| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| * |
| * Further, this software is distributed without any warranty that it is |
| * free of the rightful claim of any third person regarding infringement |
| * or the like. Any license provided herein, whether implied or |
| * otherwise, applies only to this software file. Patent licenses, if |
| * any, provided herein do not apply to combinations of this program with |
| * other software, or any other product whatsoever. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write the Free Software Foundation, Inc., 59 |
| * Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| * |
| * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, |
| * Mountain View, CA 94043, or: |
| * |
| * http://www.sgi.com |
| * |
| * For further information regarding this notice, see: |
| * |
| * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ |
| */ |
| |
| #include "xfs.h" |
| |
| #include "xfs_inum.h" |
| #include "xfs_log.h" |
| #include "xfs_clnt.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_dir.h" |
| #include "xfs_dir2.h" |
| #include "xfs_alloc.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_quota.h" |
| #include "xfs_mount.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_btree.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_dir_sf.h" |
| #include "xfs_dir2_sf.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode.h" |
| #include "xfs_bmap.h" |
| #include "xfs_bit.h" |
| #include "xfs_rtalloc.h" |
| #include "xfs_error.h" |
| #include "xfs_itable.h" |
| #include "xfs_rw.h" |
| #include "xfs_acl.h" |
| #include "xfs_cap.h" |
| #include "xfs_mac.h" |
| #include "xfs_attr.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_utils.h" |
| #include "xfs_version.h" |
| |
| #include <linux/namei.h> |
| #include <linux/init.h> |
| #include <linux/mount.h> |
| #include <linux/mempool.h> |
| #include <linux/writeback.h> |
| #include <linux/kthread.h> |
| |
| STATIC struct quotactl_ops linvfs_qops; |
| STATIC struct super_operations linvfs_sops; |
| STATIC kmem_zone_t *xfs_vnode_zone; |
| STATIC kmem_zone_t *xfs_ioend_zone; |
| mempool_t *xfs_ioend_pool; |
| |
| STATIC struct xfs_mount_args * |
| xfs_args_allocate( |
| struct super_block *sb) |
| { |
| struct xfs_mount_args *args; |
| |
| args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP); |
| args->logbufs = args->logbufsize = -1; |
| strncpy(args->fsname, sb->s_id, MAXNAMELEN); |
| |
| /* Copy the already-parsed mount(2) flags we're interested in */ |
| if (sb->s_flags & MS_NOATIME) |
| args->flags |= XFSMNT_NOATIME; |
| if (sb->s_flags & MS_DIRSYNC) |
| args->flags |= XFSMNT_DIRSYNC; |
| if (sb->s_flags & MS_SYNCHRONOUS) |
| args->flags |= XFSMNT_WSYNC; |
| |
| /* Default to 32 bit inodes on Linux all the time */ |
| args->flags |= XFSMNT_32BITINODES; |
| |
| return args; |
| } |
| |
| __uint64_t |
| xfs_max_file_offset( |
| unsigned int blockshift) |
| { |
| unsigned int pagefactor = 1; |
| unsigned int bitshift = BITS_PER_LONG - 1; |
| |
| /* Figure out maximum filesize, on Linux this can depend on |
| * the filesystem blocksize (on 32 bit platforms). |
| * __block_prepare_write does this in an [unsigned] long... |
