| /******************************************************************************* |
| |
| Intel 10 Gigabit PCI Express Linux driver |
| Copyright(c) 1999 - 2008 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/sched.h> |
| |
| #include "ixgbe_common.h" |
| #include "ixgbe_phy.h" |
| |
| static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw); |
| static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw); |
| static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw); |
| static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw); |
| static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw); |
| static void ixgbe_standby_eeprom(struct ixgbe_hw *hw); |
| static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, |
| u16 count); |
| static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count); |
| static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); |
| static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); |
| static void ixgbe_release_eeprom(struct ixgbe_hw *hw); |
| static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw); |
| |
| static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index); |
| static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index); |
| static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr); |
| static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr); |
| static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq); |
| |
| /** |
| * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx |
| * @hw: pointer to hardware structure |
| * |
| * Starts the hardware by filling the bus info structure and media type, clears |
| * all on chip counters, initializes receive address registers, multicast |
| * table, VLAN filter table, calls routine to set up link and flow control |
| * settings, and leaves transmit and receive units disabled and uninitialized |
| **/ |
| s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw) |
| { |
| u32 ctrl_ext; |
| |
| /* Set the media type */ |
| hw->phy.media_type = hw->mac.ops.get_media_type(hw); |
| |
| /* Identify the PHY */ |
| hw->phy.ops.identify(hw); |
| |
| /* |
| * Store MAC address from RAR0, clear receive address registers, and |
| * clear the multicast table |
| */ |
| hw->mac.ops.init_rx_addrs(hw); |
| |
| /* Clear the VLAN filter table */ |
| hw->mac.ops.clear_vfta(hw); |
| |
| /* Set up link */ |
| hw->mac.ops.setup_link(hw); |
| |
| /* Clear statistics registers */ |
| hw->mac.ops.clear_hw_cntrs(hw); |
| |
| /* Set No Snoop Disable */ |
| ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT); |
| ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS; |
| IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext); |
| IXGBE_WRITE_FLUSH(hw); |
| |
| /* Clear adapter stopped flag */ |
| hw->adapter_stopped = false; |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_init_hw_generic - Generic hardware initialization |
| * @hw: pointer to hardware structure |
| * |
| * Initialize the hardware by resetting the hardware, filling the bus info |
| * structure and media type, clears all on chip counters, initializes receive |
| * address registers, multicast table, VLAN filter table, calls routine to set |
| * up link and flow control settings, and leaves transmit and receive units |
| * disabled and uninitialized |
| **/ |
| s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw) |
| { |
| /* Reset the hardware */ |
| hw->mac.ops.reset_hw(hw); |
| |
| /* Start the HW */ |
| hw->mac.ops.start_hw(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters |
| * @hw: pointer to hardware structure |
| * |
| * Clears all hardware statistics counters by reading them from the hardware |
| * Statistics counters are clear on read. |
| **/ |
| s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw) |
| { |
| u16 i = 0; |
| |
| IXGBE_READ_REG(hw, IXGBE_CRCERRS); |
| IXGBE_READ_REG(hw, IXGBE_ILLERRC); |
| IXGBE_READ_REG(hw, IXGBE_ERRBC); |
| IXGBE_READ_REG(hw, IXGBE_MSPDC); |
| for (i = 0; i < 8; i++) |
| IXGBE_READ_REG(hw, IXGBE_MPC(i)); |
| |
| IXGBE_READ_REG(hw, IXGBE_MLFC); |
| IXGBE_READ_REG(hw, IXGBE_MRFC); |
| IXGBE_READ_REG(hw, IXGBE_RLEC); |
| IXGBE_READ_REG(hw, IXGBE_LXONTXC); |
| IXGBE_READ_REG(hw, IXGBE_LXONRXC); |
| IXGBE_READ_REG(hw, IXGBE_LXOFFTXC); |
| IXGBE_READ_REG(hw, IXGBE_LXOFFRXC); |
| |
| for (i = 0; i < 8; i++) { |
| IXGBE_READ_REG(hw, IXGBE_PXONTXC(i)); |
| IXGBE_READ_REG(hw, IXGBE_PXONRXC(i)); |
| IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i)); |
| IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i)); |
| } |
| |
| IXGBE_READ_REG(hw, IXGBE_PRC64); |
| IXGBE_READ_REG(hw, IXGBE_PRC127); |
| IXGBE_READ_REG(hw, IXGBE_PRC255); |
| IXGBE_READ_REG(hw, IXGBE_PRC511); |
| IXGBE_READ_REG(hw, IXGBE_PRC1023); |
| IXGBE_READ_REG(hw, IXGBE_PRC1522); |
| IXGBE_READ_REG(hw, IXGBE_GPRC); |
| IXGBE_READ_REG(hw, IXGBE_BPRC); |
| IXGBE_READ_REG(hw, IXGBE_MPRC); |
| IXGBE_READ_REG(hw, IXGBE_GPTC); |
| IXGBE_READ_REG(hw, IXGBE_GORCL); |
| IXGBE_READ_REG(hw, IXGBE_GORCH); |
| IXGBE_READ_REG(hw, IXGBE_GOTCL); |
| IXGBE_READ_REG(hw, IXGBE_GOTCH); |
| for (i = 0; i < 8; i++) |
| IXGBE_READ_REG(hw, IXGBE_RNBC(i)); |
| IXGBE_READ_REG(hw, IXGBE_RUC); |
| IXGBE_READ_REG(hw, IXGBE_RFC); |
| IXGBE_READ_REG(hw, IXGBE_ROC); |
| IXGBE_READ_REG(hw, IXGBE_RJC); |
| IXGBE_READ_REG(hw, IXGBE_MNGPRC); |
| IXGBE_READ_REG(hw, IXGBE_MNGPDC); |
| IXGBE_READ_REG(hw, IXGBE_MNGPTC); |
| IXGBE_READ_REG(hw, IXGBE_TORL); |
| IXGBE_READ_REG(hw, IXGBE_TORH); |
| IXGBE_READ_REG(hw, IXGBE_TPR); |
| IXGBE_READ_REG(hw, IXGBE_TPT); |
| IXGBE_READ_REG(hw, IXGBE_PTC64); |
| IXGBE_READ_REG(hw, IXGBE_PTC127); |
| IXGBE_READ_REG(hw, IXGBE_PTC255); |
| IXGBE_READ_REG(hw, IXGBE_PTC511); |
| IXGBE_READ_REG(hw, IXGBE_PTC1023); |
| IXGBE_READ_REG(hw, IXGBE_PTC1522); |
| IXGBE_READ_REG(hw, IXGBE_MPTC); |
| IXGBE_READ_REG(hw, IXGBE_BPTC); |
| for (i = 0; i < 16; i++) { |
| IXGBE_READ_REG(hw, IXGBE_QPRC(i)); |
