| /* |
| * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter |
| * |
| * Copyright (C) 2003, 2007 IC Plus Corp |
| * |
| * Original Author: |
| * |
| * Craig Rich |
| * Sundance Technology, Inc. |
| * www.sundanceti.com |
| * craig_rich@sundanceti.com |
| * |
| * Current Maintainer: |
| * |
| * Sorbica Shieh. |
| * http://www.icplus.com.tw |
| * sorbica@icplus.com.tw |
| * |
| * Jesse Huang |
| * http://www.icplus.com.tw |
| * jesse@icplus.com.tw |
| */ |
| #include <linux/crc32.h> |
| #include <linux/ethtool.h> |
| #include <linux/mii.h> |
| #include <linux/mutex.h> |
| |
| #include <asm/div64.h> |
| |
| #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH) |
| #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH) |
| #define IPG_RESET_MASK \ |
| (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \ |
| IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \ |
| IPG_AC_AUTO_INIT) |
| |
| #define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg)) |
| #define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg)) |
| #define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg)) |
| |
| #define ipg_r32(reg) ioread32(ioaddr + (reg)) |
| #define ipg_r16(reg) ioread16(ioaddr + (reg)) |
| #define ipg_r8(reg) ioread8(ioaddr + (reg)) |
| |
| enum { |
| netdev_io_size = 128 |
| }; |
| |
| #include "ipg.h" |
| #define DRV_NAME "ipg" |
| |
| MODULE_AUTHOR("IC Plus Corp. 2003"); |
| MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver"); |
| MODULE_LICENSE("GPL"); |
| |
| /* |
| * Defaults |
| */ |
| #define IPG_MAX_RXFRAME_SIZE 0x0600 |
| #define IPG_RXFRAG_SIZE 0x0600 |
| #define IPG_RXSUPPORT_SIZE 0x0600 |
| #define IPG_IS_JUMBO false |
| |
| /* |
| * Variable record -- index by leading revision/length |
| * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN |
| */ |
| static unsigned short DefaultPhyParam[] = { |
| /* 11/12/03 IP1000A v1-3 rev=0x40 */ |
| /*-------------------------------------------------------------------------- |
| (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2, |
| 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6, |
| 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700, |
| --------------------------------------------------------------------------*/ |
| /* 12/17/03 IP1000A v1-4 rev=0x40 */ |
| (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, |
| 0x0000, |
| 30, 0x005e, 9, 0x0700, |
| /* 01/09/04 IP1000A v1-5 rev=0x41 */ |
| (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, |
| 0x0000, |
| 30, 0x005e, 9, 0x0700, |
| 0x0000 |
| }; |
| |
| static const char *ipg_brand_name[] = { |
| "IC PLUS IP1000 1000/100/10 based NIC", |
| "Sundance Technology ST2021 based NIC", |
| "Tamarack Microelectronics TC9020/9021 based NIC", |
| "Tamarack Microelectronics TC9020/9021 based NIC", |
| "D-Link NIC", |
| "D-Link NIC IP1000A" |
| }; |
| |
| static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl) = { |
| { PCI_VDEVICE(SUNDANCE, 0x1023), 0 }, |
| { PCI_VDEVICE(SUNDANCE, 0x2021), 1 }, |
| { PCI_VDEVICE(SUNDANCE, 0x1021), 2 }, |
| { PCI_VDEVICE(DLINK, 0x9021), 3 }, |
| { PCI_VDEVICE(DLINK, 0x4000), 4 }, |
| { PCI_VDEVICE(DLINK, 0x4020), 5 }, |
| { 0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, ipg_pci_tbl); |
| |
| static inline void __iomem *ipg_ioaddr(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| return sp->ioaddr; |
| } |
| |
| #ifdef IPG_DEBUG |
| static void ipg_dump_rfdlist(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| unsigned int i; |
| u32 offset; |
| |
| IPG_DEBUG_MSG("_dump_rfdlist\n"); |
| |
| printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current); |
| printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty); |
| printk(KERN_INFO "RFDList start address = %16.16lx\n", |
| (unsigned long) sp->rxd_map); |
| printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n", |
| ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0)); |
| |
| for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { |
| offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd; |
| printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i, |
| offset, (unsigned long) sp->rxd[i].next_desc); |
| offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd; |
| printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i, |
| offset, (unsigned long) sp->rxd[i].rfs); |
| offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd; |
| printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, |
| offset, (unsigned long) sp->rxd[i].frag_info); |
| } |
| } |
| |
| static void ipg_dump_tfdlist(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| unsigned int i; |
| u32 offset; |
| |
| IPG_DEBUG_MSG("_dump_tfdlist\n"); |
| |
| printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current); |
| printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty); |
| printk(KERN_INFO "TFDList start address = %16.16lx\n", |
| (unsigned long) sp->txd_map); |
| printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n", |
| ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0)); |
| |
| for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { |
| offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd; |
| printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i, |
| offset, (unsigned long) sp->txd[i].next_desc); |
| |
| offset = (u32) &sp->txd[i].tfc - (u32) sp->txd; |
| printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i, |
| offset, (unsigned long) sp->txd[i].tfc); |
| offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd; |
| printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, |
| offset, (unsigned long) sp->txd[i].frag_info); |
| } |
| } |
| #endif |
| |
| static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data) |
| { |
| ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL); |
| ndelay(IPG_PC_PHYCTRLWAIT_NS); |
| } |
| |
| static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data) |
| { |
| ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data); |
| ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data); |
| } |
| |
| static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity) |
| { |
| phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR; |
| |
| ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity); |
| } |
| |
| static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity) |
| { |
| ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR | |
| phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL); |
| } |
| |
| static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity) |
| { |
| u16 bit_data; |
| |
| ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity); |
| |
| bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1; |
| |
| ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity); |
| |
| return bit_data; |
| } |
| |
| /* |
| * Read a register from the Physical Layer device located |
| * on the IPG NIC, using the IPG PHYCTRL register. |
| */ |
| static int mdio_read(struct net_device *dev, int phy_id, int phy_reg) |
| { |
| void __iomem *ioaddr = ipg_ioaddr(dev); |
| /* |
| * The GMII mangement frame structure for a read is as follows: |
| * |
| * |Preamble|st|op|phyad|regad|ta| data |idle| |
| * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | |
| * |
| * <32 1s> = 32 consecutive logic 1 values |
| * A = bit of Physical Layer device address (MSB first) |
| * R = bit of register address (MSB first) |
| * z = High impedance state |
| * D = bit of read data (MSB first) |
| * |
| * Transmission order is 'Preamble' field first, bits transmitted |
| * left to right (first to last). |
| */ |
| struct { |
| u32 field; |
| unsigned int len; |
| } p[] = { |
| { GMII_PREAMBLE, 32 }, /* Preamble */ |
| { GMII_ST, 2 }, /* ST */ |
| { GMII_READ, 2 }, /* OP */ |
| { phy_id, 5 }, /* PHYAD */ |
| { phy_reg, 5 }, /* REGAD */ |
| { 0x0000, 2 }, /* TA */ |
| { 0x0000, 16 }, /* DATA */ |
| { 0x0000, 1 } /* IDLE */ |
| }; |
| unsigned int i, j; |
| u8 polarity, data; |
| |
| polarity = ipg_r8(PHY_CTRL); |
| polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); |
| |
| /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ |
| for (j = 0; j < 5; j++) { |
| for (i = 0; i < p[j].len; i++) { |
| /* For each variable length field, the MSB must be |
| * transmitted first. Rotate through the field bits, |