| * page->index << (PAGE_CACHE_SHIFT - bbits) |
| * So, for page sized blocks (4K on 32 bit platforms), |
| * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is |
| * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1) |
| * but for smaller blocksizes it is less (bbits = log2 bsize). |
| * Note1: get_block_t takes a long (implicit cast from above) |
| * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch |
| * can optionally convert the [unsigned] long from above into |
| * an [unsigned] long long. |
| */ |
| |
| #if BITS_PER_LONG == 32 |
| # if defined(CONFIG_LBD) |
| ASSERT(sizeof(sector_t) == 8); |
| pagefactor = PAGE_CACHE_SIZE; |
| bitshift = BITS_PER_LONG; |
| # else |
| pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift); |
| # endif |
| #endif |
| |
| return (((__uint64_t)pagefactor) << bitshift) - 1; |
| } |
| |
| STATIC __inline__ void |
| xfs_set_inodeops( |
| struct inode *inode) |
| { |
| switch (inode->i_mode & S_IFMT) { |
| case S_IFREG: |
| inode->i_op = &linvfs_file_inode_operations; |
| inode->i_fop = &linvfs_file_operations; |
| inode->i_mapping->a_ops = &linvfs_aops; |
| break; |
| case S_IFDIR: |
| inode->i_op = &linvfs_dir_inode_operations; |
| inode->i_fop = &linvfs_dir_operations; |
| break; |
| case S_IFLNK: |
| inode->i_op = &linvfs_symlink_inode_operations; |
| if (inode->i_blocks) |
| inode->i_mapping->a_ops = &linvfs_aops; |
| break; |
| default: |
| inode->i_op = &linvfs_file_inode_operations; |
| init_special_inode(inode, inode->i_mode, inode->i_rdev); |
| break; |
| } |
| } |
| |
| STATIC __inline__ void |
| xfs_revalidate_inode( |
| xfs_mount_t *mp, |
| vnode_t *vp, |
| xfs_inode_t *ip) |
| { |
| struct inode *inode = LINVFS_GET_IP(vp); |
| |
| inode->i_mode = ip->i_d.di_mode; |
| inode->i_nlink = ip->i_d.di_nlink; |
| inode->i_uid = ip->i_d.di_uid; |
| inode->i_gid = ip->i_d.di_gid; |
| |
| switch (inode->i_mode & S_IFMT) { |
| case S_IFBLK: |
| case S_IFCHR: |
| inode->i_rdev = |
| MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff, |
| sysv_minor(ip->i_df.if_u2.if_rdev)); |
| break; |
| default: |
| inode->i_rdev = 0; |
| break; |
| } |
| |
| inode->i_blksize = xfs_preferred_iosize(mp); |
| inode->i_generation = ip->i_d.di_gen; |
| i_size_write(inode, ip->i_d.di_size); |
| inode->i_blocks = |
| XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks); |
| inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec; |
| inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec; |
| inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec; |
| inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec; |
| inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec; |
| inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec; |
| if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE) |
| inode->i_flags |= S_IMMUTABLE; |
| else |
| inode->i_flags &= ~S_IMMUTABLE; |
| if (ip->i_d.di_flags & XFS_DIFLAG_APPEND) |
| inode->i_flags |= S_APPEND; |
| else |
| inode->i_flags &= ~S_APPEND; |
| if (ip->i_d.di_flags & XFS_DIFLAG_SYNC) |
| inode->i_flags |= S_SYNC; |
| else |
| inode->i_flags &= ~S_SYNC; |
| if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME) |
| inode->i_flags |= S_NOATIME; |
| else |
| inode->i_flags &= ~S_NOATIME; |