| IXGBE_READ_REG(hw, IXGBE_QBRC(i)); |
| IXGBE_READ_REG(hw, IXGBE_QPTC(i)); |
| IXGBE_READ_REG(hw, IXGBE_QBTC(i)); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_read_pba_num_generic - Reads part number from EEPROM |
| * @hw: pointer to hardware structure |
| * @pba_num: stores the part number from the EEPROM |
| * |
| * Reads the part number from the EEPROM. |
| **/ |
| s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num) |
| { |
| s32 ret_val; |
| u16 data; |
| |
| ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| *pba_num = (u32)(data << 16); |
| |
| ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| *pba_num |= data; |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_get_mac_addr_generic - Generic get MAC address |
| * @hw: pointer to hardware structure |
| * @mac_addr: Adapter MAC address |
| * |
| * Reads the adapter's MAC address from first Receive Address Register (RAR0) |
| * A reset of the adapter must be performed prior to calling this function |
| * in order for the MAC address to have been loaded from the EEPROM into RAR0 |
| **/ |
| s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr) |
| { |
| u32 rar_high; |
| u32 rar_low; |
| u16 i; |
| |
| rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0)); |
| rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0)); |
| |
| for (i = 0; i < 4; i++) |
| mac_addr[i] = (u8)(rar_low >> (i*8)); |
| |
| for (i = 0; i < 2; i++) |
| mac_addr[i+4] = (u8)(rar_high >> (i*8)); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units |
| * @hw: pointer to hardware structure |
| * |
| * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts, |
| * disables transmit and receive units. The adapter_stopped flag is used by |
| * the shared code and drivers to determine if the adapter is in a stopped |
| * state and should not touch the hardware. |
| **/ |
| s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw) |
| { |
| u32 number_of_queues; |
| u32 reg_val; |
| u16 i; |
| |
| /* |
| * Set the adapter_stopped flag so other driver functions stop touching |
| * the hardware |
| */ |
| hw->adapter_stopped = true; |
| |
| /* Disable the receive unit */ |
| reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL); |
| reg_val &= ~(IXGBE_RXCTRL_RXEN); |
| IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val); |
| IXGBE_WRITE_FLUSH(hw); |
| msleep(2); |
| |
| /* Clear interrupt mask to stop from interrupts being generated */ |
| IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK); |
| |
| /* Clear any pending interrupts */ |
| IXGBE_READ_REG(hw, IXGBE_EICR); |
| |
| /* Disable the transmit unit. Each queue must be disabled. */ |
| number_of_queues = hw->mac.max_tx_queues; |
| for (i = 0; i < number_of_queues; i++) { |
| reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i)); |
| if (reg_val & IXGBE_TXDCTL_ENABLE) { |
| reg_val &= ~IXGBE_TXDCTL_ENABLE; |
| IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val); |
| } |
| } |
| |
| /* |
| * Prevent the PCI-E bus from from hanging by disabling PCI-E master |
| * access and verify no pending requests |
| */ |
| if (ixgbe_disable_pcie_master(hw) != 0) |
| hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_led_on_generic - Turns on the software controllable LEDs. |
| * @hw: pointer to hardware structure |
| * @index: led number to turn on |
| **/ |
| s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index) |
| { |
| u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); |
| |
| /* To turn on the LED, set mode to ON. */ |
| led_reg &= ~IXGBE_LED_MODE_MASK(index); |
| led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index); |
| IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); |
| IXGBE_WRITE_FLUSH(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_led_off_generic - Turns off the software controllable LEDs. |
| * @hw: pointer to hardware structure |
| * @index: led number to turn off |
| **/ |
| s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index) |
| { |
| u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); |
| |
| /* To turn off the LED, set mode to OFF. */ |
| led_reg &= ~IXGBE_LED_MODE_MASK(index); |
| led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index); |
| IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); |
| IXGBE_WRITE_FLUSH(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_init_eeprom_params_generic - Initialize EEPROM params |
| * @hw: pointer to hardware structure |
| * |
| * Initializes the EEPROM parameters ixgbe_eeprom_info within the |
| * ixgbe_hw struct in order to set up EEPROM access. |
| **/ |
| s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw) |
| { |
| struct ixgbe_eeprom_info *eeprom = &hw->eeprom; |
| u32 eec; |
| u16 eeprom_size; |
| |
| if (eeprom->type == ixgbe_eeprom_uninitialized) { |
| eeprom->type = ixgbe_eeprom_none; |
| /* Set default semaphore delay to 10ms which is a well |
| * tested value */ |
| eeprom->semaphore_delay = 10; |
| |
| /* |
| * Check for EEPROM present first. |
| * If not present leave as none |
| */ |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| if (eec & IXGBE_EEC_PRES) { |
| eeprom->type = ixgbe_eeprom_spi; |
| |
| /* |
| * SPI EEPROM is assumed here. This code would need to |
| * change if a future EEPROM is not SPI. |
| */ |
| eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >> |
| IXGBE_EEC_SIZE_SHIFT); |
| eeprom->word_size = 1 << (eeprom_size + |
| IXGBE_EEPROM_WORD_SIZE_SHIFT); |
| } |
| |
| if (eec & IXGBE_EEC_ADDR_SIZE) |
| eeprom->address_bits = 16; |
| else |
| eeprom->address_bits = 8; |
| hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: " |
| "%d\n", eeprom->type, eeprom->word_size, |
| eeprom->address_bits); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang |
| * @hw: pointer to hardware structure |
| * @offset: offset within the EEPROM to be read |
| * @data: read 16 bit value from EEPROM |
| * |
| * Reads 16 bit value from EEPROM through bit-bang method |
