| printk (KERN_ERR "NM256: Got misc interrupt #2\n"); |
| NM2_ACK_INT (card, NM2_MISC_INT_2); |
| cbyte = nm256_readPort8 (card, 2, 0x400); |
| nm256_writePort8 (card, 2, 0x400, cbyte & ~2); |
| } |
| |
| /* Unknown interrupt. */ |
| if (status) { |
| handled = 1; |
| printk (KERN_ERR "NM256: Fire in the hole! Unknown status 0x%x\n", |
| status); |
| /* Pray. */ |
| NM2_ACK_INT (card, status); |
| } |
| return IRQ_RETVAL(handled); |
| } |
| |
| /* |
| * Request our interrupt. |
| */ |
| static int |
| nm256_grabInterrupt (struct nm256_info *card) |
| { |
| if (card->has_irq++ == 0) { |
| if (request_irq (card->irq, card->introutine, SA_SHIRQ, |
| "NM256_audio", card) < 0) { |
| printk (KERN_ERR "NM256: can't obtain IRQ %d\n", card->irq); |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Release our interrupt. |
| */ |
| static int |
| nm256_releaseInterrupt (struct nm256_info *card) |
| { |
| if (card->has_irq <= 0) { |
| printk (KERN_ERR "nm256: too many calls to releaseInterrupt\n"); |
| return -1; |
| } |
| card->has_irq--; |
| if (card->has_irq == 0) { |
| free_irq (card->irq, card); |
| } |
| return 0; |
| } |
| |
| /* |
| * Waits for the mixer to become ready to be written; returns a zero value |
| * if it timed out. |
| */ |
| |
| static int |
| nm256_isReady (struct ac97_hwint *dev) |
| { |
| struct nm256_info *card = (struct nm256_info *)dev->driver_private; |
| int t2 = 10; |
| u32 testaddr; |
| u16 testb; |
| int done = 0; |
| |
| if (card->magsig != NM_MAGIC_SIG) { |
| printk (KERN_ERR "NM256: Bad magic signature in isReady!\n"); |
| return 0; |
| } |
| |
| testaddr = card->mixer_status_offset; |
| testb = card->mixer_status_mask; |
| |
| /* |
| * Loop around waiting for the mixer to become ready. |
| */ |
| while (! done && t2-- > 0) { |
| if ((nm256_readPort16 (card, 2, testaddr) & testb) == 0) |
| done = 1; |
| else |
| udelay (100); |
| } |
| return done; |
| } |
| |
| /* |
| * Return the contents of the AC97 mixer register REG. Returns a positive |
| * value if successful, or a negative error code. |
| */ |
| static int |
| nm256_readAC97Reg (struct ac97_hwint *dev, u8 reg) |
| { |
| struct nm256_info *card = (struct nm256_info *)dev->driver_private; |
| |
| if (card->magsig != NM_MAGIC_SIG) { |
| printk (KERN_ERR "NM256: Bad magic signature in readAC97Reg!\n"); |
| return -EINVAL; |
| } |
| |
| if (reg < 128) { |
| int res; |
| |
| nm256_isReady (dev); |
| res = nm256_readPort16 (card, 2, card->mixer + reg); |
| /* Magic delay. Bleah yucky. */ |
| udelay (1000); |
| return res; |
| } |
| else |
| return -EINVAL; |
| } |
| |
| /* |
| * Writes VALUE to AC97 mixer register REG. Returns 0 if successful, or |
| * a negative error code. |
| */ |
| static int |
| nm256_writeAC97Reg (struct ac97_hwint *dev, u8 reg, u16 value) |
| { |
| unsigned long flags; |
| int tries = 2; |
| int done = 0; |
| u32 base; |
| |
| struct nm256_info *card = (struct nm256_info *)dev->driver_private; |
| |
| if (card->magsig != NM_MAGIC_SIG) { |
| printk (KERN_ERR "NM256: Bad magic signature in writeAC97Reg!\n"); |
| return -EINVAL; |
| } |
| |
| base = card->mixer; |
| |
| spin_lock_irqsave(&card->lock,flags); |
| |
| nm256_isReady (dev); |
| |
| /* Wait for the write to take, too. */ |