| * starting with the MSB, and move each bit into the |
| * the 1st (2^1) bit position (this is the bit position |
| * corresponding to the MgmtData bit of the PhyCtrl |
| * register for the IPG). |
| * |
| * Example: ST = 01; |
| * |
| * First write a '0' to bit 1 of the PhyCtrl |
| * register, then write a '1' to bit 1 of the |
| * PhyCtrl register. |
| * |
| * To do this, right shift the MSB of ST by the value: |
| * [field length - 1 - #ST bits already written] |
| * then left shift this result by 1. |
| */ |
| data = (p[j].field >> (p[j].len - 1 - i)) << 1; |
| data &= IPG_PC_MGMTDATA; |
| data |= polarity | IPG_PC_MGMTDIR; |
| |
| ipg_drive_phy_ctl_low_high(ioaddr, data); |
| } |
| } |
| |
| send_three_state(ioaddr, polarity); |
| |
| read_phy_bit(ioaddr, polarity); |
| |
| /* |
| * For a read cycle, the bits for the next two fields (TA and |
| * DATA) are driven by the PHY (the IPG reads these bits). |
| */ |
| for (i = 0; i < p[6].len; i++) { |
| p[6].field |= |
| (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i)); |
| } |
| |
| send_three_state(ioaddr, polarity); |
| send_three_state(ioaddr, polarity); |
| send_three_state(ioaddr, polarity); |
| send_end(ioaddr, polarity); |
| |
| /* Return the value of the DATA field. */ |
| return p[6].field; |
| } |
| |
| /* |
| * Write to a register from the Physical Layer device located |
| * on the IPG NIC, using the IPG PHYCTRL register. |
| */ |
| static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val) |
| { |
| void __iomem *ioaddr = ipg_ioaddr(dev); |
| /* |
| * The GMII mangement frame structure for a read is as follows: |
| * |
| * |Preamble|st|op|phyad|regad|ta| data |idle| |
| * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | |
| * |
| * <32 1s> = 32 consecutive logic 1 values |
| * A = bit of Physical Layer device address (MSB first) |
| * R = bit of register address (MSB first) |
| * z = High impedance state |
| * D = bit of write data (MSB first) |
| * |
| * Transmission order is 'Preamble' field first, bits transmitted |
| * left to right (first to last). |
| */ |
| struct { |
| u32 field; |
| unsigned int len; |
| } p[] = { |
| { GMII_PREAMBLE, 32 }, /* Preamble */ |
| { GMII_ST, 2 }, /* ST */ |
| { GMII_WRITE, 2 }, /* OP */ |
| { phy_id, 5 }, /* PHYAD */ |
| { phy_reg, 5 }, /* REGAD */ |
| { 0x0002, 2 }, /* TA */ |
| { val & 0xffff, 16 }, /* DATA */ |
| { 0x0000, 1 } /* IDLE */ |
| }; |
| unsigned int i, j; |
| u8 polarity, data; |
| |
| polarity = ipg_r8(PHY_CTRL); |
| polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); |
| |
| /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ |
| for (j = 0; j < 7; j++) { |
| for (i = 0; i < p[j].len; i++) { |
| /* For each variable length field, the MSB must be |
| * transmitted first. Rotate through the field bits, |
| * starting with the MSB, and move each bit into the |
| * the 1st (2^1) bit position (this is the bit position |
| * corresponding to the MgmtData bit of the PhyCtrl |
| * register for the IPG). |
| * |
| * Example: ST = 01; |
| * |
| * First write a '0' to bit 1 of the PhyCtrl |
| * register, then write a '1' to bit 1 of the |
| * PhyCtrl register. |
| * |
| * To do this, right shift the MSB of ST by the value: |
| * [field length - 1 - #ST bits already written] |
| * then left shift this result by 1. |
| */ |
| data = (p[j].field >> (p[j].len - 1 - i)) << 1; |
| data &= IPG_PC_MGMTDATA; |
| data |= polarity | IPG_PC_MGMTDIR; |
| |
| ipg_drive_phy_ctl_low_high(ioaddr, data); |
| } |
| } |
| |
| /* The last cycle is a tri-state, so read from the PHY. */ |
| for (j = 7; j < 8; j++) { |
| for (i = 0; i < p[j].len; i++) { |
| ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity); |
| |
| p[j].field |= ((ipg_r8(PHY_CTRL) & |
| IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i); |
| |
| ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity); |
| } |
| } |
| } |
| |
| static void ipg_set_led_mode(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| u32 mode; |
| |
| mode = ipg_r32(ASIC_CTRL); |
| mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED); |
| |
| if ((sp->led_mode & 0x03) > 1) |
| mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */ |
| |
| if ((sp->led_mode & 0x01) == 1) |
| mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */ |
| |
| if ((sp->led_mode & 0x08) == 8) |
| mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */ |
| |
| ipg_w32(mode, ASIC_CTRL); |
| } |
| |
| static void ipg_set_phy_set(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| int physet; |
| |
| physet = ipg_r8(PHY_SET); |
| physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET); |
| physet |= ((sp->led_mode & 0x70) >> 4); |
| ipg_w8(physet, PHY_SET); |
| } |
| |
| static int ipg_reset(struct net_device *dev, u32 resetflags) |
| { |
| /* Assert functional resets via the IPG AsicCtrl |
| * register as specified by the 'resetflags' input |
| * parameter. |
| */ |
| void __iomem *ioaddr = ipg_ioaddr(dev); |
| unsigned int timeout_count = 0; |
| |
| IPG_DEBUG_MSG("_reset\n"); |
| |
| ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL); |
| |
| /* Delay added to account for problem with 10Mbps reset. */ |
| mdelay(IPG_AC_RESETWAIT); |
| |
| while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) { |
| mdelay(IPG_AC_RESETWAIT); |
| if (++timeout_count > IPG_AC_RESET_TIMEOUT) |
| return -ETIME; |
| } |
| /* Set LED Mode in Asic Control */ |
| ipg_set_led_mode(dev); |
| |
| /* Set PHYSet Register Value */ |
| ipg_set_phy_set(dev); |
| return 0; |
| } |
| |
| /* Find the GMII PHY address. */ |
| static int ipg_find_phyaddr(struct net_device *dev) |
| { |
| unsigned int phyaddr, i; |
| |
| for (i = 0; i < 32; i++) { |
| u32 status; |
| |
| /* Search for the correct PHY address among 32 possible. */ |
| phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32; |
| |
| /* 10/22/03 Grace change verify from GMII_PHY_STATUS to |
| GMII_PHY_ID1 |
| */ |
| |
| status = mdio_read(dev, phyaddr, MII_BMSR); |
| |
| if ((status != 0xFFFF) && (status != 0)) |
| return phyaddr; |
| } |
| |
| return 0x1f; |
| } |
| |
| /* |
| * Configure IPG based on result of IEEE 802.3 PHY |
| * auto-negotiation. |
| */ |
| static int ipg_config_autoneg(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| unsigned int txflowcontrol; |
| unsigned int rxflowcontrol; |
| unsigned int fullduplex; |
| u32 mac_ctrl_val; |
| u32 asicctrl; |
| u8 phyctrl; |
| |
| IPG_DEBUG_MSG("_config_autoneg\n"); |
| |
| asicctrl = ipg_r32(ASIC_CTRL); |
| phyctrl = ipg_r8(PHY_CTRL); |
| mac_ctrl_val = ipg_r32(MAC_CTRL); |
| |
| /* Set flags for use in resolving auto-negotation, assuming |
| * non-1000Mbps, half duplex, no flow control. |
| */ |
| fullduplex = 0; |
| txflowcontrol = 0; |
| rxflowcontrol = 0; |
| |
| /* To accomodate a problem in 10Mbps operation, |
| * set a global flag if PHY running in 10Mbps mode. |
| */ |
| sp->tenmbpsmode = 0; |
| |
| printk(KERN_INFO "%s: Link speed = ", dev->name); |
| |
| /* Determine actual speed of operation. */ |
| switch (phyctrl & IPG_PC_LINK_SPEED) { |
| case IPG_PC_LINK_SPEED_10MBPS: |
| printk("10Mbps.\n"); |
| printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n", |
| dev->name); |
| sp->tenmbpsmode = 1; |
| break; |
| case IPG_PC_LINK_SPEED_100MBPS: |
| printk("100Mbps.\n"); |
| break; |
| case IPG_PC_LINK_SPEED_1000MBPS: |
| printk("1000Mbps.\n"); |
| break; |
| default: |
| printk("undefined!\n"); |
| return 0; |
| } |
| |
| if (phyctrl & IPG_PC_DUPLEX_STATUS) { |
| fullduplex = 1; |
| txflowcontrol = 1; |
| rxflowcontrol = 1; |
| } |
| |
| /* Configure full duplex, and flow control. */ |
| if (fullduplex == 1) { |
| /* Configure IPG for full duplex operation. */ |
| printk(KERN_INFO "%s: setting full duplex, ", dev->name); |
| |
| mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD; |
| |
| if (txflowcontrol == 1) { |
| printk("TX flow control"); |
| mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE; |
| } else { |
| printk("no TX flow control"); |
| mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE; |
| } |
| |
| if (rxflowcontrol == 1) { |
| printk(", RX flow control."); |
| mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE; |
| } else { |
| printk(", no RX flow control."); |
| mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE; |
| } |
| |
| printk("\n"); |
| } else { |