| **/ |
| s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, |
| u16 *data) |
| { |
| s32 status; |
| u16 word_in; |
| u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI; |
| |
| hw->eeprom.ops.init_params(hw); |
| |
| if (offset >= hw->eeprom.word_size) { |
| status = IXGBE_ERR_EEPROM; |
| goto out; |
| } |
| |
| /* Prepare the EEPROM for reading */ |
| status = ixgbe_acquire_eeprom(hw); |
| |
| if (status == 0) { |
| if (ixgbe_ready_eeprom(hw) != 0) { |
| ixgbe_release_eeprom(hw); |
| status = IXGBE_ERR_EEPROM; |
| } |
| } |
| |
| if (status == 0) { |
| ixgbe_standby_eeprom(hw); |
| |
| /* |
| * Some SPI eeproms use the 8th address bit embedded in the |
| * opcode |
| */ |
| if ((hw->eeprom.address_bits == 8) && (offset >= 128)) |
| read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; |
| |
| /* Send the READ command (opcode + addr) */ |
| ixgbe_shift_out_eeprom_bits(hw, read_opcode, |
| IXGBE_EEPROM_OPCODE_BITS); |
| ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2), |
| hw->eeprom.address_bits); |
| |
| /* Read the data. */ |
| word_in = ixgbe_shift_in_eeprom_bits(hw, 16); |
| *data = (word_in >> 8) | (word_in << 8); |
| |
| /* End this read operation */ |
| ixgbe_release_eeprom(hw); |
| } |
| |
| out: |
| return status; |
| } |
| |
| /** |
| * ixgbe_read_eeprom_generic - Read EEPROM word using EERD |
| * @hw: pointer to hardware structure |
| * @offset: offset of word in the EEPROM to read |
| * @data: word read from the EEPROM |
| * |
| * Reads a 16 bit word from the EEPROM using the EERD register. |
| **/ |
| s32 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data) |
| { |
| u32 eerd; |
| s32 status; |
| |
| hw->eeprom.ops.init_params(hw); |
| |
| if (offset >= hw->eeprom.word_size) { |
| status = IXGBE_ERR_EEPROM; |
| goto out; |
| } |
| |
| eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) + |
| IXGBE_EEPROM_READ_REG_START; |
| |
| IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd); |
| status = ixgbe_poll_eeprom_eerd_done(hw); |
| |
| if (status == 0) |
| *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >> |
| IXGBE_EEPROM_READ_REG_DATA); |
| else |
| hw_dbg(hw, "Eeprom read timed out\n"); |
| |
| out: |
| return status; |
| } |
| |
| /** |
| * ixgbe_poll_eeprom_eerd_done - Poll EERD status |
| * @hw: pointer to hardware structure |
| * |
| * Polls the status bit (bit 1) of the EERD to determine when the read is done. |
| **/ |
| static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw) |
| { |
| u32 i; |
| u32 reg; |
| s32 status = IXGBE_ERR_EEPROM; |
| |
| for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) { |
| reg = IXGBE_READ_REG(hw, IXGBE_EERD); |
| if (reg & IXGBE_EEPROM_READ_REG_DONE) { |
| status = 0; |
| break; |
| } |
| udelay(5); |
| } |
| return status; |
| } |
| |
| /** |
| * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang |
| * @hw: pointer to hardware structure |
| * |
| * Prepares EEPROM for access using bit-bang method. This function should |
| * be called before issuing a command to the EEPROM. |
| **/ |
| static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw) |
| { |
| s32 status = 0; |
| u32 eec; |
| u32 i; |
| |
| if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0) |
| status = IXGBE_ERR_SWFW_SYNC; |
| |
| if (status == 0) { |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| |
| /* Request EEPROM Access */ |
| eec |= IXGBE_EEC_REQ; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| |
| for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) { |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| if (eec & IXGBE_EEC_GNT) |
| break; |
| udelay(5); |
| } |
| |
| /* Release if grant not acquired */ |
| if (!(eec & IXGBE_EEC_GNT)) { |
| eec &= ~IXGBE_EEC_REQ; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| hw_dbg(hw, "Could not acquire EEPROM grant\n"); |
| |
| ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); |
| status = IXGBE_ERR_EEPROM; |
| } |
| } |
| |
| /* Setup EEPROM for Read/Write */ |
| if (status == 0) { |
| /* Clear CS and SK */ |
| eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK); |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| IXGBE_WRITE_FLUSH(hw); |
| udelay(1); |
| } |
| return status; |
| } |
| |
| /** |
| * ixgbe_get_eeprom_semaphore - Get hardware semaphore |
| * @hw: pointer to hardware structure |
| * |
| * Sets the hardware semaphores so EEPROM access can occur for bit-bang method |
| **/ |
| static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw) |
| { |
| s32 status = IXGBE_ERR_EEPROM; |
| u32 timeout; |
| u32 i; |
| u32 swsm; |
| |
| /* Set timeout value based on size of EEPROM */ |
| timeout = hw->eeprom.word_size + 1; |
| |
| /* Get SMBI software semaphore between device drivers first */ |
| for (i = 0; i < timeout; i++) { |
| /* |
| * If the SMBI bit is 0 when we read it, then the bit will be |
| * set and we have the semaphore |
| */ |
| swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); |
| if (!(swsm & IXGBE_SWSM_SMBI)) { |
| status = 0; |
| break; |
| } |
| msleep(1); |
| } |
| |
| /* Now get the semaphore between SW/FW through the SWESMBI bit */ |
| if (status == 0) { |
| for (i = 0; i < timeout; i++) { |
| swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); |
| |
| /* Set the SW EEPROM semaphore bit to request access */ |
| swsm |= IXGBE_SWSM_SWESMBI; |
| IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); |
| |
| /* |
| * If we set the bit successfully then we got the |
| * semaphore. |
| */ |
| swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); |
| if (swsm & IXGBE_SWSM_SWESMBI) |
| break; |
| |
| udelay(50); |
| } |
| |
| /* |
| * Release semaphores and return error if SW EEPROM semaphore |
| * was not granted because we don't have access to the EEPROM |
| */ |
| if (i >= timeout) { |
| hw_dbg(hw, "Driver can't access the Eeprom - Semaphore " |
| "not granted.\n"); |
| ixgbe_release_eeprom_semaphore(hw); |
| status = IXGBE_ERR_EEPROM; |