| while ((tries-- > 0) && !done) { |
| nm256_writePort16 (card, 2, base + reg, value); |
| if (nm256_isReady (dev)) { |
| done = 1; |
| break; |
| } |
| |
| } |
| |
| spin_unlock_irqrestore(&card->lock,flags); |
| udelay (1000); |
| |
| return ! done; |
| } |
| |
| /* |
| * Initial register values to be written to the AC97 mixer. |
| * While most of these are identical to the reset values, we do this |
| * so that we have most of the register contents cached--this avoids |
| * reading from the mixer directly (which seems to be problematic, |
| * probably due to ignorance). |
| */ |
| struct initialValues |
| { |
| unsigned short port; |
| unsigned short value; |
| }; |
| |
| static struct initialValues nm256_ac97_initial_values[] = |
| { |
| { AC97_MASTER_VOL_STEREO, 0x8000 }, |
| { AC97_HEADPHONE_VOL, 0x8000 }, |
| { AC97_MASTER_VOL_MONO, 0x0000 }, |
| { AC97_PCBEEP_VOL, 0x0000 }, |
| { AC97_PHONE_VOL, 0x0008 }, |
| { AC97_MIC_VOL, 0x8000 }, |
| { AC97_LINEIN_VOL, 0x8808 }, |
| { AC97_CD_VOL, 0x8808 }, |
| { AC97_VIDEO_VOL, 0x8808 }, |
| { AC97_AUX_VOL, 0x8808 }, |
| { AC97_PCMOUT_VOL, 0x0808 }, |
| { AC97_RECORD_SELECT, 0x0000 }, |
| { AC97_RECORD_GAIN, 0x0B0B }, |
| { AC97_GENERAL_PURPOSE, 0x0000 }, |
| { 0xffff, 0xffff } |
| }; |
| |
| /* Initialize the AC97 into a known state. */ |
| static int |
| nm256_resetAC97 (struct ac97_hwint *dev) |
| { |
| struct nm256_info *card = (struct nm256_info *)dev->driver_private; |
| int x; |
| |
| if (card->magsig != NM_MAGIC_SIG) { |
| printk (KERN_ERR "NM256: Bad magic signature in resetAC97!\n"); |
| return -EINVAL; |
| } |
| |
| /* Reset the mixer. 'Tis magic! */ |
| nm256_writePort8 (card, 2, 0x6c0, 1); |
| // nm256_writePort8 (card, 2, 0x6cc, 0x87); /* This crashes Dell latitudes */ |
| nm256_writePort8 (card, 2, 0x6cc, 0x80); |
| nm256_writePort8 (card, 2, 0x6cc, 0x0); |
| |
| if (! card->mixer_values_init) { |
| for (x = 0; nm256_ac97_initial_values[x].port != 0xffff; x++) { |
| ac97_put_register (dev, |
| nm256_ac97_initial_values[x].port, |
| nm256_ac97_initial_values[x].value); |
| card->mixer_values_init = 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * We don't do anything particularly special here; it just passes the |
| * mixer ioctl to the AC97 driver. |
| */ |
| static int |
| nm256_default_mixer_ioctl (int dev, unsigned int cmd, void __user *arg) |
| { |
| struct nm256_info *card = nm256_find_card_for_mixer (dev); |
| if (card != NULL) |
| return ac97_mixer_ioctl (&(card->mdev), cmd, arg); |
| else |
| return -ENODEV; |
| } |
| |
| static struct mixer_operations nm256_mixer_operations = { |
| .owner = THIS_MODULE, |
| .id = "NeoMagic", |
| .name = "NM256AC97Mixer", |
| .ioctl = nm256_default_mixer_ioctl |
| }; |
| |
| /* |
| * Default settings for the OSS mixer. These are set last, after the |
| * mixer is initialized. |
| * |
| * I "love" C sometimes. Got braces? |
| */ |
| static struct ac97_mixer_value_list mixer_defaults[] = { |
| { SOUND_MIXER_VOLUME, { { 85, 85 } } }, |
| { SOUND_MIXER_SPEAKER, { { 100 } } }, |
| { SOUND_MIXER_PCM, { { 65, 65 } } }, |
| { SOUND_MIXER_CD, { { 65, 65 } } }, |
| { -1, { { 0, 0 } } } |
| }; |
| |
| |
| /* Installs the AC97 mixer into CARD. */ |
| static int __init |
