| /* |
| * Copyright (c) 2011-2013, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/io.h> |
| #include <linux/delay.h> |
| #include <linux/mutex.h> |
| #include <linux/err.h> |
| #include <linux/errno.h> |
| #include <linux/cpufreq.h> |
| #include <linux/cpu.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/iopoll.h> |
| |
| #include <asm/mach-types.h> |
| #include <asm/cpu.h> |
| |
| #include <mach/board.h> |
| #include <mach/msm_iomap.h> |
| #include <mach/socinfo.h> |
| #include <mach/msm-krait-l2-accessors.h> |
| #include <mach/rpm-regulator.h> |
| #include <mach/rpm-regulator-smd.h> |
| #include <mach/msm_bus.h> |
| #include <mach/msm_dcvs.h> |
| |
| #include "acpuclock.h" |
| #include "acpuclock-krait.h" |
| #include "avs.h" |
| |
| /* MUX source selects. */ |
| #define PRI_SRC_SEL_SEC_SRC 0 |
| #define PRI_SRC_SEL_HFPLL 1 |
| #define PRI_SRC_SEL_HFPLL_DIV2 2 |
| |
| static DEFINE_MUTEX(driver_lock); |
| static DEFINE_SPINLOCK(l2_lock); |
| |
| static struct drv_data drv; |
| |
| static unsigned long acpuclk_krait_get_rate(int cpu) |
| { |
| return drv.scalable[cpu].cur_speed->khz; |
| } |
| |
| /* Select a source on the primary MUX. */ |
| static void set_pri_clk_src(struct scalable *sc, u32 pri_src_sel) |
| { |
| u32 regval; |
| |
| regval = get_l2_indirect_reg(sc->l2cpmr_iaddr); |
| regval &= ~(0x3 | (0x3 << 8)); |
| regval |= pri_src_sel | (pri_src_sel << 8); |
| set_l2_indirect_reg(sc->l2cpmr_iaddr, regval); |
| /* Wait for switch to complete. */ |
| mb(); |
| udelay(1); |
| } |
| |
| /* Select a source on the secondary MUX. */ |
| static void __cpuinit set_sec_clk_src(struct scalable *sc, u32 sec_src_sel) |
| { |
| u32 regval; |
| |
| regval = get_l2_indirect_reg(sc->l2cpmr_iaddr); |
| regval &= ~((0x3 << 2) | (0x3 << 10)); |
| regval |= (sec_src_sel << 2) | (sec_src_sel << 10); |
| set_l2_indirect_reg(sc->l2cpmr_iaddr, regval); |
| /* Wait for switch to complete. */ |
| mb(); |
| udelay(1); |
| } |
| |
| static int enable_rpm_vreg(struct vreg *vreg) |
| { |
| int ret = 0; |
| |
| if (vreg->rpm_reg) { |
| ret = rpm_regulator_enable(vreg->rpm_reg); |
| if (ret) |
| dev_err(drv.dev, "%s regulator enable failed (%d)\n", |
| vreg->name, ret); |
| } |
| |
| return ret; |
| } |
| |
| static void disable_rpm_vreg(struct vreg *vreg) |
| { |
| int rc; |
| |
| if (vreg->rpm_reg) { |
| rc = rpm_regulator_disable(vreg->rpm_reg); |
| if (rc) |
| dev_err(drv.dev, "%s regulator disable failed (%d)\n", |
| vreg->name, rc); |
| } |
| } |
| |
| /* Enable an already-configured HFPLL. */ |
| static void hfpll_enable(struct scalable *sc, bool skip_regulators) |
| { |
| if (!skip_regulators) { |
| /* Enable regulators required by the HFPLL. */ |
| enable_rpm_vreg(&sc->vreg[VREG_HFPLL_A]); |
| enable_rpm_vreg(&sc->vreg[VREG_HFPLL_B]); |
| } |
| |
| /* Disable PLL bypass mode. */ |
| writel_relaxed(0x2, sc->hfpll_base + drv.hfpll_data->mode_offset); |
| |
| /* |
| * H/W requires a 5us delay between disabling the bypass and |
| * de-asserting the reset. Delay 10us just to be safe. |
| */ |
| mb(); |
| udelay(10); |
| |
| /* De-assert active-low PLL reset. */ |
| writel_relaxed(0x6, sc->hfpll_base + drv.hfpll_data->mode_offset); |
| |
| /* Wait for PLL to lock. */ |
| if (drv.hfpll_data->has_lock_status) { |
| u32 regval; |
| readl_tight_poll(sc->hfpll_base + drv.hfpll_data->status_offset, |
| regval, regval & BIT(16)); |
| } else { |
| mb(); |
| udelay(60); |
| } |
| |
| /* Enable PLL output. */ |
| writel_relaxed(0x7, sc->hfpll_base + drv.hfpll_data->mode_offset); |
| } |
| |
| /* Disable a HFPLL for power-savings or while it's being reprogrammed. */ |
| static void hfpll_disable(struct scalable *sc, bool skip_regulators) |
| { |
| /* |
| * Disable the PLL output, disable test mode, enable the bypass mode, |
| * and assert the reset. |
| */ |
| writel_relaxed(0, sc->hfpll_base + drv.hfpll_data->mode_offset); |