| vp->v_flag &= ~VMODIFIED; |
| } |
| |
| void |
| xfs_initialize_vnode( |
| bhv_desc_t *bdp, |
| vnode_t *vp, |
| bhv_desc_t *inode_bhv, |
| int unlock) |
| { |
| xfs_inode_t *ip = XFS_BHVTOI(inode_bhv); |
| struct inode *inode = LINVFS_GET_IP(vp); |
| |
| if (!inode_bhv->bd_vobj) { |
| vp->v_vfsp = bhvtovfs(bdp); |
| bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops); |
| bhv_insert(VN_BHV_HEAD(vp), inode_bhv); |
| } |
| |
| /* |
| * We need to set the ops vectors, and unlock the inode, but if |
| * we have been called during the new inode create process, it is |
| * too early to fill in the Linux inode. We will get called a |
| * second time once the inode is properly set up, and then we can |
| * finish our work. |
| */ |
| if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) { |
| xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip); |
| xfs_set_inodeops(inode); |
| |
| ip->i_flags &= ~XFS_INEW; |
| barrier(); |
| |
| unlock_new_inode(inode); |
| } |
| } |
| |
| int |
| xfs_blkdev_get( |
| xfs_mount_t *mp, |
| const char *name, |
| struct block_device **bdevp) |
| { |
| int error = 0; |
| |
| *bdevp = open_bdev_excl(name, 0, mp); |
| if (IS_ERR(*bdevp)) { |
| error = PTR_ERR(*bdevp); |
| printk("XFS: Invalid device [%s], error=%d\n", name, error); |
| } |
| |
| return -error; |
| } |
| |
| void |
| xfs_blkdev_put( |
| struct block_device *bdev) |
| { |
| if (bdev) |
| close_bdev_excl(bdev); |
| } |
| |
| /* |
| * Try to write out the superblock using barriers. |
| */ |
| STATIC int |
| xfs_barrier_test( |
| xfs_mount_t *mp) |
| { |
| xfs_buf_t *sbp = xfs_getsb(mp, 0); |
| int error; |
| |
| XFS_BUF_UNDONE(sbp); |
| XFS_BUF_UNREAD(sbp); |
| XFS_BUF_UNDELAYWRITE(sbp); |
| XFS_BUF_WRITE(sbp); |
| XFS_BUF_UNASYNC(sbp); |
| XFS_BUF_ORDERED(sbp); |
| |
| xfsbdstrat(mp, sbp); |
| error = xfs_iowait(sbp); |
| |
| /* |
| * Clear all the flags we set and possible error state in the |
| * buffer. We only did the write to try out whether barriers |
| * worked and shouldn't leave any traces in the superblock |
| * buffer. |
| */ |
| XFS_BUF_DONE(sbp); |
| XFS_BUF_ERROR(sbp, 0); |
| XFS_BUF_UNORDERED(sbp); |
| |
| xfs_buf_relse(sbp); |
| return error; |
| } |
| |
| void |
| xfs_mountfs_check_barriers(xfs_mount_t *mp) |
| { |
| int error; |
| |
| if (mp->m_logdev_targp != mp->m_ddev_targp) { |
| xfs_fs_cmn_err(CE_NOTE, mp, |
| "Disabling barriers, not supported with external log device"); |
| mp->m_flags &= ~XFS_MOUNT_BARRIER; |
| } |
| |
| if (mp->m_ddev_targp->pbr_bdev->bd_disk->queue->ordered == |
| QUEUE_ORDERED_NONE) { |
| xfs_fs_cmn_err(CE_NOTE, mp, |
| "Disabling barriers, not supported by the underlying device"); |
| mp->m_flags &= ~XFS_MOUNT_BARRIER; |
| } |
| |
| error = xfs_barrier_test(mp); |
| if (error) { |
| xfs_fs_cmn_err(CE_NOTE, mp, |
| "Disabling barriers, trial barrier write failed"); |
| mp->m_flags &= ~XFS_MOUNT_BARRIER; |
| } |
| } |
| |
| void |
| xfs_blkdev_issue_flush( |
| xfs_buftarg_t *buftarg) |
| { |
| blkdev_issue_flush(buftarg->pbr_bdev, NULL); |
| } |
| |
| STATIC struct inode * |
| linvfs_alloc_inode( |
| struct super_block *sb) |
| { |
| vnode_t *vp; |
| |
| vp = kmem_cache_alloc(xfs_vnode_zone, kmem_flags_convert(KM_SLEEP)); |