| nm256_install_mixer (struct nm256_info *card) |
| { |
| int mixer; |
| |
| card->mdev.reset_device = nm256_resetAC97; |
| card->mdev.read_reg = nm256_readAC97Reg; |
| card->mdev.write_reg = nm256_writeAC97Reg; |
| card->mdev.driver_private = (void *)card; |
| |
| if (ac97_init (&(card->mdev))) |
| return -1; |
| |
| mixer = sound_alloc_mixerdev(); |
| if (num_mixers >= MAX_MIXER_DEV) { |
| printk ("NM256 mixer: Unable to alloc mixerdev\n"); |
| return -1; |
| } |
| |
| mixer_devs[mixer] = &nm256_mixer_operations; |
| card->mixer_oss_dev = mixer; |
| |
| /* Some reasonable default values. */ |
| ac97_set_values (&(card->mdev), mixer_defaults); |
| |
| printk(KERN_INFO "Initialized AC97 mixer\n"); |
| return 0; |
| } |
| |
| /* Perform a full reset on the hardware; this is invoked when an APM |
| resume event occurs. */ |
| static void |
| nm256_full_reset (struct nm256_info *card) |
| { |
| nm256_initHw (card); |
| ac97_reset (&(card->mdev)); |
| } |
| |
| /* |
| * See if the signature left by the NM256 BIOS is intact; if so, we use |
| * the associated address as the end of our audio buffer in the video |
| * RAM. |
| */ |
| |
| static void __init |
| nm256_peek_for_sig (struct nm256_info *card) |
| { |
| u32 port1offset |
| = card->port[0].physaddr + card->port[0].end_offset - 0x0400; |
| /* The signature is located 1K below the end of video RAM. */ |
| char __iomem *temp = ioremap_nocache (port1offset, 16); |
| /* Default buffer end is 5120 bytes below the top of RAM. */ |
| u32 default_value = card->port[0].end_offset - 0x1400; |
| u32 sig; |
| |
| /* Install the default value first, so we don't have to repeatedly |
| do it if there is a problem. */ |
| card->port[0].end_offset = default_value; |
| |
| if (temp == NULL) { |
| printk (KERN_ERR "NM256: Unable to scan for card signature in video RAM\n"); |
| return; |
| } |
| sig = readl (temp); |
| if ((sig & NM_SIG_MASK) == NM_SIGNATURE) { |
| u32 pointer = readl (temp + 4); |
| |
| /* |
| * If it's obviously invalid, don't use it (the port already has a |
| * suitable default value set). |
| */ |
| if (pointer != 0xffffffff) |
| card->port[0].end_offset = pointer; |
| |
| printk (KERN_INFO "NM256: Found card signature in video RAM: 0x%x\n", |
| pointer); |
| } |
| |
| iounmap (temp); |
| } |
| |
| /* |
| * Install a driver for the PCI device referenced by PCIDEV. |
| * VERSTR is a human-readable version string. |
| */ |
| |
| static int __devinit |
| nm256_install(struct pci_dev *pcidev, enum nm256rev rev, char *verstr) |
| { |
| struct nm256_info *card; |
| struct pm_dev *pmdev; |
| int x; |
| |
| if (pci_enable_device(pcidev)) |
| return 0; |
| |
| card = kmalloc (sizeof (struct nm256_info), GFP_KERNEL); |
| if (card == NULL) { |
| printk (KERN_ERR "NM256: out of memory!\n"); |
| return 0; |
| } |
| |
| card->magsig = NM_MAGIC_SIG; |
| card->playing = 0; |
| card->recording = 0; |
| card->rev = rev; |
| spin_lock_init(&card->lock); |
| |
| /* Init the memory port info. */ |
| for (x = 0; x < 2; x++) { |
| card->port[x].physaddr = pci_resource_start (pcidev, x); |
| card->port[x].ptr = NULL; |
| card->port[x].start_offset = 0; |
| card->port[x].end_offset = 0; |
| } |
| |
| /* Port 2 is easy. */ |
| card->port[1].start_offset = 0; |