| |
| if (!skip_regulators) { |
| /* Remove voltage votes required by the HFPLL. */ |
| disable_rpm_vreg(&sc->vreg[VREG_HFPLL_B]); |
| disable_rpm_vreg(&sc->vreg[VREG_HFPLL_A]); |
| } |
| } |
| |
| /* Program the HFPLL rate. Assumes HFPLL is already disabled. */ |
| static void hfpll_set_rate(struct scalable *sc, const struct core_speed *tgt_s) |
| { |
| void __iomem *base = sc->hfpll_base; |
| u32 regval; |
| |
| writel_relaxed(tgt_s->pll_l_val, base + drv.hfpll_data->l_offset); |
| |
| if (drv.hfpll_data->has_user_reg) { |
| regval = readl_relaxed(base + drv.hfpll_data->user_offset); |
| if (tgt_s->pll_l_val <= drv.hfpll_data->low_vco_l_max) |
| regval &= ~drv.hfpll_data->user_vco_mask; |
| else |
| regval |= drv.hfpll_data->user_vco_mask; |
| writel_relaxed(regval, base + drv.hfpll_data->user_offset); |
| } |
| } |
| |
| /* Return the L2 speed that should be applied. */ |
| static unsigned int compute_l2_level(struct scalable *sc, unsigned int vote_l) |
| { |
| unsigned int new_l = 0; |
| int cpu; |
| |
| /* Find max L2 speed vote. */ |
| sc->l2_vote = vote_l; |
| for_each_present_cpu(cpu) |
| new_l = max(new_l, drv.scalable[cpu].l2_vote); |
| |
| return new_l; |
| } |
| |
| /* Update the bus bandwidth request. */ |
| static void set_bus_bw(unsigned int bw) |
| { |
| int ret; |
| |
| /* Update bandwidth if request has changed. This may sleep. */ |
| ret = msm_bus_scale_client_update_request(drv.bus_perf_client, bw); |
| if (ret) |
| dev_err(drv.dev, "bandwidth request failed (%d)\n", ret); |
| } |
| |
| /* Set the CPU or L2 clock speed. */ |
| static void set_speed(struct scalable *sc, const struct core_speed *tgt_s, |
| bool skip_regulators) |
| { |
| const struct core_speed *strt_s = sc->cur_speed; |
| |
| if (strt_s == tgt_s) |
| return; |
| |
| if (strt_s->src == HFPLL && tgt_s->src == HFPLL) { |
| /* |
| * Move to an always-on source running at a frequency |
| * that does not require an elevated CPU voltage. |
| */ |
| set_pri_clk_src(sc, PRI_SRC_SEL_SEC_SRC); |
| |
| /* Re-program HFPLL. */ |
| hfpll_disable(sc, true); |
| hfpll_set_rate(sc, tgt_s); |
| hfpll_enable(sc, true); |
| |
| /* Move to HFPLL. */ |
| set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| } else if (strt_s->src == HFPLL && tgt_s->src != HFPLL) { |
| set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| hfpll_disable(sc, skip_regulators); |
| } else if (strt_s->src != HFPLL && tgt_s->src == HFPLL) { |
| hfpll_set_rate(sc, tgt_s); |
| hfpll_enable(sc, skip_regulators); |
| set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| } |
| |
| sc->cur_speed = tgt_s; |
| } |
| |
| struct vdd_data { |
| int vdd_mem; |
| int vdd_dig; |
| int vdd_core; |
| int ua_core; |
| }; |
| |
| /* Apply any per-cpu voltage increases. */ |
| static int increase_vdd(int cpu, struct vdd_data *data, |
| enum setrate_reason reason) |
| { |
| struct scalable *sc = &drv.scalable[cpu]; |
| int rc; |
| |
| /* |
| * Increase vdd_mem active-set before vdd_dig. |
| * vdd_mem should be >= vdd_dig. |
| */ |
| if (data->vdd_mem > sc->vreg[VREG_MEM].cur_vdd) { |
| rc = rpm_regulator_set_voltage(sc->vreg[VREG_MEM].rpm_reg, |
| data->vdd_mem, sc->vreg[VREG_MEM].max_vdd); |
| if (rc) { |
| dev_err(drv.dev, |
| "vdd_mem (cpu%d) increase failed (%d)\n", |
| cpu, rc); |
| return rc; |
| } |
| sc->vreg[VREG_MEM].cur_vdd = data->vdd_mem; |
| } |
| |
| /* Increase vdd_dig active-set vote. */ |
| if (data->vdd_dig > sc->vreg[VREG_DIG].cur_vdd) { |
| rc = rpm_regulator_set_voltage(sc->vreg[VREG_DIG].rpm_reg, |
| data->vdd_dig, sc->vreg[VREG_DIG].max_vdd); |
| if (rc) { |
| dev_err(drv.dev, |
| "vdd_dig (cpu%d) increase failed (%d)\n", |
| cpu, rc); |
| return rc; |
| } |
| sc->vreg[VREG_DIG].cur_vdd = data->vdd_dig; |
| } |
| |
| /* Increase current request. */ |
| if (data->ua_core > sc->vreg[VREG_CORE].cur_ua) { |