| if (!vp) |
| return NULL; |
| return LINVFS_GET_IP(vp); |
| } |
| |
| STATIC void |
| linvfs_destroy_inode( |
| struct inode *inode) |
| { |
| kmem_zone_free(xfs_vnode_zone, LINVFS_GET_VP(inode)); |
| } |
| |
| STATIC void |
| linvfs_inode_init_once( |
| void *data, |
| kmem_cache_t *cachep, |
| unsigned long flags) |
| { |
| vnode_t *vp = (vnode_t *)data; |
| |
| if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == |
| SLAB_CTOR_CONSTRUCTOR) |
| inode_init_once(LINVFS_GET_IP(vp)); |
| } |
| |
| STATIC int |
| linvfs_init_zones(void) |
| { |
| xfs_vnode_zone = kmem_cache_create("xfs_vnode", |
| sizeof(vnode_t), 0, SLAB_RECLAIM_ACCOUNT, |
| linvfs_inode_init_once, NULL); |
| if (!xfs_vnode_zone) |
| goto out; |
| |
| xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend"); |
| if (!xfs_ioend_zone) |
| goto out_destroy_vnode_zone; |
| |
| xfs_ioend_pool = mempool_create(4 * MAX_BUF_PER_PAGE, |
| mempool_alloc_slab, mempool_free_slab, |
| xfs_ioend_zone); |
| if (!xfs_ioend_pool) |
| goto out_free_ioend_zone; |
| |
| return 0; |
| |
| |
| out_free_ioend_zone: |
| kmem_zone_destroy(xfs_ioend_zone); |
| out_destroy_vnode_zone: |
| kmem_zone_destroy(xfs_vnode_zone); |
| out: |
| return -ENOMEM; |
| } |
| |
| STATIC void |
| linvfs_destroy_zones(void) |
| { |
| mempool_destroy(xfs_ioend_pool); |
| kmem_zone_destroy(xfs_vnode_zone); |
| kmem_zone_destroy(xfs_ioend_zone); |
| } |
| |
| /* |
| * Attempt to flush the inode, this will actually fail |
| * if the inode is pinned, but we dirty the inode again |
| * at the point when it is unpinned after a log write, |
| * since this is when the inode itself becomes flushable. |
| */ |
| STATIC int |
| linvfs_write_inode( |
| struct inode *inode, |
| int sync) |
| { |
| vnode_t *vp = LINVFS_GET_VP(inode); |
| int error = 0, flags = FLUSH_INODE; |
| |
| if (vp) { |
| vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address); |
| if (sync) |
| flags |= FLUSH_SYNC; |
| VOP_IFLUSH(vp, flags, error); |
| if (error == EAGAIN) { |
| if (sync) |
| VOP_IFLUSH(vp, flags | FLUSH_LOG, error); |
| else |
| error = 0; |
| } |
| } |
| |
| return -error; |
| } |
| |
| STATIC void |
| linvfs_clear_inode( |
| struct inode *inode) |
| { |
| vnode_t *vp = LINVFS_GET_VP(inode); |
| int error, cache; |
| |
| vn_trace_entry(vp, "clear_inode", (inst_t *)__return_address); |
| |
| XFS_STATS_INC(vn_rele); |
| XFS_STATS_INC(vn_remove); |
| XFS_STATS_INC(vn_reclaim); |
| XFS_STATS_DEC(vn_active); |
| |
| /* |
| * This can happen because xfs_iget_core calls xfs_idestroy if we |
| * find an inode with di_mode == 0 but without IGET_CREATE set. |
| */ |
| if (vp->v_fbhv) |
| VOP_INACTIVE(vp, NULL, cache); |
| |
| VN_LOCK(vp); |
| vp->v_flag &= ~VMODIFIED; |
| VN_UNLOCK(vp, 0); |
| |
| if (vp->v_fbhv) { |
| VOP_RECLAIM(vp, error); |
| if (error) |
| panic("vn_purge: cannot reclaim"); |
| } |
| |
| ASSERT(vp->v_fbhv == NULL); |
| |
| #ifdef XFS_VNODE_TRACE |
| ktrace_free(vp->v_trace); |
| #endif |
| } |
| |
| /* |
| * Enqueue a work item to be picked up by the vfs xfssyncd thread. |
| * Doing this has two advantages: |
| * - It saves on stack space, which is tight in certain situations |
| * - It can be used (with care) as a mechanism to avoid deadlocks. |