| } |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ixgbe_release_eeprom_semaphore - Release hardware semaphore |
| * @hw: pointer to hardware structure |
| * |
| * This function clears hardware semaphore bits. |
| **/ |
| static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw) |
| { |
| u32 swsm; |
| |
| swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); |
| |
| /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */ |
| swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI); |
| IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); |
| IXGBE_WRITE_FLUSH(hw); |
| } |
| |
| /** |
| * ixgbe_ready_eeprom - Polls for EEPROM ready |
| * @hw: pointer to hardware structure |
| **/ |
| static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw) |
| { |
| s32 status = 0; |
| u16 i; |
| u8 spi_stat_reg; |
| |
| /* |
| * Read "Status Register" repeatedly until the LSB is cleared. The |
| * EEPROM will signal that the command has been completed by clearing |
| * bit 0 of the internal status register. If it's not cleared within |
| * 5 milliseconds, then error out. |
| */ |
| for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) { |
| ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI, |
| IXGBE_EEPROM_OPCODE_BITS); |
| spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8); |
| if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI)) |
| break; |
| |
| udelay(5); |
| ixgbe_standby_eeprom(hw); |
| }; |
| |
| /* |
| * On some parts, SPI write time could vary from 0-20mSec on 3.3V |
| * devices (and only 0-5mSec on 5V devices) |
| */ |
| if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) { |
| hw_dbg(hw, "SPI EEPROM Status error\n"); |
| status = IXGBE_ERR_EEPROM; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state |
| * @hw: pointer to hardware structure |
| **/ |
| static void ixgbe_standby_eeprom(struct ixgbe_hw *hw) |
| { |
| u32 eec; |
| |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| |
| /* Toggle CS to flush commands */ |
| eec |= IXGBE_EEC_CS; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| IXGBE_WRITE_FLUSH(hw); |
| udelay(1); |
| eec &= ~IXGBE_EEC_CS; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| IXGBE_WRITE_FLUSH(hw); |
| udelay(1); |
| } |
| |
| /** |
| * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM. |
| * @hw: pointer to hardware structure |
| * @data: data to send to the EEPROM |
| * @count: number of bits to shift out |
| **/ |
| static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, |
| u16 count) |
| { |
| u32 eec; |
| u32 mask; |
| u32 i; |
| |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| |
| /* |
| * Mask is used to shift "count" bits of "data" out to the EEPROM |
| * one bit at a time. Determine the starting bit based on count |
| */ |
| mask = 0x01 << (count - 1); |
| |
| for (i = 0; i < count; i++) { |
| /* |
| * A "1" is shifted out to the EEPROM by setting bit "DI" to a |
| * "1", and then raising and then lowering the clock (the SK |
| * bit controls the clock input to the EEPROM). A "0" is |
| * shifted out to the EEPROM by setting "DI" to "0" and then |
| * raising and then lowering the clock. |
| */ |
| if (data & mask) |
| eec |= IXGBE_EEC_DI; |
| else |
| eec &= ~IXGBE_EEC_DI; |
| |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| IXGBE_WRITE_FLUSH(hw); |
| |
| udelay(1); |
| |
| ixgbe_raise_eeprom_clk(hw, &eec); |
| ixgbe_lower_eeprom_clk(hw, &eec); |
| |
| /* |
| * Shift mask to signify next bit of data to shift in to the |
| * EEPROM |
| */ |
| mask = mask >> 1; |
| }; |
| |
| /* We leave the "DI" bit set to "0" when we leave this routine. */ |
| eec &= ~IXGBE_EEC_DI; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| IXGBE_WRITE_FLUSH(hw); |
| } |
| |
| /** |
| * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM |
| * @hw: pointer to hardware structure |
| **/ |
| static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count) |
| { |
| u32 eec; |
| u32 i; |
| u16 data = 0; |
| |
| /* |
| * In order to read a register from the EEPROM, we need to shift |
| * 'count' bits in from the EEPROM. Bits are "shifted in" by raising |
| * the clock input to the EEPROM (setting the SK bit), and then reading |
| * the value of the "DO" bit. During this "shifting in" process the |
| * "DI" bit should always be clear. |
| */ |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| |
| eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI); |
| |
| for (i = 0; i < count; i++) { |
| data = data << 1; |
| ixgbe_raise_eeprom_clk(hw, &eec); |
| |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| |
| eec &= ~(IXGBE_EEC_DI); |
| if (eec & IXGBE_EEC_DO) |
| data |= 1; |
| |
| ixgbe_lower_eeprom_clk(hw, &eec); |
| } |
| |
| return data; |
| } |
| |
| /** |
| * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input. |
| * @hw: pointer to hardware structure |
| * @eec: EEC register's current value |
| **/ |
| static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) |
| { |
| /* |
| * Raise the clock input to the EEPROM |
| * (setting the SK bit), then delay |
| */ |
| *eec = *eec | IXGBE_EEC_SK; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec); |
| IXGBE_WRITE_FLUSH(hw); |
| udelay(1); |
| } |
| |
| /** |
| * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input. |
| * @hw: pointer to hardware structure |
| * @eecd: EECD's current value |
| **/ |
| static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) |
| { |
| /* |
| * Lower the clock input to the EEPROM (clearing the SK bit), then |
| * delay |
| */ |
| *eec = *eec & ~IXGBE_EEC_SK; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec); |
| IXGBE_WRITE_FLUSH(hw); |
| udelay(1); |
| } |
| |
| /** |
| * ixgbe_release_eeprom - Release EEPROM, release semaphores |
| * @hw: pointer to hardware structure |
| **/ |
| static void ixgbe_release_eeprom(struct ixgbe_hw *hw) |
| { |
| u32 eec; |
| |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| |