| rc = regulator_set_optimum_mode(sc->vreg[VREG_CORE].reg, |
| data->ua_core); |
| if (rc < 0) { |
| dev_err(drv.dev, "regulator_set_optimum_mode(%s) failed (%d)\n", |
| sc->vreg[VREG_CORE].name, rc); |
| return rc; |
| } |
| sc->vreg[VREG_CORE].cur_ua = data->ua_core; |
| } |
| |
| /* |
| * Update per-CPU core voltage. Don't do this for the hotplug path for |
| * which it should already be correct. Attempting to set it is bad |
| * because we don't know what CPU we are running on at this point, but |
| * the CPU regulator API requires we call it from the affected CPU. |
| */ |
| if (data->vdd_core > sc->vreg[VREG_CORE].cur_vdd |
| && reason != SETRATE_HOTPLUG) { |
| rc = regulator_set_voltage(sc->vreg[VREG_CORE].reg, |
| data->vdd_core, sc->vreg[VREG_CORE].max_vdd); |
| if (rc) { |
| dev_err(drv.dev, |
| "vdd_core (cpu%d) increase failed (%d)\n", |
| cpu, rc); |
| return rc; |
| } |
| sc->vreg[VREG_CORE].cur_vdd = data->vdd_core; |
| } |
| |
| return 0; |
| } |
| |
| /* Apply any per-cpu voltage decreases. */ |
| static void decrease_vdd(int cpu, struct vdd_data *data, |
| enum setrate_reason reason) |
| { |
| struct scalable *sc = &drv.scalable[cpu]; |
| int ret; |
| |
| /* |
| * Update per-CPU core voltage. This must be called on the CPU |
| * that's being affected. Don't do this in the hotplug remove path, |
| * where the rail is off and we're executing on the other CPU. |
| */ |
| if (data->vdd_core < sc->vreg[VREG_CORE].cur_vdd |
| && reason != SETRATE_HOTPLUG) { |
| ret = regulator_set_voltage(sc->vreg[VREG_CORE].reg, |
| data->vdd_core, sc->vreg[VREG_CORE].max_vdd); |
| if (ret) { |
| dev_err(drv.dev, |
| "vdd_core (cpu%d) decrease failed (%d)\n", |
| cpu, ret); |
| return; |
| } |
| sc->vreg[VREG_CORE].cur_vdd = data->vdd_core; |
| } |
| |
| /* Decrease current request. */ |
| if (data->ua_core < sc->vreg[VREG_CORE].cur_ua) { |
| ret = regulator_set_optimum_mode(sc->vreg[VREG_CORE].reg, |
| data->ua_core); |
| if (ret < 0) { |
| dev_err(drv.dev, "regulator_set_optimum_mode(%s) failed (%d)\n", |
| sc->vreg[VREG_CORE].name, ret); |
| return; |
| } |
| sc->vreg[VREG_CORE].cur_ua = data->ua_core; |
| } |
| |
| /* Decrease vdd_dig active-set vote. */ |
| if (data->vdd_dig < sc->vreg[VREG_DIG].cur_vdd) { |
| ret = rpm_regulator_set_voltage(sc->vreg[VREG_DIG].rpm_reg, |
| data->vdd_dig, sc->vreg[VREG_DIG].max_vdd); |
| if (ret) { |
| dev_err(drv.dev, |
| "vdd_dig (cpu%d) decrease failed (%d)\n", |
| cpu, ret); |
| return; |
| } |
| sc->vreg[VREG_DIG].cur_vdd = data->vdd_dig; |
| } |
| |
| /* |
| * Decrease vdd_mem active-set after vdd_dig. |
| * vdd_mem should be >= vdd_dig. |
| */ |
| if (data->vdd_mem < sc->vreg[VREG_MEM].cur_vdd) { |
| ret = rpm_regulator_set_voltage(sc->vreg[VREG_MEM].rpm_reg, |
| data->vdd_mem, sc->vreg[VREG_MEM].max_vdd); |
| if (ret) { |
| dev_err(drv.dev, |
| "vdd_mem (cpu%d) decrease failed (%d)\n", |
| cpu, ret); |
| return; |
| } |
| sc->vreg[VREG_MEM].cur_vdd = data->vdd_mem; |
| } |
| } |
| |
| static int calculate_vdd_mem(const struct acpu_level *tgt) |
| { |
| return drv.l2_freq_tbl[tgt->l2_level].vdd_mem; |
| } |
| |
| static int get_src_dig(const struct core_speed *s) |
| { |
| const int *hfpll_vdd = drv.hfpll_data->vdd; |
| const u32 low_vdd_l_max = drv.hfpll_data->low_vdd_l_max; |
| const u32 nom_vdd_l_max = drv.hfpll_data->nom_vdd_l_max; |
| |
| if (s->src != HFPLL) |
| return hfpll_vdd[HFPLL_VDD_NONE]; |
| else if (s->pll_l_val > nom_vdd_l_max) |
| return hfpll_vdd[HFPLL_VDD_HIGH]; |
| else if (s->pll_l_val > low_vdd_l_max) |
| return hfpll_vdd[HFPLL_VDD_NOM]; |
| else |
| return hfpll_vdd[HFPLL_VDD_LOW]; |
| } |
| |
| static int calculate_vdd_dig(const struct acpu_level *tgt) |
| { |
| int l2_pll_vdd_dig, cpu_pll_vdd_dig; |
| |
| l2_pll_vdd_dig = get_src_dig(&drv.l2_freq_tbl[tgt->l2_level].speed); |
| cpu_pll_vdd_dig = get_src_dig(&tgt->speed); |