| card->port[1].end_offset = NM_PORT2_SIZE; |
| |
| /* Yuck. But we have to map in port 2 so we can check how much RAM the |
| card has. */ |
| if (nm256_remap_ports (card)) { |
| kfree (card); |
| return 0; |
| } |
| |
| /* |
| * The NM256 has two memory ports. The first port is nothing |
| * more than a chunk of video RAM, which is used as the I/O ring |
| * buffer. The second port has the actual juicy stuff (like the |
| * mixer and the playback engine control registers). |
| */ |
| |
| if (card->rev == REV_NM256AV) { |
| /* Ok, try to see if this is a non-AC97 version of the hardware. */ |
| int pval = nm256_readPort16 (card, 2, NM_MIXER_PRESENCE); |
| if ((pval & NM_PRESENCE_MASK) != NM_PRESENCE_VALUE) { |
| if (! force_load) { |
| printk (KERN_ERR "NM256: This doesn't look to me like the AC97-compatible version.\n"); |
| printk (KERN_ERR " You can force the driver to load by passing in the module\n"); |
| printk (KERN_ERR " parameter:\n"); |
| printk (KERN_ERR " force_load = 1\n"); |
| printk (KERN_ERR "\n"); |
| printk (KERN_ERR " More likely, you should be using the appropriate SB-16 or\n"); |
| printk (KERN_ERR " CS4232 driver instead. (If your BIOS has settings for\n"); |
| printk (KERN_ERR " IRQ and/or DMA for the sound card, this is *not* the correct\n"); |
| printk (KERN_ERR " driver to use.)\n"); |
| nm256_release_ports (card); |
| kfree (card); |
| return 0; |
| } |
| else { |
| printk (KERN_INFO "NM256: Forcing driver load as per user request.\n"); |
| } |
| } |
| else { |
| /* printk (KERN_INFO "NM256: Congratulations. You're not running Eunice.\n")*/; |
| } |
| card->port[0].end_offset = 2560 * 1024; |
| card->introutine = nm256_interrupt; |
| card->mixer_status_offset = NM_MIXER_STATUS_OFFSET; |
| card->mixer_status_mask = NM_MIXER_READY_MASK; |
| } |
| else { |
| /* Not sure if there is any relevant detect for the ZX or not. */ |
| if (nm256_readPort8 (card, 2, 0xa0b) != 0) |
| card->port[0].end_offset = 6144 * 1024; |
| else |
| card->port[0].end_offset = 4096 * 1024; |
| |
| card->introutine = nm256_interrupt_zx; |
| card->mixer_status_offset = NM2_MIXER_STATUS_OFFSET; |
| card->mixer_status_mask = NM2_MIXER_READY_MASK; |
| } |
| |
| if (buffertop >= 98304 && buffertop < card->port[0].end_offset) |
| card->port[0].end_offset = buffertop; |
| else |
| nm256_peek_for_sig (card); |
| |
| card->port[0].start_offset = card->port[0].end_offset - 98304; |
| |
| printk (KERN_INFO "NM256: Mapping port 1 from 0x%x - 0x%x\n", |
| card->port[0].start_offset, card->port[0].end_offset); |
| |
| if (nm256_remap_ports (card)) { |
| kfree (card); |
| return 0; |
| } |
| |
| /* See if we can get the interrupt. */ |
| |
| card->irq = pcidev->irq; |
| card->has_irq = 0; |
| |
| if (nm256_grabInterrupt (card) != 0) { |
| nm256_release_ports (card); |
| kfree (card); |
| return 0; |
| } |
| |
| nm256_releaseInterrupt (card); |
| |
| /* |
| * Init the board. |
| */ |
| |
| card->playbackBufferSize = 16384; |
| card->recordBufferSize = 16384; |
| |
| card->coeffBuf = card->port[0].end_offset - NM_MAX_COEFFICIENT; |
| card->abuf2 = card->coeffBuf - card->recordBufferSize; |
| card->abuf1 = card->abuf2 - card->playbackBufferSize; |
| card->allCoeffBuf = card->abuf2 - (NM_TOTAL_COEFF_COUNT * 4); |
| |