| * Flushing while allocating in a full filesystem requires both. |
| */ |
| STATIC void |
| xfs_syncd_queue_work( |
| struct vfs *vfs, |
| void *data, |
| void (*syncer)(vfs_t *, void *)) |
| { |
| vfs_sync_work_t *work; |
| |
| work = kmem_alloc(sizeof(struct vfs_sync_work), KM_SLEEP); |
| INIT_LIST_HEAD(&work->w_list); |
| work->w_syncer = syncer; |
| work->w_data = data; |
| work->w_vfs = vfs; |
| spin_lock(&vfs->vfs_sync_lock); |
| list_add_tail(&work->w_list, &vfs->vfs_sync_list); |
| spin_unlock(&vfs->vfs_sync_lock); |
| wake_up_process(vfs->vfs_sync_task); |
| } |
| |
| /* |
| * Flush delayed allocate data, attempting to free up reserved space |
| * from existing allocations. At this point a new allocation attempt |
| * has failed with ENOSPC and we are in the process of scratching our |
| * heads, looking about for more room... |
| */ |
| STATIC void |
| xfs_flush_inode_work( |
| vfs_t *vfs, |
| void *inode) |
| { |
| filemap_flush(((struct inode *)inode)->i_mapping); |
| iput((struct inode *)inode); |
| } |
| |
| void |
| xfs_flush_inode( |
| xfs_inode_t *ip) |
| { |
| struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip)); |
| struct vfs *vfs = XFS_MTOVFS(ip->i_mount); |
| |
| igrab(inode); |
| xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work); |
| delay(msecs_to_jiffies(500)); |
| } |
| |
| /* |
| * This is the "bigger hammer" version of xfs_flush_inode_work... |
| * (IOW, "If at first you don't succeed, use a Bigger Hammer"). |
| */ |
| STATIC void |
| xfs_flush_device_work( |
| vfs_t *vfs, |
| void *inode) |
| { |
| sync_blockdev(vfs->vfs_super->s_bdev); |
| iput((struct inode *)inode); |
| } |
| |
| void |
| xfs_flush_device( |
| xfs_inode_t *ip) |
| { |
| struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip)); |
| struct vfs *vfs = XFS_MTOVFS(ip->i_mount); |
| |
| igrab(inode); |
| xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work); |
| delay(msecs_to_jiffies(500)); |
| xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC); |
| } |
| |
| #define SYNCD_FLAGS (SYNC_FSDATA|SYNC_BDFLUSH|SYNC_ATTR) |
| STATIC void |
| vfs_sync_worker( |
| vfs_t *vfsp, |
| void *unused) |
| { |
| int error; |
| |
| if (!(vfsp->vfs_flag & VFS_RDONLY)) |
| VFS_SYNC(vfsp, SYNCD_FLAGS, NULL, error); |
| vfsp->vfs_sync_seq++; |
| wmb(); |
| wake_up(&vfsp->vfs_wait_single_sync_task); |
| } |
| |
| STATIC int |
| xfssyncd( |
| void *arg) |
| { |
| long timeleft; |
| vfs_t *vfsp = (vfs_t *) arg; |
| struct vfs_sync_work *work, *n; |
| LIST_HEAD (tmp); |
| |
| timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); |
| for (;;) { |
| timeleft = schedule_timeout_interruptible(timeleft); |
| /* swsusp */ |
| try_to_freeze(); |
| if (kthread_should_stop()) |
| break; |
| |
| spin_lock(&vfsp->vfs_sync_lock); |
| /* |
| * We can get woken by laptop mode, to do a sync - |
| * that's the (only!) case where the list would be |
| * empty with time remaining. |
| */ |
| if (!timeleft || list_empty(&vfsp->vfs_sync_list)) { |
| if (!timeleft) |
| timeleft = xfs_syncd_centisecs * |
| msecs_to_jiffies(10); |
| INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list); |
| list_add_tail(&vfsp->vfs_sync_work.w_list, |