| eec |= IXGBE_EEC_CS; /* Pull CS high */ |
| eec &= ~IXGBE_EEC_SK; /* Lower SCK */ |
| |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| IXGBE_WRITE_FLUSH(hw); |
| |
| udelay(1); |
| |
| /* Stop requesting EEPROM access */ |
| eec &= ~IXGBE_EEC_REQ; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| |
| ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); |
| } |
| |
| /** |
| * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum |
| * @hw: pointer to hardware structure |
| **/ |
| static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw) |
| { |
| u16 i; |
| u16 j; |
| u16 checksum = 0; |
| u16 length = 0; |
| u16 pointer = 0; |
| u16 word = 0; |
| |
| /* Include 0x0-0x3F in the checksum */ |
| for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) { |
| if (hw->eeprom.ops.read(hw, i, &word) != 0) { |
| hw_dbg(hw, "EEPROM read failed\n"); |
| break; |
| } |
| checksum += word; |
| } |
| |
| /* Include all data from pointers except for the fw pointer */ |
| for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) { |
| hw->eeprom.ops.read(hw, i, &pointer); |
| |
| /* Make sure the pointer seems valid */ |
| if (pointer != 0xFFFF && pointer != 0) { |
| hw->eeprom.ops.read(hw, pointer, &length); |
| |
| if (length != 0xFFFF && length != 0) { |
| for (j = pointer+1; j <= pointer+length; j++) { |
| hw->eeprom.ops.read(hw, j, &word); |
| checksum += word; |
| } |
| } |
| } |
| } |
| |
| checksum = (u16)IXGBE_EEPROM_SUM - checksum; |
| |
| return checksum; |
| } |
| |
| /** |
| * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum |
| * @hw: pointer to hardware structure |
| * @checksum_val: calculated checksum |
| * |
| * Performs checksum calculation and validates the EEPROM checksum. If the |
| * caller does not need checksum_val, the value can be NULL. |
| **/ |
| s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw, |
| u16 *checksum_val) |
| { |
| s32 status; |
| u16 checksum; |
| u16 read_checksum = 0; |
| |
| /* |
| * Read the first word from the EEPROM. If this times out or fails, do |
| * not continue or we could be in for a very long wait while every |
| * EEPROM read fails |
| */ |
| status = hw->eeprom.ops.read(hw, 0, &checksum); |
| |
| if (status == 0) { |
| checksum = ixgbe_calc_eeprom_checksum(hw); |
| |
| hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum); |
| |
| /* |
| * Verify read checksum from EEPROM is the same as |
| * calculated checksum |
| */ |
| if (read_checksum != checksum) |
| status = IXGBE_ERR_EEPROM_CHECKSUM; |
| |
| /* If the user cares, return the calculated checksum */ |
| if (checksum_val) |
| *checksum_val = checksum; |
| } else { |
| hw_dbg(hw, "EEPROM read failed\n"); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum |
| * @hw: pointer to hardware structure |
| **/ |
| s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw) |
| { |
| s32 status; |
| u16 checksum; |
| |
| /* |
| * Read the first word from the EEPROM. If this times out or fails, do |
| * not continue or we could be in for a very long wait while every |
| * EEPROM read fails |
| */ |
| status = hw->eeprom.ops.read(hw, 0, &checksum); |
| |
| if (status == 0) { |
| checksum = ixgbe_calc_eeprom_checksum(hw); |
| status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, |
| checksum); |
| } else { |
| hw_dbg(hw, "EEPROM read failed\n"); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ixgbe_validate_mac_addr - Validate MAC address |
| * @mac_addr: pointer to MAC address. |
| * |
| * Tests a MAC address to ensure it is a valid Individual Address |
| **/ |
| s32 ixgbe_validate_mac_addr(u8 *mac_addr) |
| { |
| s32 status = 0; |
| |
| /* Make sure it is not a multicast address */ |
| if (IXGBE_IS_MULTICAST(mac_addr)) |
| status = IXGBE_ERR_INVALID_MAC_ADDR; |
| /* Not a broadcast address */ |
| else if (IXGBE_IS_BROADCAST(mac_addr)) |
| status = IXGBE_ERR_INVALID_MAC_ADDR; |
| /* Reject the zero address */ |
| else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 && |
| mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) |
| status = IXGBE_ERR_INVALID_MAC_ADDR; |
| |
| return status; |
| } |
| |
| /** |
| * ixgbe_set_rar_generic - Set Rx address register |
| * @hw: pointer to hardware structure |
| * @index: Receive address register to write |
| * @addr: Address to put into receive address register |
| * @vmdq: VMDq "set" or "pool" index |
| * @enable_addr: set flag that address is active |
| * |
| * Puts an ethernet address into a receive address register. |
| **/ |
| s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq, |
| u32 enable_addr) |
| { |
| u32 rar_low, rar_high; |
| u32 rar_entries = hw->mac.num_rar_entries; |
| |
| /* setup VMDq pool selection before this RAR gets enabled */ |
| hw->mac.ops.set_vmdq(hw, index, vmdq); |
| |
| /* Make sure we are using a valid rar index range */ |
| if (index < rar_entries) { |
| /* |
| * HW expects these in little endian so we reverse the byte |
| * order from network order (big endian) to little endian |
| */ |
| rar_low = ((u32)addr[0] | |
| ((u32)addr[1] << 8) | |
| ((u32)addr[2] << 16) | |
| ((u32)addr[3] << 24)); |
| /* |
| * Some parts put the VMDq setting in the extra RAH bits, |
| * so save everything except the lower 16 bits that hold part |
| * of the address and the address valid bit. |
| */ |
| rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); |
| rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); |
| rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8)); |
| |
| if (enable_addr != 0) |
| rar_high |= IXGBE_RAH_AV; |
| |
| IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low); |
| IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); |
| } else { |
| hw_dbg(hw, "RAR index %d is out of range.\n", index); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_clear_rar_generic - Remove Rx address register |
| * @hw: pointer to hardware structure |
| * @index: Receive address register to write |