| /* Configure IPG for half duplex operation. */ |
| printk(KERN_INFO "%s: setting half duplex, " |
| "no TX flow control, no RX flow control.\n", dev->name); |
| |
| mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD & |
| ~IPG_MC_TX_FLOW_CONTROL_ENABLE & |
| ~IPG_MC_RX_FLOW_CONTROL_ENABLE; |
| } |
| ipg_w32(mac_ctrl_val, MAC_CTRL); |
| return 0; |
| } |
| |
| /* Determine and configure multicast operation and set |
| * receive mode for IPG. |
| */ |
| static void ipg_nic_set_multicast_list(struct net_device *dev) |
| { |
| void __iomem *ioaddr = ipg_ioaddr(dev); |
| struct dev_mc_list *mc_list_ptr; |
| unsigned int hashindex; |
| u32 hashtable[2]; |
| u8 receivemode; |
| |
| IPG_DEBUG_MSG("_nic_set_multicast_list\n"); |
| |
| receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST; |
| |
| if (dev->flags & IFF_PROMISC) { |
| /* NIC to be configured in promiscuous mode. */ |
| receivemode = IPG_RM_RECEIVEALLFRAMES; |
| } else if ((dev->flags & IFF_ALLMULTI) || |
| ((dev->flags & IFF_MULTICAST) && |
| (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) { |
| /* NIC to be configured to receive all multicast |
| * frames. */ |
| receivemode |= IPG_RM_RECEIVEMULTICAST; |
| } else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) { |
| /* NIC to be configured to receive selected |
| * multicast addresses. */ |
| receivemode |= IPG_RM_RECEIVEMULTICASTHASH; |
| } |
| |
| /* Calculate the bits to set for the 64 bit, IPG HASHTABLE. |
| * The IPG applies a cyclic-redundancy-check (the same CRC |
| * used to calculate the frame data FCS) to the destination |
| * address all incoming multicast frames whose destination |
| * address has the multicast bit set. The least significant |
| * 6 bits of the CRC result are used as an addressing index |
| * into the hash table. If the value of the bit addressed by |
| * this index is a 1, the frame is passed to the host system. |
| */ |
| |
| /* Clear hashtable. */ |
| hashtable[0] = 0x00000000; |
| hashtable[1] = 0x00000000; |
| |
| /* Cycle through all multicast addresses to filter. */ |
| for (mc_list_ptr = dev->mc_list; |
| mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) { |
| /* Calculate CRC result for each multicast address. */ |
| hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr, |
| ETH_ALEN); |
| |
| /* Use only the least significant 6 bits. */ |
| hashindex = hashindex & 0x3F; |
| |
| /* Within "hashtable", set bit number "hashindex" |
| * to a logic 1. |
| */ |
| set_bit(hashindex, (void *)hashtable); |
| } |
| |
| /* Write the value of the hashtable, to the 4, 16 bit |
| * HASHTABLE IPG registers. |
| */ |
| ipg_w32(hashtable[0], HASHTABLE_0); |
| ipg_w32(hashtable[1], HASHTABLE_1); |
| |
| ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE); |
| |
| IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE)); |
| } |
| |
| static int ipg_io_config(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = ipg_ioaddr(dev); |
| u32 origmacctrl; |
| u32 restoremacctrl; |
| |
| IPG_DEBUG_MSG("_io_config\n"); |
| |
| origmacctrl = ipg_r32(MAC_CTRL); |
| |
| restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE; |
| |
| /* Based on compilation option, determine if FCS is to be |
| * stripped on receive frames by IPG. |
| */ |
| if (!IPG_STRIP_FCS_ON_RX) |
| restoremacctrl |= IPG_MC_RCV_FCS; |
| |
| /* Determine if transmitter and/or receiver are |
| * enabled so we may restore MACCTRL correctly. |
| */ |
| if (origmacctrl & IPG_MC_TX_ENABLED) |
| restoremacctrl |= IPG_MC_TX_ENABLE; |
| |
| if (origmacctrl & IPG_MC_RX_ENABLED) |
| restoremacctrl |= IPG_MC_RX_ENABLE; |
| |
| /* Transmitter and receiver must be disabled before setting |
| * IFSSelect. |
| */ |
| ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) & |
| IPG_MC_RSVD_MASK, MAC_CTRL); |
| |
| /* Now that transmitter and receiver are disabled, write |
| * to IFSSelect. |
| */ |
| ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL); |
| |
| /* Set RECEIVEMODE register. */ |
| ipg_nic_set_multicast_list(dev); |
| |
| ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE); |
| |
| ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD); |
| ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH); |
| ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH); |
| ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD); |
| ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH); |
| ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH); |
| ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE | |
| IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED | |
| IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT | |
| IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE); |
| ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH); |
| ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH); |
| |
| /* IPG multi-frag frame bug workaround. |
| * Per silicon revision B3 eratta. |
| */ |
| ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL); |
| |
| /* IPG TX poll now bug workaround. |
| * Per silicon revision B3 eratta. |
| */ |
| ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL); |
| |
| /* IPG RX poll now bug workaround. |
| * Per silicon revision B3 eratta. |
| */ |
| ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL); |
| |
| /* Now restore MACCTRL to original setting. */ |
| ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL); |
| |
| /* Disable unused RMON statistics. */ |
| ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK); |
| |
| /* Disable unused MIB statistics. */ |
| ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD | |
| IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES | |
| IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES | |
| IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK | |
| IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS | |
| IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK); |
| |
| return 0; |
| } |
| |
| /* |
| * Create a receive buffer within system memory and update |
| * NIC private structure appropriately. |
| */ |
| static int ipg_get_rxbuff(struct net_device *dev, int entry) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| struct ipg_rx *rxfd = sp->rxd + entry; |
| struct sk_buff *skb; |
| u64 rxfragsize; |
| |
| IPG_DEBUG_MSG("_get_rxbuff\n"); |
| |
| skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size); |
| if (!skb) { |
| sp->rx_buff[entry] = NULL; |
| return -ENOMEM; |
| } |
| |
| /* Associate the receive buffer with the IPG NIC. */ |
| skb->dev = dev; |
| |
| /* Save the address of the sk_buff structure. */ |
| sp->rx_buff[entry] = skb; |
| |
| rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, |
| sp->rx_buf_sz, PCI_DMA_FROMDEVICE)); |
| |
| /* Set the RFD fragment length. */ |
| rxfragsize = sp->rxfrag_size; |
| rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN); |
| |
| return 0; |
| } |
| |
| static int init_rfdlist(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| unsigned int i; |
| |
| IPG_DEBUG_MSG("_init_rfdlist\n"); |
| |
| for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { |
| struct ipg_rx *rxfd = sp->rxd + i; |
| |
| if (sp->rx_buff[i]) { |
| pci_unmap_single(sp->pdev, |
| le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
| sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| dev_kfree_skb_irq(sp->rx_buff[i]); |
| sp->rx_buff[i] = NULL; |
| } |
| |
| /* Clear out the RFS field. */ |
| rxfd->rfs = 0x0000000000000000; |
| |
| if (ipg_get_rxbuff(dev, i) < 0) { |
| /* |
| * A receive buffer was not ready, break the |
| * RFD list here. |
| */ |
| IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n"); |
| |
| /* Just in case we cannot allocate a single RFD. |
| * Should not occur. |
| */ |
| if (i == 0) { |
| printk(KERN_ERR "%s: No memory available" |
| " for RFD list.\n", dev->name); |
| return -ENOMEM; |
| } |
| } |
| |
| rxfd->next_desc = cpu_to_le64(sp->rxd_map + |
| sizeof(struct ipg_rx)*(i + 1)); |
| } |
| sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map); |
| |
| sp->rx_current = 0; |
| sp->rx_dirty = 0; |
| |
| /* Write the location of the RFDList to the IPG. */ |
| ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0); |
| ipg_w32(0x00000000, RFD_LIST_PTR_1); |
| |
| return 0; |
| } |
| |
| static void init_tfdlist(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| unsigned int i; |