| |
| return max(drv.l2_freq_tbl[tgt->l2_level].vdd_dig, |
| max(l2_pll_vdd_dig, cpu_pll_vdd_dig)); |
| } |
| |
| static bool enable_boost = true; |
| module_param_named(boost, enable_boost, bool, S_IRUGO | S_IWUSR); |
| |
| static int calculate_vdd_core(const struct acpu_level *tgt) |
| { |
| return tgt->vdd_core + (enable_boost ? drv.boost_uv : 0); |
| } |
| |
| static DEFINE_MUTEX(l2_regulator_lock); |
| static int l2_vreg_count; |
| |
| static int enable_l2_regulators(void) |
| { |
| int ret = 0; |
| |
| mutex_lock(&l2_regulator_lock); |
| if (l2_vreg_count == 0) { |
| ret = enable_rpm_vreg(&drv.scalable[L2].vreg[VREG_HFPLL_A]); |
| if (ret) |
| goto out; |
| ret = enable_rpm_vreg(&drv.scalable[L2].vreg[VREG_HFPLL_B]); |
| if (ret) { |
| disable_rpm_vreg(&drv.scalable[L2].vreg[VREG_HFPLL_A]); |
| goto out; |
| } |
| } |
| l2_vreg_count++; |
| out: |
| mutex_unlock(&l2_regulator_lock); |
| |
| return ret; |
| } |
| |
| static void disable_l2_regulators(void) |
| { |
| mutex_lock(&l2_regulator_lock); |
| |
| if (WARN(!l2_vreg_count, "L2 regulator votes are unbalanced!")) |
| goto out; |
| |
| if (l2_vreg_count == 1) { |
| disable_rpm_vreg(&drv.scalable[L2].vreg[VREG_HFPLL_B]); |
| disable_rpm_vreg(&drv.scalable[L2].vreg[VREG_HFPLL_A]); |
| } |
| l2_vreg_count--; |
| out: |
| mutex_unlock(&l2_regulator_lock); |
| } |
| |
| /* Set the CPU's clock rate and adjust the L2 rate, voltage and BW requests. */ |
| static int acpuclk_krait_set_rate(int cpu, unsigned long rate, |
| enum setrate_reason reason) |
| { |
| const struct core_speed *strt_acpu_s, *tgt_acpu_s; |
| const struct acpu_level *tgt; |
| int tgt_l2_l; |
| enum src_id prev_l2_src = NUM_SRC_ID; |
| struct vdd_data vdd_data; |
| bool skip_regulators; |
| int rc = 0; |
| |
| if (cpu > num_possible_cpus()) |
| return -EINVAL; |
| |
| if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG) |
| mutex_lock(&driver_lock); |
| |
| strt_acpu_s = drv.scalable[cpu].cur_speed; |
| |
| /* Return early if rate didn't change. */ |
| if (rate == strt_acpu_s->khz) |
| goto out; |
| |
| /* Find target frequency. */ |
| for (tgt = drv.acpu_freq_tbl; tgt->speed.khz != 0; tgt++) { |
| if (tgt->speed.khz == rate) { |
| tgt_acpu_s = &tgt->speed; |
| break; |
| } |
| } |
| if (tgt->speed.khz == 0) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| /* Calculate voltage requirements for the current CPU. */ |
| vdd_data.vdd_mem = calculate_vdd_mem(tgt); |
| vdd_data.vdd_dig = calculate_vdd_dig(tgt); |
| vdd_data.vdd_core = calculate_vdd_core(tgt); |
| vdd_data.ua_core = tgt->ua_core; |
| |
| /* Disable AVS before voltage switch */ |
| if (reason == SETRATE_CPUFREQ && drv.scalable[cpu].avs_enabled) { |
| AVS_DISABLE(cpu); |
| drv.scalable[cpu].avs_enabled = false; |
| } |
| |
| /* Increase VDD levels if needed. */ |
| if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG) { |
| rc = increase_vdd(cpu, &vdd_data, reason); |
| if (rc) |
| goto out; |
| |
| prev_l2_src = |
| drv.l2_freq_tbl[drv.scalable[cpu].l2_vote].speed.src; |
| /* Vote for the L2 regulators here if necessary. */ |
| if (drv.l2_freq_tbl[tgt->l2_level].speed.src == HFPLL) { |
| rc = enable_l2_regulators(); |
| if (rc) |
| goto out; |
| } |
| } |
| |
| dev_dbg(drv.dev, "Switching from ACPU%d rate %lu KHz -> %lu KHz\n", |
| cpu, strt_acpu_s->khz, tgt_acpu_s->khz); |
| |
| /* |
| * If we are setting the rate as part of power collapse or in the resume |
| * path after power collapse, skip the vote for the HFPLL regulators, |
| * which are active-set-only votes that will be removed when apps enters |
| * its sleep set. This is needed to avoid voting for regulators with |
| * sleeping APIs from an atomic context. |
| */ |
| skip_regulators = (reason == SETRATE_PC); |
| |
| /* Set the new CPU speed. */ |
| set_speed(&drv.scalable[cpu], tgt_acpu_s, skip_regulators); |
| |
| /* |