| * |
| * Clears an ethernet address from a receive address register. |
| **/ |
| s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index) |
| { |
| u32 rar_high; |
| u32 rar_entries = hw->mac.num_rar_entries; |
| |
| /* Make sure we are using a valid rar index range */ |
| if (index < rar_entries) { |
| /* |
| * Some parts put the VMDq setting in the extra RAH bits, |
| * so save everything except the lower 16 bits that hold part |
| * of the address and the address valid bit. |
| */ |
| rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); |
| rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); |
| |
| IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0); |
| IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); |
| } else { |
| hw_dbg(hw, "RAR index %d is out of range.\n", index); |
| } |
| |
| /* clear VMDq pool/queue selection for this RAR */ |
| hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_enable_rar - Enable Rx address register |
| * @hw: pointer to hardware structure |
| * @index: index into the RAR table |
| * |
| * Enables the select receive address register. |
| **/ |
| static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index) |
| { |
| u32 rar_high; |
| |
| rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); |
| rar_high |= IXGBE_RAH_AV; |
| IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); |
| } |
| |
| /** |
| * ixgbe_disable_rar - Disable Rx address register |
| * @hw: pointer to hardware structure |
| * @index: index into the RAR table |
| * |
| * Disables the select receive address register. |
| **/ |
| static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index) |
| { |
| u32 rar_high; |
| |
| rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); |
| rar_high &= (~IXGBE_RAH_AV); |
| IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); |
| } |
| |
| /** |
| * ixgbe_init_rx_addrs_generic - Initializes receive address filters. |
| * @hw: pointer to hardware structure |
| * |
| * Places the MAC address in receive address register 0 and clears the rest |
| * of the receive address registers. Clears the multicast table. Assumes |
| * the receiver is in reset when the routine is called. |
| **/ |
| s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw) |
| { |
| u32 i; |
| u32 rar_entries = hw->mac.num_rar_entries; |
| |
| /* |
| * If the current mac address is valid, assume it is a software override |
| * to the permanent address. |
| * Otherwise, use the permanent address from the eeprom. |
| */ |
| if (ixgbe_validate_mac_addr(hw->mac.addr) == |
| IXGBE_ERR_INVALID_MAC_ADDR) { |
| /* Get the MAC address from the RAR0 for later reference */ |
| hw->mac.ops.get_mac_addr(hw, hw->mac.addr); |
| |
| hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ", |
| hw->mac.addr[0], hw->mac.addr[1], |
| hw->mac.addr[2]); |
| hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3], |
| hw->mac.addr[4], hw->mac.addr[5]); |
| } else { |
| /* Setup the receive address. */ |
| hw_dbg(hw, "Overriding MAC Address in RAR[0]\n"); |
| hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ", |
| hw->mac.addr[0], hw->mac.addr[1], |
| hw->mac.addr[2]); |
| hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3], |
| hw->mac.addr[4], hw->mac.addr[5]); |
| |
| hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV); |
| } |
| hw->addr_ctrl.overflow_promisc = 0; |
| |
| hw->addr_ctrl.rar_used_count = 1; |
| |
| /* Zero out the other receive addresses. */ |
| hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1); |
| for (i = 1; i < rar_entries; i++) { |
| IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); |
| IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); |
| } |
| |
| /* Clear the MTA */ |
| hw->addr_ctrl.mc_addr_in_rar_count = 0; |
| hw->addr_ctrl.mta_in_use = 0; |
| IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); |
| |
| hw_dbg(hw, " Clearing MTA\n"); |
| for (i = 0; i < hw->mac.mcft_size; i++) |
| IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); |
| |
| if (hw->mac.ops.init_uta_tables) |
| hw->mac.ops.init_uta_tables(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_add_uc_addr - Adds a secondary unicast address. |
| * @hw: pointer to hardware structure |
| * @addr: new address |
| * |
| * Adds it to unused receive address register or goes into promiscuous mode. |
| **/ |
| static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq) |
| { |
| u32 rar_entries = hw->mac.num_rar_entries; |
| u32 rar; |
| |
| hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n", |
| addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); |
| |
| /* |
| * Place this address in the RAR if there is room, |
| * else put the controller into promiscuous mode |
| */ |
| if (hw->addr_ctrl.rar_used_count < rar_entries) { |
| rar = hw->addr_ctrl.rar_used_count - |
| hw->addr_ctrl.mc_addr_in_rar_count; |
| hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); |
| hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar); |
| hw->addr_ctrl.rar_used_count++; |
| } else { |
| hw->addr_ctrl.overflow_promisc++; |
| } |
| |
| hw_dbg(hw, "ixgbe_add_uc_addr Complete\n"); |
| } |
| |
| /** |
| * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses |
| * @hw: pointer to hardware structure |
| * @addr_list: the list of new addresses |
| * @addr_count: number of addresses |
| * @next: iterator function to walk the address list |
| * |
| * The given list replaces any existing list. Clears the secondary addrs from |
| * receive address registers. Uses unused receive address registers for the |
| * first secondary addresses, and falls back to promiscuous mode as needed. |
| * |
| * Drivers using secondary unicast addresses must set user_set_promisc when |
| * manually putting the device into promiscuous mode. |
| **/ |
| s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list, |
| u32 addr_count, ixgbe_mc_addr_itr next) |
| { |
| u8 *addr; |
| u32 i; |