| |
| IPG_DEBUG_MSG("_init_tfdlist\n"); |
| |
| for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { |
| struct ipg_tx *txfd = sp->txd + i; |
| |
| txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); |
| |
| if (sp->tx_buff[i]) { |
| dev_kfree_skb_irq(sp->tx_buff[i]); |
| sp->tx_buff[i] = NULL; |
| } |
| |
| txfd->next_desc = cpu_to_le64(sp->txd_map + |
| sizeof(struct ipg_tx)*(i + 1)); |
| } |
| sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map); |
| |
| sp->tx_current = 0; |
| sp->tx_dirty = 0; |
| |
| /* Write the location of the TFDList to the IPG. */ |
| IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n", |
| (u32) sp->txd_map); |
| ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0); |
| ipg_w32(0x00000000, TFD_LIST_PTR_1); |
| |
| sp->reset_current_tfd = 1; |
| } |
| |
| /* |
| * Free all transmit buffers which have already been transfered |
| * via DMA to the IPG. |
| */ |
| static void ipg_nic_txfree(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| unsigned int released, pending, dirty; |
| |
| IPG_DEBUG_MSG("_nic_txfree\n"); |
| |
| pending = sp->tx_current - sp->tx_dirty; |
| dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH; |
| |
| for (released = 0; released < pending; released++) { |
| struct sk_buff *skb = sp->tx_buff[dirty]; |
| struct ipg_tx *txfd = sp->txd + dirty; |
| |
| IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc); |
| |
| /* Look at each TFD's TFC field beginning |
| * at the last freed TFD up to the current TFD. |
| * If the TFDDone bit is set, free the associated |
| * buffer. |
| */ |
| if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE))) |
| break; |
| |
| /* Free the transmit buffer. */ |
| if (skb) { |
| pci_unmap_single(sp->pdev, |
| le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, |
| skb->len, PCI_DMA_TODEVICE); |
| |
| dev_kfree_skb_irq(skb); |
| |
| sp->tx_buff[dirty] = NULL; |
| } |
| dirty = (dirty + 1) % IPG_TFDLIST_LENGTH; |
| } |
| |
| sp->tx_dirty += released; |
| |
| if (netif_queue_stopped(dev) && |
| (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) { |
| netif_wake_queue(dev); |
| } |
| } |
| |
| static void ipg_tx_timeout(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| |
| ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK | |
| IPG_AC_FIFO); |
| |
| spin_lock_irq(&sp->lock); |
| |
| /* Re-configure after DMA reset. */ |
| if (ipg_io_config(dev) < 0) { |
| printk(KERN_INFO "%s: Error during re-configuration.\n", |
| dev->name); |
| } |
| |
| init_tfdlist(dev); |
| |
| spin_unlock_irq(&sp->lock); |
| |
| ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, |
| MAC_CTRL); |
| } |
| |
| /* |
| * For TxComplete interrupts, free all transmit |
| * buffers which have already been transfered via DMA |
| * to the IPG. |
| */ |
| static void ipg_nic_txcleanup(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| unsigned int i; |
| |
| IPG_DEBUG_MSG("_nic_txcleanup\n"); |
| |
| for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { |
| /* Reading the TXSTATUS register clears the |
| * TX_COMPLETE interrupt. |
| */ |
| u32 txstatusdword = ipg_r32(TX_STATUS); |
| |
| IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword); |
| |
| /* Check for Transmit errors. Error bits only valid if |
| * TX_COMPLETE bit in the TXSTATUS register is a 1. |
| */ |
| if (!(txstatusdword & IPG_TS_TX_COMPLETE)) |
| break; |
| |
| /* If in 10Mbps mode, indicate transmit is ready. */ |
| if (sp->tenmbpsmode) { |
| netif_wake_queue(dev); |
| } |
| |
| /* Transmit error, increment stat counters. */ |
| if (txstatusdword & IPG_TS_TX_ERROR) { |
| IPG_DEBUG_MSG("Transmit error.\n"); |
| sp->stats.tx_errors++; |
| } |
| |
| /* Late collision, re-enable transmitter. */ |
| if (txstatusdword & IPG_TS_LATE_COLLISION) { |
| IPG_DEBUG_MSG("Late collision on transmit.\n"); |
| ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & |
| IPG_MC_RSVD_MASK, MAC_CTRL); |
| } |
| |
| /* Maximum collisions, re-enable transmitter. */ |
| if (txstatusdword & IPG_TS_TX_MAX_COLL) { |
| IPG_DEBUG_MSG("Maximum collisions on transmit.\n"); |
| ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & |
| IPG_MC_RSVD_MASK, MAC_CTRL); |
| } |
| |
| /* Transmit underrun, reset and re-enable |
| * transmitter. |
| */ |
| if (txstatusdword & IPG_TS_TX_UNDERRUN) { |
| IPG_DEBUG_MSG("Transmitter underrun.\n"); |
| sp->stats.tx_fifo_errors++; |
| ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | |
| IPG_AC_NETWORK | IPG_AC_FIFO); |
| |
| /* Re-configure after DMA reset. */ |
| if (ipg_io_config(dev) < 0) { |
| printk(KERN_INFO |
| "%s: Error during re-configuration.\n", |
| dev->name); |
| } |
| init_tfdlist(dev); |
| |
| ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & |
| IPG_MC_RSVD_MASK, MAC_CTRL); |
| } |
| } |
| |
| ipg_nic_txfree(dev); |
| } |
| |
| /* Provides statistical information about the IPG NIC. */ |
| static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| u16 temp1; |
| u16 temp2; |
| |
| IPG_DEBUG_MSG("_nic_get_stats\n"); |
| |
| /* Check to see if the NIC has been initialized via nic_open, |
| * before trying to read statistic registers. |
| */ |
| if (!test_bit(__LINK_STATE_START, &dev->state)) |
| return &sp->stats; |
| |
| sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK); |
| sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK); |
| sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK); |
| sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK); |
| temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS); |
| sp->stats.rx_errors += temp1; |
| sp->stats.rx_missed_errors += temp1; |
| temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) + |
| ipg_r32(IPG_LATECOLLISIONS); |
| temp2 = ipg_r16(IPG_CARRIERSENSEERRORS); |
| sp->stats.collisions += temp1; |
| sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS); |
| sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) + |
| ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2; |
| sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK); |
| |
| /* detailed tx_errors */ |
| sp->stats.tx_carrier_errors += temp2; |
| |
| /* detailed rx_errors */ |
| sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) + |
| ipg_r16(IPG_FRAMETOOLONGERRRORS); |
| sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS); |
| |
| /* Unutilized IPG statistic registers. */ |
| ipg_r32(IPG_MCSTFRAMESRCVDOK); |
| |
| return &sp->stats; |
| } |
| |
| /* Restore used receive buffers. */ |
| static int ipg_nic_rxrestore(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| const unsigned int curr = sp->rx_current; |
| unsigned int dirty = sp->rx_dirty; |
| |
| IPG_DEBUG_MSG("_nic_rxrestore\n"); |
| |
| for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) { |
| unsigned int entry = dirty % IPG_RFDLIST_LENGTH; |
| |
| /* rx_copybreak may poke hole here and there. */ |
| if (sp->rx_buff[entry]) |
| continue; |
| |
| /* Generate a new receive buffer to replace the |
| * current buffer (which will be released by the |
| * Linux system). |
| */ |
| if (ipg_get_rxbuff(dev, entry) < 0) { |
| IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n"); |
| |
| break; |
| } |
| |
| /* Reset the RFS field. */ |
| sp->rxd[entry].rfs = 0x0000000000000000; |
| } |
| sp->rx_dirty = dirty; |
| |
| return 0; |
| } |
| |
| /* use jumboindex and jumbosize to control jumbo frame status |
| * initial status is jumboindex=-1 and jumbosize=0 |
| * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done. |
| * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving |
| * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump |
| * previous receiving and need to continue dumping the current one |
| */ |
| enum { |
| NORMAL_PACKET, |
| ERROR_PACKET |
| }; |
| |
| enum { |
| FRAME_NO_START_NO_END = 0, |
| FRAME_WITH_START = 1, |
| FRAME_WITH_END = 10, |
| FRAME_WITH_START_WITH_END = 11 |
| }; |
| |
| static void ipg_nic_rx_free_skb(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; |
| |
| if (sp->rx_buff[entry]) { |
| struct ipg_rx *rxfd = sp->rxd + entry; |
| |
| pci_unmap_single(sp->pdev, |
| le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
| sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| dev_kfree_skb_irq(sp->rx_buff[entry]); |
| sp->rx_buff[entry] = NULL; |
| } |
| } |
| |