| * Update the L2 vote and apply the rate change. A spinlock is |
| * necessary to ensure L2 rate is calculated and set atomically |
| * with the CPU frequency, even if acpuclk_krait_set_rate() is |
| * called from an atomic context and the driver_lock mutex is not |
| * acquired. |
| */ |
| spin_lock(&l2_lock); |
| tgt_l2_l = compute_l2_level(&drv.scalable[cpu], tgt->l2_level); |
| set_speed(&drv.scalable[L2], |
| &drv.l2_freq_tbl[tgt_l2_l].speed, true); |
| spin_unlock(&l2_lock); |
| |
| /* Nothing else to do for power collapse or SWFI. */ |
| if (reason == SETRATE_PC || reason == SETRATE_SWFI) |
| goto out; |
| |
| /* |
| * Remove the vote for the L2 HFPLL regulators only if the L2 |
| * was already on an HFPLL source. |
| */ |
| if (prev_l2_src == HFPLL) |
| disable_l2_regulators(); |
| |
| /* Update bus bandwith request. */ |
| set_bus_bw(drv.l2_freq_tbl[tgt_l2_l].bw_level); |
| |
| /* Drop VDD levels if we can. */ |
| decrease_vdd(cpu, &vdd_data, reason); |
| |
| /* Re-enable AVS */ |
| if (reason == SETRATE_CPUFREQ && tgt->avsdscr_setting) { |
| AVS_ENABLE(cpu, tgt->avsdscr_setting); |
| drv.scalable[cpu].avs_enabled = true; |
| } |
| |
| dev_dbg(drv.dev, "ACPU%d speed change complete\n", cpu); |
| |
| out: |
| if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG) |
| mutex_unlock(&driver_lock); |
| return rc; |
| } |
| |
| static struct acpuclk_data acpuclk_krait_data = { |
| .set_rate = acpuclk_krait_set_rate, |
| .get_rate = acpuclk_krait_get_rate, |
| }; |
| |
| /* Initialize a HFPLL at a given rate and enable it. */ |
| static void __cpuinit hfpll_init(struct scalable *sc, |
| const struct core_speed *tgt_s) |
| { |
| dev_dbg(drv.dev, "Initializing HFPLL%d\n", sc - drv.scalable); |
| |
| /* Disable the PLL for re-programming. */ |
| hfpll_disable(sc, true); |
| |
| /* Configure PLL parameters for integer mode. */ |
| writel_relaxed(drv.hfpll_data->config_val, |
| sc->hfpll_base + drv.hfpll_data->config_offset); |
| writel_relaxed(0, sc->hfpll_base + drv.hfpll_data->m_offset); |
| writel_relaxed(1, sc->hfpll_base + drv.hfpll_data->n_offset); |
| if (drv.hfpll_data->has_user_reg) |
| writel_relaxed(drv.hfpll_data->user_val, |
| sc->hfpll_base + drv.hfpll_data->user_offset); |
| |
| /* Program droop controller, if supported */ |
| if (drv.hfpll_data->has_droop_ctl) |
| writel_relaxed(drv.hfpll_data->droop_val, |
| sc->hfpll_base + drv.hfpll_data->droop_offset); |
| |
| /* Set an initial PLL rate. */ |
| hfpll_set_rate(sc, tgt_s); |
| } |
| |
| static int __cpuinit rpm_regulator_init(struct scalable *sc, enum vregs vreg, |
| int vdd, bool enable) |
| { |
| int ret; |
| |
| if (!sc->vreg[vreg].name) |
| return 0; |
| |
| sc->vreg[vreg].rpm_reg = rpm_regulator_get(drv.dev, |
| sc->vreg[vreg].name); |
| if (IS_ERR(sc->vreg[vreg].rpm_reg)) { |
| ret = PTR_ERR(sc->vreg[vreg].rpm_reg); |
| dev_err(drv.dev, "rpm_regulator_get(%s) failed (%d)\n", |
| sc->vreg[vreg].name, ret); |
| goto err_get; |
| } |
| |
| ret = rpm_regulator_set_voltage(sc->vreg[vreg].rpm_reg, vdd, |
| sc->vreg[vreg].max_vdd); |
| if (ret) { |
| dev_err(drv.dev, "%s initialization failed (%d)\n", |
| sc->vreg[vreg].name, ret); |
| goto err_conf; |
| } |
| sc->vreg[vreg].cur_vdd = vdd; |
| |
| if (enable) { |
| ret = enable_rpm_vreg(&sc->vreg[vreg]); |
| if (ret) |
| goto err_conf; |
| } |
| |
| return 0; |
| |
| err_conf: |
| rpm_regulator_put(sc->vreg[vreg].rpm_reg); |
| err_get: |
| return ret; |
| } |
| |
| static void __cpuinit rpm_regulator_cleanup(struct scalable *sc, |
| enum vregs vreg) |
| { |
| if (!sc->vreg[vreg].rpm_reg) |
| return; |
| |
| disable_rpm_vreg(&sc->vreg[vreg]); |
| rpm_regulator_put(sc->vreg[vreg].rpm_reg); |
| } |
| |
| /* Voltage regulator initialization. */ |
| static int __cpuinit regulator_init(struct scalable *sc, |
| const struct acpu_level *acpu_level) |
| { |
| int ret, vdd_mem, vdd_dig, vdd_core; |