| &vfsp->vfs_sync_list); |
| } |
| list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list) |
| list_move(&work->w_list, &tmp); |
| spin_unlock(&vfsp->vfs_sync_lock); |
| |
| list_for_each_entry_safe(work, n, &tmp, w_list) { |
| (*work->w_syncer)(vfsp, work->w_data); |
| list_del(&work->w_list); |
| if (work == &vfsp->vfs_sync_work) |
| continue; |
| kmem_free(work, sizeof(struct vfs_sync_work)); |
| } |
| } |
| |
| return 0; |
| } |
| |
| STATIC int |
| linvfs_start_syncd( |
| vfs_t *vfsp) |
| { |
| vfsp->vfs_sync_work.w_syncer = vfs_sync_worker; |
| vfsp->vfs_sync_work.w_vfs = vfsp; |
| vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd"); |
| if (IS_ERR(vfsp->vfs_sync_task)) |
| return -PTR_ERR(vfsp->vfs_sync_task); |
| return 0; |
| } |
| |
| STATIC void |
| linvfs_stop_syncd( |
| vfs_t *vfsp) |
| { |
| kthread_stop(vfsp->vfs_sync_task); |
| } |
| |
| STATIC void |
| linvfs_put_super( |
| struct super_block *sb) |
| { |
| vfs_t *vfsp = LINVFS_GET_VFS(sb); |
| int error; |
| |
| linvfs_stop_syncd(vfsp); |
| VFS_SYNC(vfsp, SYNC_ATTR|SYNC_DELWRI, NULL, error); |
| if (!error) |
| VFS_UNMOUNT(vfsp, 0, NULL, error); |
| if (error) { |
| printk("XFS unmount got error %d\n", error); |
| printk("%s: vfsp/0x%p left dangling!\n", __FUNCTION__, vfsp); |
| return; |
| } |
| |
| vfs_deallocate(vfsp); |
| } |
| |
| STATIC void |
| linvfs_write_super( |
| struct super_block *sb) |
| { |
| vfs_t *vfsp = LINVFS_GET_VFS(sb); |
| int error; |
| |
| if (sb->s_flags & MS_RDONLY) { |
| sb->s_dirt = 0; /* paranoia */ |
| return; |
| } |
| /* Push the log and superblock a little */ |
| VFS_SYNC(vfsp, SYNC_FSDATA, NULL, error); |
| sb->s_dirt = 0; |
| } |
| |
| STATIC int |
| linvfs_sync_super( |
| struct super_block *sb, |
| int wait) |
| { |
| vfs_t *vfsp = LINVFS_GET_VFS(sb); |
| int error; |
| int flags = SYNC_FSDATA; |
| |
| if (unlikely(sb->s_frozen == SB_FREEZE_WRITE)) |
| flags = SYNC_QUIESCE; |
| else |
| flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0); |
| |
| VFS_SYNC(vfsp, flags, NULL, error); |
| sb->s_dirt = 0; |
| |
| if (unlikely(laptop_mode)) { |
| int prev_sync_seq = vfsp->vfs_sync_seq; |
| |
| /* |
| * The disk must be active because we're syncing. |
| * We schedule xfssyncd now (now that the disk is |
| * active) instead of later (when it might not be). |
| */ |
| wake_up_process(vfsp->vfs_sync_task); |
| /* |
| * We have to wait for the sync iteration to complete. |
| * If we don't, the disk activity caused by the sync |
| * will come after the sync is completed, and that |
| * triggers another sync from laptop mode. |
| */ |
| wait_event(vfsp->vfs_wait_single_sync_task, |
| vfsp->vfs_sync_seq != prev_sync_seq); |
| } |
| |
| return -error; |
| } |
| |
| STATIC int |
| linvfs_statfs( |
| struct super_block *sb, |
| struct kstatfs *statp) |
| { |
| vfs_t *vfsp = LINVFS_GET_VFS(sb); |
| int error; |
| |
| VFS_STATVFS(vfsp, statp, NULL, error); |
| return -error; |
| } |
| |
| STATIC int |
| linvfs_remount( |
| struct super_block *sb, |
| int *flags, |
| char *options) |
| { |
| vfs_t *vfsp = LINVFS_GET_VFS(sb); |
| struct xfs_mount_args *args = xfs_args_allocate(sb); |
| int error; |
| |
| VFS_PARSEARGS(vfsp, options, args, 1, error); |
| if (!error) |