| static int ipg_nic_rx_check_frame_type(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH); |
| int type = FRAME_NO_START_NO_END; |
| |
| if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) |
| type += FRAME_WITH_START; |
| if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND) |
| type += FRAME_WITH_END; |
| return type; |
| } |
| |
| static int ipg_nic_rx_check_error(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; |
| struct ipg_rx *rxfd = sp->rxd + entry; |
| |
| if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & |
| (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | |
| IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | |
| IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) { |
| IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", |
| (unsigned long) rxfd->rfs); |
| |
| /* Increment general receive error statistic. */ |
| sp->stats.rx_errors++; |
| |
| /* Increment detailed receive error statistics. */ |
| if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { |
| IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); |
| |
| sp->stats.rx_fifo_errors++; |
| } |
| |
| if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { |
| IPG_DEBUG_MSG("RX runt occured.\n"); |
| sp->stats.rx_length_errors++; |
| } |
| |
| /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME, |
| * error count handled by a IPG statistic register. |
| */ |
| |
| if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { |
| IPG_DEBUG_MSG("RX alignment error occured.\n"); |
| sp->stats.rx_frame_errors++; |
| } |
| |
| /* Do nothing for IPG_RFS_RXFCSERROR, error count |
| * handled by a IPG statistic register. |
| */ |
| |
| /* Free the memory associated with the RX |
| * buffer since it is erroneous and we will |
| * not pass it to higher layer processes. |
| */ |
| if (sp->rx_buff[entry]) { |
| pci_unmap_single(sp->pdev, |
| le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
| sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| |
| dev_kfree_skb_irq(sp->rx_buff[entry]); |
| sp->rx_buff[entry] = NULL; |
| } |
| return ERROR_PACKET; |
| } |
| return NORMAL_PACKET; |
| } |
| |
| static void ipg_nic_rx_with_start_and_end(struct net_device *dev, |
| struct ipg_nic_private *sp, |
| struct ipg_rx *rxfd, unsigned entry) |
| { |
| struct ipg_jumbo *jumbo = &sp->jumbo; |
| struct sk_buff *skb; |
| int framelen; |
| |
| if (jumbo->found_start) { |
| dev_kfree_skb_irq(jumbo->skb); |
| jumbo->found_start = 0; |
| jumbo->current_size = 0; |
| jumbo->skb = NULL; |
| } |
| |
| /* 1: found error, 0 no error */ |
| if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) |
| return; |
| |
| skb = sp->rx_buff[entry]; |
| if (!skb) |
| return; |
| |
| /* accept this frame and send to upper layer */ |
| framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; |
| if (framelen > sp->rxfrag_size) |
| framelen = sp->rxfrag_size; |
| |
| skb_put(skb, framelen); |
| skb->protocol = eth_type_trans(skb, dev); |
| skb->ip_summed = CHECKSUM_NONE; |
| netif_rx(skb); |
| sp->rx_buff[entry] = NULL; |
| } |
| |
| static void ipg_nic_rx_with_start(struct net_device *dev, |
| struct ipg_nic_private *sp, |
| struct ipg_rx *rxfd, unsigned entry) |
| { |
| struct ipg_jumbo *jumbo = &sp->jumbo; |
| struct pci_dev *pdev = sp->pdev; |
| struct sk_buff *skb; |
| |
| /* 1: found error, 0 no error */ |
| if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) |
| return; |
| |
| /* accept this frame and send to upper layer */ |
| skb = sp->rx_buff[entry]; |
| if (!skb) |
| return; |
| |
| if (jumbo->found_start) |
| dev_kfree_skb_irq(jumbo->skb); |
| |
| pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
| sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| |
| skb_put(skb, sp->rxfrag_size); |
| |
| jumbo->found_start = 1; |
| jumbo->current_size = sp->rxfrag_size; |
| jumbo->skb = skb; |
| |
| sp->rx_buff[entry] = NULL; |
| } |
| |
| static void ipg_nic_rx_with_end(struct net_device *dev, |
| struct ipg_nic_private *sp, |
| struct ipg_rx *rxfd, unsigned entry) |
| { |
| struct ipg_jumbo *jumbo = &sp->jumbo; |
| |
| /* 1: found error, 0 no error */ |
| if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { |
| struct sk_buff *skb = sp->rx_buff[entry]; |
| |
| if (!skb) |
| return; |
| |
| if (jumbo->found_start) { |
| int framelen, endframelen; |
| |
| framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; |
| |
| endframelen = framelen - jumbo->current_size; |
| if (framelen > sp->rxsupport_size) |
| dev_kfree_skb_irq(jumbo->skb); |
| else { |
| memcpy(skb_put(jumbo->skb, endframelen), |
| skb->data, endframelen); |
| |
| jumbo->skb->protocol = |
| eth_type_trans(jumbo->skb, dev); |
| |
| jumbo->skb->ip_summed = CHECKSUM_NONE; |
| netif_rx(jumbo->skb); |
| } |
| } |
| |
| jumbo->found_start = 0; |
| jumbo->current_size = 0; |
| jumbo->skb = NULL; |
| |
| ipg_nic_rx_free_skb(dev); |
| } else { |
| dev_kfree_skb_irq(jumbo->skb); |
| jumbo->found_start = 0; |
| jumbo->current_size = 0; |
| jumbo->skb = NULL; |
| } |
| } |
| |
| static void ipg_nic_rx_no_start_no_end(struct net_device *dev, |
| struct ipg_nic_private *sp, |
| struct ipg_rx *rxfd, unsigned entry) |
| { |
| struct ipg_jumbo *jumbo = &sp->jumbo; |
| |
| /* 1: found error, 0 no error */ |
| if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { |
| struct sk_buff *skb = sp->rx_buff[entry]; |
| |
| if (skb) { |
| if (jumbo->found_start) { |
| jumbo->current_size += sp->rxfrag_size; |
| if (jumbo->current_size <= sp->rxsupport_size) { |
| memcpy(skb_put(jumbo->skb, |
| sp->rxfrag_size), |
| skb->data, sp->rxfrag_size); |
| } |
| } |
| ipg_nic_rx_free_skb(dev); |
| } |
| } else { |
| dev_kfree_skb_irq(jumbo->skb); |
| jumbo->found_start = 0; |
| jumbo->current_size = 0; |
| jumbo->skb = NULL; |
| } |
| } |
| |
| static int ipg_nic_rx_jumbo(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| unsigned int curr = sp->rx_current; |
| void __iomem *ioaddr = sp->ioaddr; |
| unsigned int i; |
| |
| IPG_DEBUG_MSG("_nic_rx\n"); |
| |
| for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { |
| unsigned int entry = curr % IPG_RFDLIST_LENGTH; |
| struct ipg_rx *rxfd = sp->rxd + entry; |
| |
| if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE))) |
| break; |
| |
| switch (ipg_nic_rx_check_frame_type(dev)) { |
| case FRAME_WITH_START_WITH_END: |
| ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry); |
| break; |
| case FRAME_WITH_START: |
| ipg_nic_rx_with_start(dev, sp, rxfd, entry); |
| break; |
| case FRAME_WITH_END: |
| ipg_nic_rx_with_end(dev, sp, rxfd, entry); |
| break; |
| case FRAME_NO_START_NO_END: |
| ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry); |
| break; |
| } |
| } |
| |
| sp->rx_current = curr; |
| |
| if (i == IPG_MAXRFDPROCESS_COUNT) { |
| /* There are more RFDs to process, however the |
| * allocated amount of RFD processing time has |
| * expired. Assert Interrupt Requested to make |
| * sure we come back to process the remaining RFDs. |
| */ |
| ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); |
| } |
| |
| ipg_nic_rxrestore(dev); |
| |
| return 0; |
| } |
| |
| static int ipg_nic_rx(struct net_device *dev) |
| { |
| /* Transfer received Ethernet frames to higher network layers. */ |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| unsigned int curr = sp->rx_current; |
| void __iomem *ioaddr = sp->ioaddr; |
| struct ipg_rx *rxfd; |
| unsigned int i; |
| |
| IPG_DEBUG_MSG("_nic_rx\n"); |
| |
| #define __RFS_MASK \ |
| cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND) |
| |
| for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { |
| unsigned int entry = curr % IPG_RFDLIST_LENGTH; |
| struct sk_buff *skb = sp->rx_buff[entry]; |
| unsigned int framelen; |
| |
| rxfd = sp->rxd + entry; |
| |
| if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb) |
| break; |
| |
| /* Get received frame length. */ |
| framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; |
| |
| /* Check for jumbo frame arrival with too small |
| * RXFRAG_SIZE. |
| */ |
| if (framelen > sp->rxfrag_size) { |
| IPG_DEBUG_MSG |
| ("RFS FrameLen > allocated fragment size.\n"); |
| |
| framelen = sp->rxfrag_size; |
| } |
| |
| if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & |
| (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | |
| IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | |
| IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) { |
| |
| IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", |
| (unsigned long int) rxfd->rfs); |
| |
| /* Increment general receive error statistic. */ |
| sp->stats.rx_errors++; |
| |
| /* Increment detailed receive error statistics. */ |
| if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { |
| IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); |
| sp->stats.rx_fifo_errors++; |
| } |
| |
| if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { |
| IPG_DEBUG_MSG("RX runt occured.\n"); |
| sp->stats.rx_length_errors++; |
| } |
| |
| if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ; |
| /* Do nothing, error count handled by a IPG |
| * statistic register. |
| */ |
| |
| if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { |
| IPG_DEBUG_MSG("RX alignment error occured.\n"); |
| sp->stats.rx_frame_errors++; |
| } |
| |
| if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ; |
| /* Do nothing, error count handled by a IPG |
| * statistic register. |
| */ |
| |
| /* Free the memory associated with the RX |
| * buffer since it is erroneous and we will |
| * not pass it to higher layer processes. |
| */ |
| if (skb) { |
| __le64 info = rxfd->frag_info; |
| |
| pci_unmap_single(sp->pdev, |
| le64_to_cpu(info) & ~IPG_RFI_FRAGLEN, |
| sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| |
| dev_kfree_skb_irq(skb); |
| } |
| } else { |
| |
| /* Adjust the new buffer length to accomodate the size |
| * of the received frame. |
| */ |
| skb_put(skb, framelen); |
| |
| /* Set the buffer's protocol field to Ethernet. */ |
| skb->protocol = eth_type_trans(skb, dev); |
| |
| /* The IPG encountered an error with (or |
| * there were no) IP/TCP/UDP checksums. |
| * This may or may not indicate an invalid |
| * IP/TCP/UDP frame was received. Let the |
| * upper layer decide. |
| */ |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| /* Hand off frame for higher layer processing. |
| * The function netif_rx() releases the sk_buff |
| * when processing completes. |
| */ |
| netif_rx(skb); |
| } |
| |
| /* Assure RX buffer is not reused by IPG. */ |
| sp->rx_buff[entry] = NULL; |
| } |
| |
| /* |
| * If there are more RFDs to proces and the allocated amount of RFD |
| * processing time has expired, assert Interrupt Requested to make |
| * sure we come back to process the remaining RFDs. |
| */ |
| if (i == IPG_MAXRFDPROCESS_COUNT) |
| ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); |
| |
| #ifdef IPG_DEBUG |
| /* Check if the RFD list contained no receive frame data. */ |
| if (!i) |
| sp->EmptyRFDListCount++; |
| #endif |
| while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) && |
| !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) && |
| (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) { |
| unsigned int entry = curr++ % IPG_RFDLIST_LENGTH; |
| |
| rxfd = sp->rxd + entry; |
| |
| IPG_DEBUG_MSG("Frame requires multiple RFDs.\n"); |
| |
| /* An unexpected event, additional code needed to handle |
| * properly. So for the time being, just disregard the |
| * frame. |
| */ |
| |
| /* Free the memory associated with the RX |
| * buffer since it is erroneous and we will |
| * not pass it to higher layer processes. |
| */ |
| if (sp->rx_buff[entry]) { |
| pci_unmap_single(sp->pdev, |
| le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
| sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| dev_kfree_skb_irq(sp->rx_buff[entry]); |
| } |
| |
| /* Assure RX buffer is not reused by IPG. */ |
| sp->rx_buff[entry] = NULL; |
| } |
| |
| sp->rx_current = curr; |
| |
| /* Check to see if there are a minimum number of used |
| * RFDs before restoring any (should improve performance.) |
| */ |
| if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE) |
| ipg_nic_rxrestore(dev); |
| |
| return 0; |
| } |
| |
| static void ipg_reset_after_host_error(struct work_struct *work) |
| { |
| struct ipg_nic_private *sp = |
| container_of(work, struct ipg_nic_private, task.work); |
| struct net_device *dev = sp->dev; |
| |
| IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL)); |
| |
| /* |
| * Acknowledge HostError interrupt by resetting |
| * IPG DMA and HOST. |
| */ |
| ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); |
| |
| init_rfdlist(dev); |
| init_tfdlist(dev); |
| |
| if (ipg_io_config(dev) < 0) { |
| printk(KERN_INFO "%s: Cannot recover from PCI error.\n", |
| dev->name); |
| schedule_delayed_work(&sp->task, HZ); |
| } |
| } |
| |
| static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst) |
| { |
| struct net_device *dev = dev_inst; |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| unsigned int handled = 0; |
| u16 status; |
| |
| IPG_DEBUG_MSG("_interrupt_handler\n"); |
| |
| if (sp->is_jumbo) |
| ipg_nic_rxrestore(dev); |
| |
| spin_lock(&sp->lock); |
| |
| /* Get interrupt source information, and acknowledge |
| * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly, |
| * IntRequested, MacControlFrame, LinkEvent) interrupts |
| * if issued. Also, all IPG interrupts are disabled by |
| * reading IntStatusAck. |
| */ |
| status = ipg_r16(INT_STATUS_ACK); |
| |
| IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status); |
| |
| /* Shared IRQ of remove event. */ |
| if (!(status & IPG_IS_RSVD_MASK)) |
| goto out_enable; |
| |
| handled = 1; |
| |
| if (unlikely(!netif_running(dev))) |
| goto out_unlock; |
| |
| /* If RFDListEnd interrupt, restore all used RFDs. */ |
| if (status & IPG_IS_RFD_LIST_END) { |
| IPG_DEBUG_MSG("RFDListEnd Interrupt.\n"); |
| |
| /* The RFD list end indicates an RFD was encountered |
| * with a 0 NextPtr, or with an RFDDone bit set to 1 |
| * (indicating the RFD is not read for use by the |
| * IPG.) Try to restore all RFDs. |
| */ |
| ipg_nic_rxrestore(dev); |
| |
| #ifdef IPG_DEBUG |
| /* Increment the RFDlistendCount counter. */ |
| sp->RFDlistendCount++; |
| #endif |
| } |
| |
| /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or |
| * IntRequested interrupt, process received frames. */ |
| if ((status & IPG_IS_RX_DMA_PRIORITY) || |
| (status & IPG_IS_RFD_LIST_END) || |
| (status & IPG_IS_RX_DMA_COMPLETE) || |
| (status & IPG_IS_INT_REQUESTED)) { |
| #ifdef IPG_DEBUG |
| /* Increment the RFD list checked counter if interrupted |
| * only to check the RFD list. */ |
| if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END | |
| IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) & |
| (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE | |
| IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE | |
| IPG_IS_UPDATE_STATS))) |
| sp->RFDListCheckedCount++; |
| #endif |
| |
| if (sp->is_jumbo) |
| ipg_nic_rx_jumbo(dev); |
| else |
| ipg_nic_rx(dev); |
| } |
| |
| /* If TxDMAComplete interrupt, free used TFDs. */ |
| if (status & IPG_IS_TX_DMA_COMPLETE) |
| ipg_nic_txfree(dev); |
| |
| /* TxComplete interrupts indicate one of numerous actions. |
| * Determine what action to take based on TXSTATUS register. |
| */ |
| if (status & IPG_IS_TX_COMPLETE) |
| ipg_nic_txcleanup(dev); |
| |
| /* If UpdateStats interrupt, update Linux Ethernet statistics */ |
| if (status & IPG_IS_UPDATE_STATS) |
| ipg_nic_get_stats(dev); |
| |
| /* If HostError interrupt, reset IPG. */ |
| if (status & IPG_IS_HOST_ERROR) { |
| IPG_DDEBUG_MSG("HostError Interrupt\n"); |
| |
| schedule_delayed_work(&sp->task, 0); |
| } |
| |
| /* If LinkEvent interrupt, resolve autonegotiation. */ |
| if (status & IPG_IS_LINK_EVENT) { |
| if (ipg_config_autoneg(dev) < 0) |
| printk(KERN_INFO "%s: Auto-negotiation error.\n", |
| dev->name); |
| } |
| |
| /* If MACCtrlFrame interrupt, do nothing. */ |
| if (status & IPG_IS_MAC_CTRL_FRAME) |
| IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n"); |
| |
| /* If RxComplete interrupt, do nothing. */ |
| if (status & IPG_IS_RX_COMPLETE) |
| IPG_DEBUG_MSG("RxComplete interrupt.\n"); |
| |
| /* If RxEarly interrupt, do nothing. */ |
| if (status & IPG_IS_RX_EARLY) |
| IPG_DEBUG_MSG("RxEarly interrupt.\n"); |
| |
| out_enable: |
| /* Re-enable IPG interrupts. */ |
| ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE | |
| IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE | |
| IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE); |
| out_unlock: |
| spin_unlock(&sp->lock); |