| |
| vdd_mem = calculate_vdd_mem(acpu_level); |
| ret = rpm_regulator_init(sc, VREG_MEM, vdd_mem, true); |
| if (ret) |
| goto err_mem; |
| |
| vdd_dig = calculate_vdd_dig(acpu_level); |
| ret = rpm_regulator_init(sc, VREG_DIG, vdd_dig, true); |
| if (ret) |
| goto err_dig; |
| |
| ret = rpm_regulator_init(sc, VREG_HFPLL_A, |
| sc->vreg[VREG_HFPLL_A].max_vdd, false); |
| if (ret) |
| goto err_hfpll_a; |
| ret = rpm_regulator_init(sc, VREG_HFPLL_B, |
| sc->vreg[VREG_HFPLL_B].max_vdd, false); |
| if (ret) |
| goto err_hfpll_b; |
| |
| /* Setup Krait CPU regulators and initial core voltage. */ |
| sc->vreg[VREG_CORE].reg = regulator_get(drv.dev, |
| sc->vreg[VREG_CORE].name); |
| if (IS_ERR(sc->vreg[VREG_CORE].reg)) { |
| ret = PTR_ERR(sc->vreg[VREG_CORE].reg); |
| dev_err(drv.dev, "regulator_get(%s) failed (%d)\n", |
| sc->vreg[VREG_CORE].name, ret); |
| goto err_core_get; |
| } |
| ret = regulator_set_optimum_mode(sc->vreg[VREG_CORE].reg, |
| acpu_level->ua_core); |
| if (ret < 0) { |
| dev_err(drv.dev, "regulator_set_optimum_mode(%s) failed (%d)\n", |
| sc->vreg[VREG_CORE].name, ret); |
| goto err_core_conf; |
| } |
| sc->vreg[VREG_CORE].cur_ua = acpu_level->ua_core; |
| vdd_core = calculate_vdd_core(acpu_level); |
| ret = regulator_set_voltage(sc->vreg[VREG_CORE].reg, vdd_core, |
| sc->vreg[VREG_CORE].max_vdd); |
| if (ret) { |
| dev_err(drv.dev, "regulator_set_voltage(%s) (%d)\n", |
| sc->vreg[VREG_CORE].name, ret); |
| goto err_core_conf; |
| } |
| sc->vreg[VREG_CORE].cur_vdd = vdd_core; |
| ret = regulator_enable(sc->vreg[VREG_CORE].reg); |
| if (ret) { |
| dev_err(drv.dev, "regulator_enable(%s) failed (%d)\n", |
| sc->vreg[VREG_CORE].name, ret); |
| goto err_core_conf; |
| } |
| |
| /* |
| * Increment the L2 HFPLL regulator refcount if _this_ CPU's frequency |
| * requires a corresponding target L2 frequency that needs the L2 to |
| * run off of an HFPLL. |
| */ |
| if (drv.l2_freq_tbl[acpu_level->l2_level].speed.src == HFPLL) |
| l2_vreg_count++; |
| |
| return 0; |
| |
| err_core_conf: |
| regulator_put(sc->vreg[VREG_CORE].reg); |
| err_core_get: |
| rpm_regulator_cleanup(sc, VREG_HFPLL_B); |
| err_hfpll_b: |
| rpm_regulator_cleanup(sc, VREG_HFPLL_A); |
| err_hfpll_a: |
| rpm_regulator_cleanup(sc, VREG_DIG); |
| err_dig: |
| rpm_regulator_cleanup(sc, VREG_MEM); |
| err_mem: |
| return ret; |
| } |
| |
| static void __cpuinit regulator_cleanup(struct scalable *sc) |
| { |
| regulator_disable(sc->vreg[VREG_CORE].reg); |
| regulator_put(sc->vreg[VREG_CORE].reg); |
| rpm_regulator_cleanup(sc, VREG_HFPLL_B); |
| rpm_regulator_cleanup(sc, VREG_HFPLL_A); |
| rpm_regulator_cleanup(sc, VREG_DIG); |
| rpm_regulator_cleanup(sc, VREG_MEM); |
| } |
| |
| /* Set initial rate for a given core. */ |
| static int __cpuinit init_clock_sources(struct scalable *sc, |
| const struct core_speed *tgt_s) |
| { |
| u32 regval; |
| void __iomem *aux_reg; |
| |
| /* Program AUX source input to the secondary MUX. */ |
| if (sc->aux_clk_sel_phys) { |
| aux_reg = ioremap(sc->aux_clk_sel_phys, 4); |
| if (!aux_reg) |
| return -ENOMEM; |
| writel_relaxed(sc->aux_clk_sel, aux_reg); |
| iounmap(aux_reg); |
| } |
| |
| /* Switch away from the HFPLL while it's re-initialized. */ |
| set_sec_clk_src(sc, sc->sec_clk_sel); |
| set_pri_clk_src(sc, PRI_SRC_SEL_SEC_SRC); |
| hfpll_init(sc, tgt_s); |
| |
| /* Set PRI_SRC_SEL_HFPLL_DIV2 divider to div-2. */ |
| regval = get_l2_indirect_reg(sc->l2cpmr_iaddr); |
| regval &= ~(0x3 << 6 | 0x3 << 14); |
| set_l2_indirect_reg(sc->l2cpmr_iaddr, regval); |
| |
| /* Enable and switch to the target clock source. */ |
| if (tgt_s->src == HFPLL) |
| hfpll_enable(sc, false); |
| set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| sc->cur_speed = tgt_s; |
| |
| return 0; |
| } |
| |
| static void __cpuinit fill_cur_core_speed(struct core_speed *s, |