| /* Fixed setting. */ |
| card->mixer = NM_MIXER_OFFSET; |
| card->mixer_values_init = 0; |
| |
| card->is_open_play = 0; |
| card->is_open_record = 0; |
| |
| card->coeffsCurrent = 0; |
| |
| card->opencnt[0] = 0; card->opencnt[1] = 0; |
| |
| /* Reasonable default settings, but largely unnecessary. */ |
| for (x = 0; x < 2; x++) { |
| card->sinfo[x].bits = 8; |
| card->sinfo[x].stereo = 0; |
| card->sinfo[x].samplerate = 8000; |
| } |
| |
| nm256_initHw (card); |
| |
| for (x = 0; x < 2; x++) { |
| if ((card->dev[x] = |
| sound_install_audiodrv(AUDIO_DRIVER_VERSION, |
| "NM256", &nm256_audio_driver, |
| sizeof(struct audio_driver), |
| DMA_NODMA, AFMT_U8 | AFMT_S16_LE, |
| NULL, -1, -1)) >= 0) { |
| /* 1K minimum buffer size. */ |
| audio_devs[card->dev[x]]->min_fragment = 10; |
| /* Maximum of 8K buffer size. */ |
| audio_devs[card->dev[x]]->max_fragment = 13; |
| } |
| else { |
| printk(KERN_ERR "NM256: Too many PCM devices available\n"); |
| nm256_release_ports (card); |
| kfree (card); |
| return 0; |
| } |
| } |
| |
| pci_set_drvdata(pcidev,card); |
| |
| /* Insert the card in the list. */ |
| card->next_card = nmcard_list; |
| nmcard_list = card; |
| |
| printk(KERN_INFO "Initialized NeoMagic %s audio in PCI native mode\n", |
| verstr); |
| |
| /* |
| * And our mixer. (We should allow support for other mixers, maybe.) |
| */ |
| |
| nm256_install_mixer (card); |
| |
| pmdev = pm_register(PM_PCI_DEV, PM_PCI_ID(pcidev), handle_pm_event); |
| if (pmdev) |
| pmdev->data = card; |
| |
| return 1; |
| } |
| |
| |
| /* |
| * PM event handler, so the card is properly reinitialized after a power |
| * event. |
| */ |
| static int |
| handle_pm_event (struct pm_dev *dev, pm_request_t rqst, void *data) |
| { |
| struct nm256_info *crd = (struct nm256_info*) dev->data; |
| if (crd) { |
| switch (rqst) { |
| case PM_SUSPEND: |
| break; |
| case PM_RESUME: |
| { |
| int playing = crd->playing; |
| nm256_full_reset (crd); |
| /* |
| * A little ugly, but that's ok; pretend the |
| * block we were playing is done. |
| */ |
| if (playing) |
| DMAbuf_outputintr (crd->dev_for_play, 1); |
| } |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| static int __devinit |
| nm256_probe(struct pci_dev *pcidev,const struct pci_device_id *pciid) |
| { |
| if (pcidev->device == PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO) |
| return nm256_install(pcidev, REV_NM256AV, "256AV"); |
| if (pcidev->device == PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO) |
| return nm256_install(pcidev, REV_NM256ZX, "256ZX"); |
| if (pcidev->device == PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO) |
| return nm256_install(pcidev, REV_NM256ZX, "256XL+"); |
| return -1; /* should not come here ... */ |
| } |
| |
| static void __devinit |
| nm256_remove(struct pci_dev *pcidev) { |
| struct nm256_info *xcard = pci_get_drvdata(pcidev); |
| struct nm256_info *card,*next_card = NULL; |
| |
| for (card = nmcard_list; card != NULL; card = next_card) { |
| next_card = card->next_card; |
| if (card == xcard) { |
| stopPlay (card); |
| stopRecord (card); |
| if (card->has_irq) |
| free_irq (card->irq, card); |
| nm256_release_ports (card); |
| sound_unload_mixerdev (card->mixer_oss_dev); |
| sound_unload_audiodev (card->dev[0]); |