| |
| return IRQ_RETVAL(handled); |
| } |
| |
| static void ipg_rx_clear(struct ipg_nic_private *sp) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { |
| if (sp->rx_buff[i]) { |
| struct ipg_rx *rxfd = sp->rxd + i; |
| |
| dev_kfree_skb_irq(sp->rx_buff[i]); |
| sp->rx_buff[i] = NULL; |
| pci_unmap_single(sp->pdev, |
| le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
| sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| } |
| } |
| } |
| |
| static void ipg_tx_clear(struct ipg_nic_private *sp) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { |
| if (sp->tx_buff[i]) { |
| struct ipg_tx *txfd = sp->txd + i; |
| |
| pci_unmap_single(sp->pdev, |
| le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, |
| sp->tx_buff[i]->len, PCI_DMA_TODEVICE); |
| |
| dev_kfree_skb_irq(sp->tx_buff[i]); |
| |
| sp->tx_buff[i] = NULL; |
| } |
| } |
| } |
| |
| static int ipg_nic_open(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| struct pci_dev *pdev = sp->pdev; |
| int rc; |
| |
| IPG_DEBUG_MSG("_nic_open\n"); |
| |
| sp->rx_buf_sz = sp->rxsupport_size; |
| |
| /* Check for interrupt line conflicts, and request interrupt |
| * line for IPG. |
| * |
| * IMPORTANT: Disable IPG interrupts prior to registering |
| * IRQ. |
| */ |
| ipg_w16(0x0000, INT_ENABLE); |
| |
| /* Register the interrupt line to be used by the IPG within |
| * the Linux system. |
| */ |
| rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED, |
| dev->name, dev); |
| if (rc < 0) { |
| printk(KERN_INFO "%s: Error when requesting interrupt.\n", |
| dev->name); |
| goto out; |
| } |
| |
| dev->irq = pdev->irq; |
| |
| rc = -ENOMEM; |
| |
| sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES, |
| &sp->rxd_map, GFP_KERNEL); |
| if (!sp->rxd) |
| goto err_free_irq_0; |
| |
| sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES, |
| &sp->txd_map, GFP_KERNEL); |
| if (!sp->txd) |
| goto err_free_rx_1; |
| |
| rc = init_rfdlist(dev); |
| if (rc < 0) { |
| printk(KERN_INFO "%s: Error during configuration.\n", |
| dev->name); |
| goto err_free_tx_2; |
| } |
| |
| init_tfdlist(dev); |
| |
| rc = ipg_io_config(dev); |
| if (rc < 0) { |
| printk(KERN_INFO "%s: Error during configuration.\n", |
| dev->name); |
| goto err_release_tfdlist_3; |
| } |
| |
| /* Resolve autonegotiation. */ |
| if (ipg_config_autoneg(dev) < 0) |
| printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name); |
| |
| /* initialize JUMBO Frame control variable */ |
| sp->jumbo.found_start = 0; |
| sp->jumbo.current_size = 0; |
| sp->jumbo.skb = NULL; |
| |
| /* Enable transmit and receive operation of the IPG. */ |
| ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) & |
| IPG_MC_RSVD_MASK, MAC_CTRL); |
| |
| netif_start_queue(dev); |
| out: |
| return rc; |
| |
| err_release_tfdlist_3: |
| ipg_tx_clear(sp); |
| ipg_rx_clear(sp); |
| err_free_tx_2: |
| dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); |
| err_free_rx_1: |
| dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); |
| err_free_irq_0: |
| free_irq(pdev->irq, dev); |
| goto out; |
| } |
| |
| static int ipg_nic_stop(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| struct pci_dev *pdev = sp->pdev; |
| |
| IPG_DEBUG_MSG("_nic_stop\n"); |
| |
| netif_stop_queue(dev); |
| |
| IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount); |
| IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount); |
| IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount); |
| IPG_DUMPTFDLIST(dev); |
| |
| do { |
| (void) ipg_r16(INT_STATUS_ACK); |
| |
| ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); |
| |
| synchronize_irq(pdev->irq); |
| } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK); |
| |
| ipg_rx_clear(sp); |
| |
| ipg_tx_clear(sp); |
| |
| pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); |
| pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); |
| |
| free_irq(pdev->irq, dev); |
| |
| return 0; |
| } |
| |
| static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH; |
| unsigned long flags; |
| struct ipg_tx *txfd; |
| |
| IPG_DDEBUG_MSG("_nic_hard_start_xmit\n"); |
| |
| /* If in 10Mbps mode, stop the transmit queue so |
| * no more transmit frames are accepted. |
| */ |
| if (sp->tenmbpsmode) |
| netif_stop_queue(dev); |
| |
| if (sp->reset_current_tfd) { |
| sp->reset_current_tfd = 0; |
| entry = 0; |
| } |
| |
| txfd = sp->txd + entry; |
| |
| sp->tx_buff[entry] = skb; |
| |
| /* Clear all TFC fields, except TFDDONE. */ |
| txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); |
| |
| /* Specify the TFC field within the TFD. */ |
| txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED | |
| (IPG_TFC_FRAMEID & sp->tx_current) | |
| (IPG_TFC_FRAGCOUNT & (1 << 24))); |
| /* |
| * 16--17 (WordAlign) <- 3 (disable), |
| * 0--15 (FrameId) <- sp->tx_current, |
| * 24--27 (FragCount) <- 1 |
| */ |
| |
| /* Request TxComplete interrupts at an interval defined |
| * by the constant IPG_FRAMESBETWEENTXCOMPLETES. |
| * Request TxComplete interrupt for every frame |
| * if in 10Mbps mode to accomodate problem with 10Mbps |
| * processing. |
| */ |
| if (sp->tenmbpsmode) |
| txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE); |
| txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE); |
| /* Based on compilation option, determine if FCS is to be |
| * appended to transmit frame by IPG. |
| */ |
| if (!(IPG_APPEND_FCS_ON_TX)) |
| txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE); |
| |
| /* Based on compilation option, determine if IP, TCP and/or |
| * UDP checksums are to be added to transmit frame by IPG. |
| */ |
| if (IPG_ADD_IPCHECKSUM_ON_TX) |
| txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE); |
| |
| if (IPG_ADD_TCPCHECKSUM_ON_TX) |
| txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE); |
| |
| if (IPG_ADD_UDPCHECKSUM_ON_TX) |
| txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE); |
| |
| /* Based on compilation option, determine if VLAN tag info is to be |
| * inserted into transmit frame by IPG. |
| */ |
| if (IPG_INSERT_MANUAL_VLAN_TAG) { |
| txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT | |
| ((u64) IPG_MANUAL_VLAN_VID << 32) | |
| ((u64) IPG_MANUAL_VLAN_CFI << 44) | |
| ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45)); |
| } |
| |
| /* The fragment start location within system memory is defined |
| * by the sk_buff structure's data field. The physical address |
| * of this location within the system's virtual memory space |
| * is determined using the IPG_HOST2BUS_MAP function. |
| */ |
| txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, |
| skb->len, PCI_DMA_TODEVICE)); |
| |
| /* The length of the fragment within system memory is defined by |
| * the sk_buff structure's len field. |
| */ |
| txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN & |
| ((u64) (skb->len & 0xffff) << 48)); |
| |
| /* Clear the TFDDone bit last to indicate the TFD is ready |
| * for transfer to the IPG. |
| */ |
| txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE); |
| |
| spin_lock_irqsave(&sp->lock, flags); |
| |
| sp->tx_current++; |
| |
| mmiowb(); |
| |
| ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL); |
| |
| if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH)) |
| netif_stop_queue(dev); |
| |
| spin_unlock_irqrestore(&sp->lock, flags); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static void ipg_set_phy_default_param(unsigned char rev, |
| struct net_device *dev, int phy_address) |
| { |
| unsigned short length; |
| unsigned char revision; |
| unsigned short *phy_param; |
| unsigned short address, value; |
| |
| phy_param = &DefaultPhyParam[0]; |
| length = *phy_param & 0x00FF; |
| revision = (unsigned char)((*phy_param) >> 8); |
| phy_param++; |
| while (length != 0) { |
| if (rev == revision) { |
| while (length > 1) { |
| address = *phy_param; |
| value = *(phy_param + 1); |
| phy_param += 2; |
| mdio_write(dev, phy_address, address, value); |
| length -= 4; |
| } |
| break; |
| } else { |
| phy_param += length / 2; |
| length = *phy_param & 0x00FF; |
| revision = (unsigned char)((*phy_param) >> 8); |
| phy_param++; |
| } |
| } |
| } |
| |
| static int read_eeprom(struct net_device *dev, int eep_addr) |
| { |
| void __iomem *ioaddr = ipg_ioaddr(dev); |
| unsigned int i; |
| int ret = 0; |
| u16 value; |