| struct scalable *sc) |
| { |
| s->pri_src_sel = get_l2_indirect_reg(sc->l2cpmr_iaddr) & 0x3; |
| s->pll_l_val = readl_relaxed(sc->hfpll_base + drv.hfpll_data->l_offset); |
| } |
| |
| static bool __cpuinit speed_equal(const struct core_speed *s1, |
| const struct core_speed *s2) |
| { |
| return (s1->pri_src_sel == s2->pri_src_sel && |
| s1->pll_l_val == s2->pll_l_val); |
| } |
| |
| static const struct acpu_level __cpuinit *find_cur_acpu_level(int cpu) |
| { |
| struct scalable *sc = &drv.scalable[cpu]; |
| const struct acpu_level *l; |
| struct core_speed cur_speed; |
| |
| fill_cur_core_speed(&cur_speed, sc); |
| for (l = drv.acpu_freq_tbl; l->speed.khz != 0; l++) |
| if (speed_equal(&l->speed, &cur_speed)) |
| return l; |
| return NULL; |
| } |
| |
| static const struct l2_level __init *find_cur_l2_level(void) |
| { |
| struct scalable *sc = &drv.scalable[L2]; |
| const struct l2_level *l; |
| struct core_speed cur_speed; |
| |
| fill_cur_core_speed(&cur_speed, sc); |
| for (l = drv.l2_freq_tbl; l->speed.khz != 0; l++) |
| if (speed_equal(&l->speed, &cur_speed)) |
| return l; |
| return NULL; |
| } |
| |
| static const struct acpu_level __cpuinit *find_min_acpu_level(void) |
| { |
| struct acpu_level *l; |
| |
| for (l = drv.acpu_freq_tbl; l->speed.khz != 0; l++) |
| if (l->use_for_scaling) |
| return l; |
| |
| return NULL; |
| } |
| |
| static int __cpuinit per_cpu_init(int cpu) |
| { |
| struct scalable *sc = &drv.scalable[cpu]; |
| const struct acpu_level *acpu_level; |
| int ret; |
| |
| sc->hfpll_base = ioremap(sc->hfpll_phys_base, SZ_32); |
| if (!sc->hfpll_base) { |
| ret = -ENOMEM; |
| goto err_ioremap; |
| } |
| |
| acpu_level = find_cur_acpu_level(cpu); |
| if (!acpu_level) { |
| acpu_level = find_min_acpu_level(); |
| if (!acpu_level) { |
| ret = -ENODEV; |
| goto err_table; |
| } |
| dev_dbg(drv.dev, "CPU%d is running at an unknown rate. Defaulting to %lu KHz.\n", |
| cpu, acpu_level->speed.khz); |
| } else { |
| dev_dbg(drv.dev, "CPU%d is running at %lu KHz\n", cpu, |
| acpu_level->speed.khz); |
| } |
| |
| ret = regulator_init(sc, acpu_level); |
| if (ret) |
| goto err_regulators; |
| |
| ret = init_clock_sources(sc, &acpu_level->speed); |
| if (ret) |
| goto err_clocks; |
| |
| sc->l2_vote = acpu_level->l2_level; |
| sc->initialized = true; |
| |
| return 0; |
| |
| err_clocks: |
| regulator_cleanup(sc); |
| err_regulators: |
| err_table: |
| iounmap(sc->hfpll_base); |
| err_ioremap: |
| return ret; |
| } |
| |
| /* Register with bus driver. */ |
| static void __init bus_init(const struct l2_level *l2_level) |
| { |
| int ret; |
| |
| drv.bus_perf_client = msm_bus_scale_register_client(drv.bus_scale); |
| if (!drv.bus_perf_client) { |
| dev_err(drv.dev, "unable to register bus client\n"); |
| BUG(); |
| } |
| |
| ret = msm_bus_scale_client_update_request(drv.bus_perf_client, |
| l2_level->bw_level); |
| if (ret) |
| dev_err(drv.dev, "initial bandwidth req failed (%d)\n", ret); |
| } |
| |
| #ifdef CONFIG_CPU_FREQ_MSM |
| static struct cpufreq_frequency_table freq_table[NR_CPUS][35]; |
| |
| static void __init cpufreq_table_init(void) |
| { |
| int cpu; |
| int freq_cnt = 0; |
| |
| for_each_possible_cpu(cpu) { |
| int i; |
| /* Construct the freq_table tables from acpu_freq_tbl. */ |
| for (i = 0, freq_cnt = 0; drv.acpu_freq_tbl[i].speed.khz != 0 |
| && freq_cnt < ARRAY_SIZE(*freq_table); i++) { |
| if (drv.acpu_freq_tbl[i].use_for_scaling) { |
| freq_table[cpu][freq_cnt].index = freq_cnt; |
| freq_table[cpu][freq_cnt].frequency |
| = drv.acpu_freq_tbl[i].speed.khz; |
| freq_cnt++; |
| } |
| } |
| /* freq_table not big enough to store all usable freqs. */ |
| BUG_ON(drv.acpu_freq_tbl[i].speed.khz != 0); |
| |
| freq_table[cpu][freq_cnt].index = freq_cnt; |
| freq_table[cpu][freq_cnt].frequency = CPUFREQ_TABLE_END; |
| |
| /* Register table with CPUFreq. */ |