| sound_unload_audiodev (card->dev[1]); |
| kfree (card); |
| break; |
| } |
| } |
| if (nmcard_list == card) |
| nmcard_list = next_card; |
| } |
| |
| /* |
| * Open the device |
| * |
| * DEV - device |
| * MODE - mode to open device (logical OR of OPEN_READ and OPEN_WRITE) |
| * |
| * Called when opening the DMAbuf (dmabuf.c:259) |
| */ |
| static int |
| nm256_audio_open(int dev, int mode) |
| { |
| struct nm256_info *card = nm256_find_card (dev); |
| int w; |
| |
| if (card == NULL) |
| return -ENODEV; |
| |
| if (card->dev[0] == dev) |
| w = 0; |
| else if (card->dev[1] == dev) |
| w = 1; |
| else |
| return -ENODEV; |
| |
| if (card->opencnt[w] > 0) |
| return -EBUSY; |
| |
| /* No bits set? Huh? */ |
| if (! ((mode & OPEN_READ) || (mode & OPEN_WRITE))) |
| return -EIO; |
| |
| /* |
| * If it's open for both read and write, and the card's currently |
| * being read or written to, then do the opposite of what has |
| * already been done. Otherwise, don't specify any mode until the |
| * user actually tries to do I/O. (Some programs open the device |
| * for both read and write, but only actually do reading or writing.) |
| */ |
| |
| if ((mode & OPEN_WRITE) && (mode & OPEN_READ)) { |
| if (card->is_open_play) |
| mode = OPEN_WRITE; |
| else if (card->is_open_record) |
| mode = OPEN_READ; |
| else mode = 0; |
| } |
| |
| if (mode & OPEN_WRITE) { |
| if (card->is_open_play == 0) { |
| card->dev_for_play = dev; |
| card->is_open_play = 1; |
| } |
| else |
| return -EBUSY; |
| } |
| |
| if (mode & OPEN_READ) { |
| if (card->is_open_record == 0) { |
| card->dev_for_record = dev; |
| card->is_open_record = 1; |
| } |
| else |
| return -EBUSY; |
| } |
| |
| card->opencnt[w]++; |
| return 0; |
| } |
| |
| /* |
| * Close the device |
| * |
| * DEV - device |
| * |
| * Called when closing the DMAbuf (dmabuf.c:477) |
| * after halt_xfer |
| */ |
| static void |
| nm256_audio_close(int dev) |
| { |
| struct nm256_info *card = nm256_find_card (dev); |
| |
| if (card != NULL) { |
| int w; |
| |
| if (card->dev[0] == dev) |
| w = 0; |
| else if (card->dev[1] == dev) |
| w = 1; |
| else |
| return; |
| |
| card->opencnt[w]--; |
| if (card->opencnt[w] <= 0) { |
| card->opencnt[w] = 0; |
| |
| if (card->dev_for_play == dev) { |
| stopPlay (card); |
| card->is_open_play = 0; |
| card->dev_for_play = -1; |
| } |
| |
| if (card->dev_for_record == dev) { |
| stopRecord (card); |
| card->is_open_record = 0; |
| card->dev_for_record = -1; |
| } |
| } |
| } |
| } |
| |
| /* Standard ioctl handler. */ |
| static int |
| nm256_audio_ioctl(int dev, unsigned int cmd, void __user *arg) |
| { |
| int ret; |
| u32 oldinfo; |
| int w; |
| |
| struct nm256_info *card = nm256_find_card (dev); |
| |
| if (card == NULL) |
| return -ENODEV; |
| |
| if (dev == card->dev[0]) |
| w = 0; |
| else |
| w = 1; |
| |
| /* |
| * The code here is messy. There are probably better ways to do |
| * it. (It should be possible to handle it the same way the AC97 mixer |
| * is done.) |
| */ |
| switch (cmd) |
| { |
| case SOUND_PCM_WRITE_RATE: |
| if (get_user(ret, (int __user *) arg)) |
| return -EFAULT; |
| |
| if (ret != 0) { |
| oldinfo = card->sinfo[w].samplerate; |
| card->sinfo[w].samplerate = ret; |