| |
| value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff); |
| ipg_w16(value, EEPROM_CTRL); |
| |
| for (i = 0; i < 1000; i++) { |
| u16 data; |
| |
| mdelay(10); |
| data = ipg_r16(EEPROM_CTRL); |
| if (!(data & IPG_EC_EEPROM_BUSY)) { |
| ret = ipg_r16(EEPROM_DATA); |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| static void ipg_init_mii(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| struct mii_if_info *mii_if = &sp->mii_if; |
| int phyaddr; |
| |
| mii_if->dev = dev; |
| mii_if->mdio_read = mdio_read; |
| mii_if->mdio_write = mdio_write; |
| mii_if->phy_id_mask = 0x1f; |
| mii_if->reg_num_mask = 0x1f; |
| |
| mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev); |
| |
| if (phyaddr != 0x1f) { |
| u16 mii_phyctrl, mii_1000cr; |
| u8 revisionid = 0; |
| |
| mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000); |
| mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF | |
| GMII_PHY_1000BASETCONTROL_PreferMaster; |
| mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr); |
| |
| mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR); |
| |
| /* Set default phyparam */ |
| pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid); |
| ipg_set_phy_default_param(revisionid, dev, phyaddr); |
| |
| /* Reset PHY */ |
| mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART; |
| mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl); |
| |
| } |
| } |
| |
| static int ipg_hw_init(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| void __iomem *ioaddr = sp->ioaddr; |
| unsigned int i; |
| int rc; |
| |
| /* Read/Write and Reset EEPROM Value */ |
| /* Read LED Mode Configuration from EEPROM */ |
| sp->led_mode = read_eeprom(dev, 6); |
| |
| /* Reset all functions within the IPG. Do not assert |
| * RST_OUT as not compatible with some PHYs. |
| */ |
| rc = ipg_reset(dev, IPG_RESET_MASK); |
| if (rc < 0) |
| goto out; |
| |
| ipg_init_mii(dev); |
| |
| /* Read MAC Address from EEPROM */ |
| for (i = 0; i < 3; i++) |
| sp->station_addr[i] = read_eeprom(dev, 16 + i); |
| |
| for (i = 0; i < 3; i++) |
| ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i); |
| |
| /* Set station address in ethernet_device structure. */ |
| dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff; |
| dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8; |
| dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff; |
| dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8; |
| dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff; |
| dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8; |
| out: |
| return rc; |
| } |
| |
| static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| int rc; |
| |
| mutex_lock(&sp->mii_mutex); |
| rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL); |
| mutex_unlock(&sp->mii_mutex); |
| |
| return rc; |
| } |
| |
| static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| int err; |
| |
| /* Function to accomodate changes to Maximum Transfer Unit |
| * (or MTU) of IPG NIC. Cannot use default function since |
| * the default will not allow for MTU > 1500 bytes. |
| */ |
| |
| IPG_DEBUG_MSG("_nic_change_mtu\n"); |
| |
| /* |
| * Check that the new MTU value is between 68 (14 byte header, 46 byte |
| * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU. |
| */ |
| if (new_mtu < 68 || new_mtu > 10240) |
| return -EINVAL; |
| |
| err = ipg_nic_stop(dev); |
| if (err) |
| return err; |
| |
| dev->mtu = new_mtu; |
| |
| sp->max_rxframe_size = new_mtu; |
| |
| sp->rxfrag_size = new_mtu; |
| if (sp->rxfrag_size > 4088) |
| sp->rxfrag_size = 4088; |
| |
| sp->rxsupport_size = sp->max_rxframe_size; |
| |
| if (new_mtu > 0x0600) |
| sp->is_jumbo = true; |
| else |
| sp->is_jumbo = false; |
| |
| return ipg_nic_open(dev); |
| } |
| |
| static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| int rc; |
| |
| mutex_lock(&sp->mii_mutex); |
| rc = mii_ethtool_gset(&sp->mii_if, cmd); |
| mutex_unlock(&sp->mii_mutex); |
| |
| return rc; |
| } |
| |
| static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| int rc; |
| |
| mutex_lock(&sp->mii_mutex); |
| rc = mii_ethtool_sset(&sp->mii_if, cmd); |
| mutex_unlock(&sp->mii_mutex); |
| |
| return rc; |
| } |
| |
| static int ipg_nway_reset(struct net_device *dev) |
| { |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| int rc; |
| |
| mutex_lock(&sp->mii_mutex); |
| rc = mii_nway_restart(&sp->mii_if); |
| mutex_unlock(&sp->mii_mutex); |
| |
| return rc; |
| } |
| |
| static const struct ethtool_ops ipg_ethtool_ops = { |
| .get_settings = ipg_get_settings, |
| .set_settings = ipg_set_settings, |
| .nway_reset = ipg_nway_reset, |
| }; |
| |
| static void __devexit ipg_remove(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct ipg_nic_private *sp = netdev_priv(dev); |
| |
| IPG_DEBUG_MSG("_remove\n"); |
| |
| /* Un-register Ethernet device. */ |
| unregister_netdev(dev); |
| |
| pci_iounmap(pdev, sp->ioaddr); |
| |
| pci_release_regions(pdev); |
| |
| free_netdev(dev); |
| pci_disable_device(pdev); |
| pci_set_drvdata(pdev, NULL); |
| } |
| |
| static const struct net_device_ops ipg_netdev_ops = { |
| .ndo_open = ipg_nic_open, |
| .ndo_stop = ipg_nic_stop, |
| .ndo_start_xmit = ipg_nic_hard_start_xmit, |
| .ndo_get_stats = ipg_nic_get_stats, |
| .ndo_set_multicast_list = ipg_nic_set_multicast_list, |
| .ndo_do_ioctl = ipg_ioctl, |
| .ndo_tx_timeout = ipg_tx_timeout, |
| .ndo_change_mtu = ipg_nic_change_mtu, |
| .ndo_set_mac_address = eth_mac_addr, |
| .ndo_validate_addr = eth_validate_addr, |
| }; |
| |
| static int __devinit ipg_probe(struct pci_dev *pdev, |
| const struct pci_device_id *id) |
| { |
| unsigned int i = id->driver_data; |
| struct ipg_nic_private *sp; |
| struct net_device *dev; |
| void __iomem *ioaddr; |
| int rc; |
| |
| rc = pci_enable_device(pdev); |
| if (rc < 0) |
| goto out; |
| |
| printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]); |
| |
| pci_set_master(pdev); |
| |
| rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40)); |
| if (rc < 0) { |
| rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (rc < 0) { |
| printk(KERN_ERR "%s: DMA config failed.\n", |
| pci_name(pdev)); |
| goto err_disable_0; |
| } |
| } |
| |
| /* |
| * Initialize net device. |
| */ |
| dev = alloc_etherdev(sizeof(struct ipg_nic_private)); |
| if (!dev) { |
| printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev)); |
| rc = -ENOMEM; |
| goto err_disable_0; |
| } |
| |
| sp = netdev_priv(dev); |
| spin_lock_init(&sp->lock); |
| mutex_init(&sp->mii_mutex); |
| |
| sp->is_jumbo = IPG_IS_JUMBO; |
| sp->rxfrag_size = IPG_RXFRAG_SIZE; |
| sp->rxsupport_size = IPG_RXSUPPORT_SIZE; |
| sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE; |
| |
| /* Declare IPG NIC functions for Ethernet device methods. |
| */ |
| dev->netdev_ops = &ipg_netdev_ops; |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops); |
| |
| rc = pci_request_regions(pdev, DRV_NAME); |
| if (rc) |
| goto err_free_dev_1; |
| |
| ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1)); |
| if (!ioaddr) { |
| printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev)); |
| rc = -EIO; |
| goto err_release_regions_2; |
| } |
| |
| /* Save the pointer to the PCI device information. */ |
| sp->ioaddr = ioaddr; |
| sp->pdev = pdev; |
| sp->dev = dev; |
| |
| INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error); |
| |
| pci_set_drvdata(pdev, dev); |
| |
| rc = ipg_hw_init(dev); |
| if (rc < 0) |
| goto err_unmap_3; |
| |
| rc = register_netdev(dev); |
| if (rc < 0) |
| goto err_unmap_3; |
| |
| printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name); |
| out: |
| return rc; |
| |
| err_unmap_3: |
| pci_iounmap(pdev, ioaddr); |
| err_release_regions_2: |
| pci_release_regions(pdev); |
| err_free_dev_1: |
| free_netdev(dev); |
| err_disable_0: |
| pci_disable_device(pdev); |
| goto out; |
| } |
| |
| static struct pci_driver ipg_pci_driver = { |
| .name = IPG_DRIVER_NAME, |
| .id_table = ipg_pci_tbl, |
| .probe = ipg_probe, |
| .remove = __devexit_p(ipg_remove), |
| }; |
| |
| static int __init ipg_init_module(void) |
| { |
| return pci_register_driver(&ipg_pci_driver); |
| } |
| |
| static void __exit ipg_exit_module(void) |
| { |
| pci_unregister_driver(&ipg_pci_driver); |
| } |
| |
| module_init(ipg_init_module); |
| module_exit(ipg_exit_module); |