| VFS_MNTUPDATE(vfsp, flags, args, error); |
| kmem_free(args, sizeof(*args)); |
| return -error; |
| } |
| |
| STATIC void |
| linvfs_freeze_fs( |
| struct super_block *sb) |
| { |
| VFS_FREEZE(LINVFS_GET_VFS(sb)); |
| } |
| |
| STATIC int |
| linvfs_show_options( |
| struct seq_file *m, |
| struct vfsmount *mnt) |
| { |
| struct vfs *vfsp = LINVFS_GET_VFS(mnt->mnt_sb); |
| int error; |
| |
| VFS_SHOWARGS(vfsp, m, error); |
| return error; |
| } |
| |
| STATIC int |
| linvfs_quotasync( |
| struct super_block *sb, |
| int type) |
| { |
| struct vfs *vfsp = LINVFS_GET_VFS(sb); |
| int error; |
| |
| VFS_QUOTACTL(vfsp, Q_XQUOTASYNC, 0, (caddr_t)NULL, error); |
| return -error; |
| } |
| |
| STATIC int |
| linvfs_getxstate( |
| struct super_block *sb, |
| struct fs_quota_stat *fqs) |
| { |
| struct vfs *vfsp = LINVFS_GET_VFS(sb); |
| int error; |
| |
| VFS_QUOTACTL(vfsp, Q_XGETQSTAT, 0, (caddr_t)fqs, error); |
| return -error; |
| } |
| |
| STATIC int |
| linvfs_setxstate( |
| struct super_block *sb, |
| unsigned int flags, |
| int op) |
| { |
| struct vfs *vfsp = LINVFS_GET_VFS(sb); |
| int error; |
| |
| VFS_QUOTACTL(vfsp, op, 0, (caddr_t)&flags, error); |
| return -error; |
| } |
| |
| STATIC int |
| linvfs_getxquota( |
| struct super_block *sb, |
| int type, |
| qid_t id, |
| struct fs_disk_quota *fdq) |
| { |
| struct vfs *vfsp = LINVFS_GET_VFS(sb); |
| int error, getmode; |
| |
| getmode = (type == USRQUOTA) ? Q_XGETQUOTA : |
| ((type == GRPQUOTA) ? Q_XGETGQUOTA : Q_XGETPQUOTA); |
| VFS_QUOTACTL(vfsp, getmode, id, (caddr_t)fdq, error); |
| return -error; |
| } |
| |
| STATIC int |
| linvfs_setxquota( |
| struct super_block *sb, |
| int type, |
| qid_t id, |
| struct fs_disk_quota *fdq) |
| { |
| struct vfs *vfsp = LINVFS_GET_VFS(sb); |
| int error, setmode; |
| |
| setmode = (type == USRQUOTA) ? Q_XSETQLIM : |
| ((type == GRPQUOTA) ? Q_XSETGQLIM : Q_XSETPQLIM); |
| VFS_QUOTACTL(vfsp, setmode, id, (caddr_t)fdq, error); |
| return -error; |
| } |
| |
| STATIC int |
| linvfs_fill_super( |
| struct super_block *sb, |
| void *data, |
| int silent) |
| { |
| vnode_t *rootvp; |
| struct vfs *vfsp = vfs_allocate(); |
| struct xfs_mount_args *args = xfs_args_allocate(sb); |
| struct kstatfs statvfs; |
| int error, error2; |
| |
| vfsp->vfs_super = sb; |
| LINVFS_SET_VFS(sb, vfsp); |
| if (sb->s_flags & MS_RDONLY) |
| vfsp->vfs_flag |= VFS_RDONLY; |
| bhv_insert_all_vfsops(vfsp); |
| |
| VFS_PARSEARGS(vfsp, (char *)data, args, 0, error); |
| if (error) { |
| bhv_remove_all_vfsops(vfsp, 1); |
| goto fail_vfsop; |
| } |
| |
| sb_min_blocksize(sb, BBSIZE); |
| #ifdef CONFIG_XFS_EXPORT |
| sb->s_export_op = &linvfs_export_ops; |
| #endif |
| sb->s_qcop = &linvfs_qops; |
| sb->s_op = &linvfs_sops; |
| |
| VFS_MOUNT(vfsp, args, NULL, error); |
| if (error) { |
| bhv_remove_all_vfsops(vfsp, 1); |
| goto fail_vfsop; |
| } |
| |
| VFS_STATVFS(vfsp, &statvfs, NULL, error); |
| if (error) |
| goto fail_unmount; |
| |
| sb->s_dirt = 1; |
| sb->s_magic = statvfs.f_type; |
| sb->s_blocksize = statvfs.f_bsize; |
| sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1; |
| sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits); |
| sb->s_time_gran = 1; |
| set_posix_acl_flag(sb); |