| ret = nm256_setInfo(dev, card); |
| if (ret != 0) |
| card->sinfo[w].samplerate = oldinfo; |
| } |
| if (ret == 0) |
| ret = card->sinfo[w].samplerate; |
| break; |
| |
| case SOUND_PCM_READ_RATE: |
| ret = card->sinfo[w].samplerate; |
| break; |
| |
| case SNDCTL_DSP_STEREO: |
| if (get_user(ret, (int __user *) arg)) |
| return -EFAULT; |
| |
| card->sinfo[w].stereo = ret ? 1 : 0; |
| ret = nm256_setInfo (dev, card); |
| if (ret == 0) |
| ret = card->sinfo[w].stereo; |
| |
| break; |
| |
| case SOUND_PCM_WRITE_CHANNELS: |
| if (get_user(ret, (int __user *) arg)) |
| return -EFAULT; |
| |
| if (ret < 1 || ret > 3) |
| ret = card->sinfo[w].stereo + 1; |
| else { |
| card->sinfo[w].stereo = ret - 1; |
| ret = nm256_setInfo (dev, card); |
| if (ret == 0) |
| ret = card->sinfo[w].stereo + 1; |
| } |
| break; |
| |
| case SOUND_PCM_READ_CHANNELS: |
| ret = card->sinfo[w].stereo + 1; |
| break; |
| |
| case SNDCTL_DSP_SETFMT: |
| if (get_user(ret, (int __user *) arg)) |
| return -EFAULT; |
| |
| if (ret != 0) { |
| oldinfo = card->sinfo[w].bits; |
| card->sinfo[w].bits = ret; |
| ret = nm256_setInfo (dev, card); |
| if (ret != 0) |
| card->sinfo[w].bits = oldinfo; |
| } |
| if (ret == 0) |
| ret = card->sinfo[w].bits; |
| break; |
| |
| case SOUND_PCM_READ_BITS: |
| ret = card->sinfo[w].bits; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| return put_user(ret, (int __user *) arg); |
| } |
| |
| /* |
| * Given the sound device DEV and an associated physical buffer PHYSBUF, |
| * return a pointer to the actual buffer in kernel space. |
| * |
| * This routine should exist as part of the soundcore routines. |
| */ |
| |
| static char * |
| nm256_getDMAbuffer (int dev, unsigned long physbuf) |
| { |
| struct audio_operations *adev = audio_devs[dev]; |
| struct dma_buffparms *dmap = adev->dmap_out; |
| char *dma_start = |
| (char *)(physbuf - (unsigned long)dmap->raw_buf_phys |
| + (unsigned long)dmap->raw_buf); |
| |
| return dma_start; |
| } |
| |
| |
| /* |
| * Output a block to sound device |
| * |
| * dev - device number |
| * buf - physical address of buffer |
| * total_count - total byte count in buffer |
| * intrflag - set if this has been called from an interrupt |
| * (via DMAbuf_outputintr) |
| * restart_dma - set if engine needs to be re-initialised |
| * |
| * Called when: |
| * 1. Starting output (dmabuf.c:1327) |
| * 2. (dmabuf.c:1504) |
| * 3. A new buffer needs to be sent to the device (dmabuf.c:1579) |
| */ |
| static void |
| nm256_audio_output_block(int dev, unsigned long physbuf, |
| int total_count, int intrflag) |
| { |
| struct nm256_info *card = nm256_find_card (dev); |
| |
| if (card != NULL) { |
| char *dma_buf = nm256_getDMAbuffer (dev, physbuf); |
| card->is_open_play = 1; |
| card->dev_for_play = dev; |
| nm256_write_block (card, dma_buf, total_count); |
| } |
| } |
| |
| /* Ditto, but do recording instead. */ |
| static void |
| nm256_audio_start_input(int dev, unsigned long physbuf, int count, |
| int intrflag) |
| { |
| struct nm256_info *card = nm256_find_card (dev); |
| |
| if (card != NULL) { |
| char *dma_buf = nm256_getDMAbuffer (dev, physbuf); |
| card->is_open_record = 1; |
| card->dev_for_record = dev; |
| nm256_startRecording (card, dma_buf, count); |
| } |