| u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc; |
| u32 uc_addr_in_use; |
| u32 fctrl; |
| u32 vmdq; |
| |
| /* |
| * Clear accounting of old secondary address list, |
| * don't count RAR[0] |
| */ |
| uc_addr_in_use = hw->addr_ctrl.rar_used_count - |
| hw->addr_ctrl.mc_addr_in_rar_count - 1; |
| hw->addr_ctrl.rar_used_count -= uc_addr_in_use; |
| hw->addr_ctrl.overflow_promisc = 0; |
| |
| /* Zero out the other receive addresses */ |
| hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use); |
| for (i = 1; i <= uc_addr_in_use; i++) { |
| IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); |
| IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); |
| } |
| |
| /* Add the new addresses */ |
| for (i = 0; i < addr_count; i++) { |
| hw_dbg(hw, " Adding the secondary addresses:\n"); |
| addr = next(hw, &addr_list, &vmdq); |
| ixgbe_add_uc_addr(hw, addr, vmdq); |
| } |
| |
| if (hw->addr_ctrl.overflow_promisc) { |
| /* enable promisc if not already in overflow or set by user */ |
| if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { |
| hw_dbg(hw, " Entering address overflow promisc mode\n"); |
| fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); |
| fctrl |= IXGBE_FCTRL_UPE; |
| IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); |
| } |
| } else { |
| /* only disable if set by overflow, not by user */ |
| if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { |
| hw_dbg(hw, " Leaving address overflow promisc mode\n"); |
| fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); |
| fctrl &= ~IXGBE_FCTRL_UPE; |
| IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); |
| } |
| } |
| |
| hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n"); |
| return 0; |
| } |
| |
| /** |
| * ixgbe_mta_vector - Determines bit-vector in multicast table to set |
| * @hw: pointer to hardware structure |
| * @mc_addr: the multicast address |
| * |
| * Extracts the 12 bits, from a multicast address, to determine which |
| * bit-vector to set in the multicast table. The hardware uses 12 bits, from |
| * incoming rx multicast addresses, to determine the bit-vector to check in |
| * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set |
| * by the MO field of the MCSTCTRL. The MO field is set during initialization |
| * to mc_filter_type. |
| **/ |
| static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr) |
| { |
| u32 vector = 0; |
| |
| switch (hw->mac.mc_filter_type) { |
| case 0: /* use bits [47:36] of the address */ |
| vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); |
| break; |
| case 1: /* use bits [46:35] of the address */ |
| vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); |
| break; |
| case 2: /* use bits [45:34] of the address */ |
| vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); |
| break; |
| case 3: /* use bits [43:32] of the address */ |
| vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); |
| break; |
| default: /* Invalid mc_filter_type */ |
| hw_dbg(hw, "MC filter type param set incorrectly\n"); |
| break; |
| } |
| |
| /* vector can only be 12-bits or boundary will be exceeded */ |
| vector &= 0xFFF; |
| return vector; |
| } |
| |
| /** |
| * ixgbe_set_mta - Set bit-vector in multicast table |
| * @hw: pointer to hardware structure |
| * @hash_value: Multicast address hash value |
| * |
| * Sets the bit-vector in the multicast table. |
| **/ |
| static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr) |
| { |
| u32 vector; |
| u32 vector_bit; |
| u32 vector_reg; |
| u32 mta_reg; |
| |
| hw->addr_ctrl.mta_in_use++; |
| |
| vector = ixgbe_mta_vector(hw, mc_addr); |
| hw_dbg(hw, " bit-vector = 0x%03X\n", vector); |
| |
| /* |
| * The MTA is a register array of 128 32-bit registers. It is treated |
| * like an array of 4096 bits. We want to set bit |
| * BitArray[vector_value]. So we figure out what register the bit is |
| * in, read it, OR in the new bit, then write back the new value. The |
| * register is determined by the upper 7 bits of the vector value and |
| * the bit within that register are determined by the lower 5 bits of |
| * the value. |
| */ |
| vector_reg = (vector >> 5) & 0x7F; |
| vector_bit = vector & 0x1F; |
| mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg)); |
| mta_reg |= (1 << vector_bit); |
| IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg); |
| } |
| |
| /** |
| * ixgbe_add_mc_addr - Adds a multicast address. |
| * @hw: pointer to hardware structure |
| * @mc_addr: new multicast address |
| * |
| * Adds it to unused receive address register or to the multicast table. |
| **/ |
| static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr) |
| { |
| u32 rar_entries = hw->mac.num_rar_entries; |
| u32 rar; |
| |
| hw_dbg(hw, " MC Addr =%.2X %.2X %.2X %.2X %.2X %.2X\n", |
| mc_addr[0], mc_addr[1], mc_addr[2], |
| mc_addr[3], mc_addr[4], mc_addr[5]); |
| |
| /* |
| * Place this multicast address in the RAR if there is room, |
| * else put it in the MTA |
| */ |
| if (hw->addr_ctrl.rar_used_count < rar_entries) { |
| /* use RAR from the end up for multicast */ |
| rar = rar_entries - hw->addr_ctrl.mc_addr_in_rar_count - 1; |
| hw->mac.ops.set_rar(hw, rar, mc_addr, 0, IXGBE_RAH_AV); |
| hw_dbg(hw, "Added a multicast address to RAR[%d]\n", rar); |
| hw->addr_ctrl.rar_used_count++; |
| hw->addr_ctrl.mc_addr_in_rar_count++; |
| } else { |
| ixgbe_set_mta(hw, mc_addr); |
| } |
| |
| hw_dbg(hw, "ixgbe_add_mc_addr Complete\n"); |
| } |
| |
| /** |
| * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses |
| * @hw: pointer to hardware structure |
| * @mc_addr_list: the list of new multicast addresses |
| * @mc_addr_count: number of addresses |
| * @next: iterator function to walk the multicast address list |
| * |
| * The given list replaces any existing list. Clears the MC addrs from receive |
| * address registers and the multicast table. Uses unused receive address |
| * registers for the first multicast addresses, and hashes the rest into the |