| |
| VFS_ROOT(vfsp, &rootvp, error); |
| if (error) |
| goto fail_unmount; |
| |
| sb->s_root = d_alloc_root(LINVFS_GET_IP(rootvp)); |
| if (!sb->s_root) { |
| error = ENOMEM; |
| goto fail_vnrele; |
| } |
| if (is_bad_inode(sb->s_root->d_inode)) { |
| error = EINVAL; |
| goto fail_vnrele; |
| } |
| if ((error = linvfs_start_syncd(vfsp))) |
| goto fail_vnrele; |
| vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address); |
| |
| kmem_free(args, sizeof(*args)); |
| return 0; |
| |
| fail_vnrele: |
| if (sb->s_root) { |
| dput(sb->s_root); |
| sb->s_root = NULL; |
| } else { |
| VN_RELE(rootvp); |
| } |
| |
| fail_unmount: |
| VFS_UNMOUNT(vfsp, 0, NULL, error2); |
| |
| fail_vfsop: |
| vfs_deallocate(vfsp); |
| kmem_free(args, sizeof(*args)); |
| return -error; |
| } |
| |
| STATIC struct super_block * |
| linvfs_get_sb( |
| struct file_system_type *fs_type, |
| int flags, |
| const char *dev_name, |
| void *data) |
| { |
| return get_sb_bdev(fs_type, flags, dev_name, data, linvfs_fill_super); |
| } |
| |
| STATIC struct super_operations linvfs_sops = { |
| .alloc_inode = linvfs_alloc_inode, |
| .destroy_inode = linvfs_destroy_inode, |
| .write_inode = linvfs_write_inode, |
| .clear_inode = linvfs_clear_inode, |
| .put_super = linvfs_put_super, |
| .write_super = linvfs_write_super, |
| .sync_fs = linvfs_sync_super, |
| .write_super_lockfs = linvfs_freeze_fs, |
| .statfs = linvfs_statfs, |
| .remount_fs = linvfs_remount, |
| .show_options = linvfs_show_options, |
| }; |
| |
| STATIC struct quotactl_ops linvfs_qops = { |
| .quota_sync = linvfs_quotasync, |
| .get_xstate = linvfs_getxstate, |
| .set_xstate = linvfs_setxstate, |
| .get_xquota = linvfs_getxquota, |
| .set_xquota = linvfs_setxquota, |
| }; |
| |
| STATIC struct file_system_type xfs_fs_type = { |
| .owner = THIS_MODULE, |
| .name = "xfs", |
| .get_sb = linvfs_get_sb, |
| .kill_sb = kill_block_super, |
| .fs_flags = FS_REQUIRES_DEV, |
| }; |
| |
| |
| STATIC int __init |
| init_xfs_fs( void ) |
| { |
| int error; |
| struct sysinfo si; |
| static char message[] __initdata = KERN_INFO \ |
| XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n"; |
| |
| printk(message); |
| |
| si_meminfo(&si); |
| xfs_physmem = si.totalram; |
| |
| ktrace_init(64); |
| |
| error = linvfs_init_zones(); |
| if (error < 0) |
| goto undo_zones; |
| |
| error = pagebuf_init(); |
| if (error < 0) |
| goto undo_pagebuf; |
| |
| vn_init(); |
| xfs_init(); |
| uuid_init(); |
| vfs_initquota(); |
| |
| error = register_filesystem(&xfs_fs_type); |
| if (error) |
| goto undo_register; |
| XFS_DM_INIT(&xfs_fs_type); |
| return 0; |
| |
| undo_register: |
| pagebuf_terminate(); |
| |
| undo_pagebuf: |
| linvfs_destroy_zones(); |
| |
| undo_zones: |
| return error; |
| } |
| |
| STATIC void __exit |
| exit_xfs_fs( void ) |
| { |
| vfs_exitquota(); |
| XFS_DM_EXIT(&xfs_fs_type); |
| unregister_filesystem(&xfs_fs_type); |
| xfs_cleanup(); |
| pagebuf_terminate(); |
| linvfs_destroy_zones(); |
| ktrace_uninit(); |
| } |
| |
| module_init(init_xfs_fs); |
| module_exit(exit_xfs_fs); |
| |
| MODULE_AUTHOR("Silicon Graphics, Inc."); |
| MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); |
| MODULE_LICENSE("GPL"); |