| } |
| |
| /* |
| * Prepare for inputting samples to DEV. |
| * Each requested buffer will be BSIZE byes long, with a total of |
| * BCOUNT buffers. |
| */ |
| |
| static int |
| nm256_audio_prepare_for_input(int dev, int bsize, int bcount) |
| { |
| struct nm256_info *card = nm256_find_card (dev); |
| |
| if (card == NULL) |
| return -ENODEV; |
| |
| if (card->is_open_record && card->dev_for_record != dev) |
| return -EBUSY; |
| |
| audio_devs[dev]->dmap_in->flags |= DMA_NODMA; |
| return 0; |
| } |
| |
| /* |
| * Prepare for outputting samples to `dev' |
| * |
| * Each buffer that will be passed will be `bsize' bytes long, |
| * with a total of `bcount' buffers. |
| * |
| * Called when: |
| * 1. A trigger enables audio output (dmabuf.c:978) |
| * 2. We get a write buffer without dma_mode setup (dmabuf.c:1152) |
| * 3. We restart a transfer (dmabuf.c:1324) |
| */ |
| |
| static int |
| nm256_audio_prepare_for_output(int dev, int bsize, int bcount) |
| { |
| struct nm256_info *card = nm256_find_card (dev); |
| |
| if (card == NULL) |
| return -ENODEV; |
| |
| if (card->is_open_play && card->dev_for_play != dev) |
| return -EBUSY; |
| |
| audio_devs[dev]->dmap_out->flags |= DMA_NODMA; |
| return 0; |
| } |
| |
| /* Stop the current operations associated with DEV. */ |
| static void |
| nm256_audio_reset(int dev) |
| { |
| struct nm256_info *card = nm256_find_card (dev); |
| |
| if (card != NULL) { |
| if (card->dev_for_play == dev) |
| stopPlay (card); |
| if (card->dev_for_record == dev) |
| stopRecord (card); |
| } |
| } |
| |
| static int |
| nm256_audio_local_qlen(int dev) |
| { |
| return 0; |
| } |
| |
| static struct audio_driver nm256_audio_driver = |
| { |
| .owner = THIS_MODULE, |
| .open = nm256_audio_open, |
| .close = nm256_audio_close, |
| .output_block = nm256_audio_output_block, |
| .start_input = nm256_audio_start_input, |
| .ioctl = nm256_audio_ioctl, |
| .prepare_for_input = nm256_audio_prepare_for_input, |
| .prepare_for_output = nm256_audio_prepare_for_output, |
| .halt_io = nm256_audio_reset, |
| .local_qlen = nm256_audio_local_qlen, |
| }; |
| |
| static struct pci_device_id nm256_pci_tbl[] = { |
| {PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0}, |
| {PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0}, |
| {PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0}, |
| {0,} |
| }; |
| MODULE_DEVICE_TABLE(pci, nm256_pci_tbl); |
| MODULE_LICENSE("GPL"); |
| |
| |
| static struct pci_driver nm256_pci_driver = { |
| .name = "nm256_audio", |
| .id_table = nm256_pci_tbl, |
| .probe = nm256_probe, |
| .remove = nm256_remove, |
| }; |
| |
| module_param(usecache, bool, 0); |
| module_param(buffertop, int, 0); |
| module_param(nm256_debug, bool, 0644); |
| module_param(force_load, bool, 0); |
| |
| static int __init do_init_nm256(void) |
| { |
| printk (KERN_INFO "NeoMagic 256AV/256ZX audio driver, version 1.1p\n"); |
| return pci_module_init(&nm256_pci_driver); |
| } |
| |
| static void __exit cleanup_nm256 (void) |
| { |
| pci_unregister_driver(&nm256_pci_driver); |
| pm_unregister_all (&handle_pm_event); |
| } |
| |
| module_init(do_init_nm256); |
| module_exit(cleanup_nm256); |
| |
| /* |
| * Local variables: |
| * c-basic-offset: 4 |
| * End: |
| */ |