| * multicast table. |
| **/ |
| s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list, |
| u32 mc_addr_count, ixgbe_mc_addr_itr next) |
| { |
| u32 i; |
| u32 rar_entries = hw->mac.num_rar_entries; |
| u32 vmdq; |
| |
| /* |
| * Set the new number of MC addresses that we are being requested to |
| * use. |
| */ |
| hw->addr_ctrl.num_mc_addrs = mc_addr_count; |
| hw->addr_ctrl.rar_used_count -= hw->addr_ctrl.mc_addr_in_rar_count; |
| hw->addr_ctrl.mc_addr_in_rar_count = 0; |
| hw->addr_ctrl.mta_in_use = 0; |
| |
| /* Zero out the other receive addresses. */ |
| hw_dbg(hw, "Clearing RAR[%d-%d]\n", hw->addr_ctrl.rar_used_count, |
| rar_entries - 1); |
| for (i = hw->addr_ctrl.rar_used_count; i < rar_entries; i++) { |
| IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); |
| IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); |
| } |
| |
| /* Clear the MTA */ |
| hw_dbg(hw, " Clearing MTA\n"); |
| for (i = 0; i < hw->mac.mcft_size; i++) |
| IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); |
| |
| /* Add the new addresses */ |
| for (i = 0; i < mc_addr_count; i++) { |
| hw_dbg(hw, " Adding the multicast addresses:\n"); |
| ixgbe_add_mc_addr(hw, next(hw, &mc_addr_list, &vmdq)); |
| } |
| |
| /* Enable mta */ |
| if (hw->addr_ctrl.mta_in_use > 0) |
| IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, |
| IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); |
| |
| hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n"); |
| return 0; |
| } |
| |
| /** |
| * ixgbe_enable_mc_generic - Enable multicast address in RAR |
| * @hw: pointer to hardware structure |
| * |
| * Enables multicast address in RAR and the use of the multicast hash table. |
| **/ |
| s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw) |
| { |
| u32 i; |
| u32 rar_entries = hw->mac.num_rar_entries; |
| struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; |
| |
| if (a->mc_addr_in_rar_count > 0) |
| for (i = (rar_entries - a->mc_addr_in_rar_count); |
| i < rar_entries; i++) |
| ixgbe_enable_rar(hw, i); |
| |
| if (a->mta_in_use > 0) |
| IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE | |
| hw->mac.mc_filter_type); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_disable_mc_generic - Disable multicast address in RAR |
| * @hw: pointer to hardware structure |
| * |
| * Disables multicast address in RAR and the use of the multicast hash table. |
| **/ |
| s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw) |
| { |
| u32 i; |
| u32 rar_entries = hw->mac.num_rar_entries; |
| struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; |
| |
| if (a->mc_addr_in_rar_count > 0) |
| for (i = (rar_entries - a->mc_addr_in_rar_count); |
| i < rar_entries; i++) |
| ixgbe_disable_rar(hw, i); |
| |
| if (a->mta_in_use > 0) |
| IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_disable_pcie_master - Disable PCI-express master access |
| * @hw: pointer to hardware structure |
| * |
| * Disables PCI-Express master access and verifies there are no pending |
| * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable |
| * bit hasn't caused the master requests to be disabled, else 0 |
| * is returned signifying master requests disabled. |
| **/ |
| s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw) |
| { |
| u32 i; |
| u32 reg_val; |
| u32 number_of_queues; |
| s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING; |
| |
| /* Disable the receive unit by stopping each queue */ |
| number_of_queues = hw->mac.max_rx_queues; |
| for (i = 0; i < number_of_queues; i++) { |
| reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i)); |
| if (reg_val & IXGBE_RXDCTL_ENABLE) { |
| reg_val &= ~IXGBE_RXDCTL_ENABLE; |
| IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val); |
| } |
| } |
| |
| reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL); |
| reg_val |= IXGBE_CTRL_GIO_DIS; |
| IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val); |
| |
| for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { |
| if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) { |
| status = 0; |
| break; |
| } |
| udelay(100); |
| } |
| |
| return status; |
| } |
| |
| |
| /** |
| * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore |
| * @hw: pointer to hardware structure |
| * @mask: Mask to specify which semaphore to acquire |
| * |
| * Acquires the SWFW semaphore thought the GSSR register for the specified |
| * function (CSR, PHY0, PHY1, EEPROM, Flash) |
| **/ |
| s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask) |
| { |
| u32 gssr; |
| u32 swmask = mask; |
| u32 fwmask = mask << 5; |
| s32 timeout = 200; |
| |
| while (timeout) { |
| if (ixgbe_get_eeprom_semaphore(hw)) |
| return -IXGBE_ERR_SWFW_SYNC; |
| |
| gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); |
| if (!(gssr & (fwmask | swmask))) |
| break; |
| |
| /* |
| * Firmware currently using resource (fwmask) or other software |
| * thread currently using resource (swmask) |
| */ |
| ixgbe_release_eeprom_semaphore(hw); |
| msleep(5); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n"); |
| return -IXGBE_ERR_SWFW_SYNC; |
| } |
| |
| gssr |= swmask; |
| IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); |
| |
| ixgbe_release_eeprom_semaphore(hw); |
| return 0; |
| } |
| |
| /** |
| * ixgbe_release_swfw_sync - Release SWFW semaphore |
| * @hw: pointer to hardware structure |
| * @mask: Mask to specify which semaphore to release |
| * |
| * Releases the SWFW semaphore thought the GSSR register for the specified |
| * function (CSR, PHY0, PHY1, EEPROM, Flash) |
| **/ |
| void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask) |
| { |
| u32 gssr; |
| u32 swmask = mask; |
| |
| ixgbe_get_eeprom_semaphore(hw); |
| |
| gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); |
| gssr &= ~swmask; |
| IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); |
| |
| ixgbe_release_eeprom_semaphore(hw); |
| } |
| |