| cpufreq_frequency_table_get_attr(freq_table[cpu], cpu); |
| } |
| |
| dev_info(drv.dev, "CPU Frequencies Supported: %d\n", freq_cnt); |
| } |
| #else |
| static void __init cpufreq_table_init(void) {} |
| #endif |
| |
| static void __init dcvs_freq_init(void) |
| { |
| int i; |
| |
| for (i = 0; drv.acpu_freq_tbl[i].speed.khz != 0; i++) |
| if (drv.acpu_freq_tbl[i].use_for_scaling) |
| msm_dcvs_register_cpu_freq( |
| drv.acpu_freq_tbl[i].speed.khz, |
| drv.acpu_freq_tbl[i].vdd_core / 1000); |
| } |
| |
| static int __cpuinit acpuclk_cpu_callback(struct notifier_block *nfb, |
| unsigned long action, void *hcpu) |
| { |
| static int prev_khz[NR_CPUS]; |
| int rc, cpu = (int)hcpu; |
| struct scalable *sc = &drv.scalable[cpu]; |
| unsigned long hot_unplug_khz = acpuclk_krait_data.power_collapse_khz; |
| |
| switch (action & ~CPU_TASKS_FROZEN) { |
| case CPU_DEAD: |
| prev_khz[cpu] = acpuclk_krait_get_rate(cpu); |
| /* Fall through. */ |
| case CPU_UP_CANCELED: |
| acpuclk_krait_set_rate(cpu, hot_unplug_khz, SETRATE_HOTPLUG); |
| |
| regulator_disable(sc->vreg[VREG_CORE].reg); |
| regulator_set_optimum_mode(sc->vreg[VREG_CORE].reg, 0); |
| regulator_set_voltage(sc->vreg[VREG_CORE].reg, 0, |
| sc->vreg[VREG_CORE].max_vdd); |
| break; |
| case CPU_UP_PREPARE: |
| if (!sc->initialized) { |
| rc = per_cpu_init(cpu); |
| if (rc) |
| return NOTIFY_BAD; |
| break; |
| } |
| if (WARN_ON(!prev_khz[cpu])) |
| return NOTIFY_BAD; |
| |
| rc = regulator_set_voltage(sc->vreg[VREG_CORE].reg, |
| sc->vreg[VREG_CORE].cur_vdd, |
| sc->vreg[VREG_CORE].max_vdd); |
| if (rc < 0) |
| return NOTIFY_BAD; |
| rc = regulator_set_optimum_mode(sc->vreg[VREG_CORE].reg, |
| sc->vreg[VREG_CORE].cur_ua); |
| if (rc < 0) |
| return NOTIFY_BAD; |
| rc = regulator_enable(sc->vreg[VREG_CORE].reg); |
| if (rc < 0) |
| return NOTIFY_BAD; |
| |
| acpuclk_krait_set_rate(cpu, prev_khz[cpu], SETRATE_HOTPLUG); |
| break; |
| default: |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block __cpuinitdata acpuclk_cpu_notifier = { |
| .notifier_call = acpuclk_cpu_callback, |
| }; |
| |
| static const int __init krait_needs_vmin(void) |
| { |
| switch (read_cpuid_id()) { |
| case 0x511F04D0: /* KR28M2A20 */ |
| case 0x511F04D1: /* KR28M2A21 */ |
| case 0x510F06F0: /* KR28M4A10 */ |
| return 1; |
| default: |
| return 0; |
| }; |
| } |
| |
| static void __init krait_apply_vmin(struct acpu_level *tbl) |
| { |
| for (; tbl->speed.khz != 0; tbl++) { |
| if (tbl->vdd_core < 1150000) |
| tbl->vdd_core = 1150000; |
| tbl->avsdscr_setting = 0; |
| } |
| } |
| |
| void __init get_krait_bin_format_a(void __iomem *base, struct bin_info *bin) |
| { |
| u32 pte_efuse = readl_relaxed(base); |
| |
| bin->speed = pte_efuse & 0xF; |
| if (bin->speed == 0xF) |
| bin->speed = (pte_efuse >> 4) & 0xF; |
| bin->speed_valid = bin->speed != 0xF; |
| |
| bin->pvs = (pte_efuse >> 10) & 0x7; |
| if (bin->pvs == 0x7) |
| bin->pvs = (pte_efuse >> 13) & 0x7; |
| bin->pvs_valid = bin->pvs != 0x7; |
| } |
| |
| void __init get_krait_bin_format_b(void __iomem *base, struct bin_info *bin) |
| { |
| u32 pte_efuse, redundant_sel; |
| |
| pte_efuse = readl_relaxed(base); |
| redundant_sel = (pte_efuse >> 24) & 0x7; |
| bin->speed = pte_efuse & 0x7; |
| bin->pvs = (pte_efuse >> 6) & 0x7; |
| |
| switch (redundant_sel) { |
| case 1: |
| bin->speed = (pte_efuse >> 27) & 0x7; |
| break; |
| case 2: |
| bin->pvs = (pte_efuse >> 27) & 0x7; |
| break; |
| } |
| bin->speed_valid = true; |
| |
| /* Check PVS_BLOW_STATUS */ |
| pte_efuse = readl_relaxed(base + 0x4); |
| bin->pvs_valid = !!(pte_efuse & BIT(21)); |
| } |
| |
| static struct pvs_table * __init select_freq_plan( |
| const struct acpuclk_krait_params *params) |
| { |
| void __iomem *pte_efuse_base; |
| struct bin_info bin; |
| |
| pte_efuse_base = ioremap(params->pte_efuse_phys, 8); |
| if (!pte_efuse_base) { |
| dev_err(drv.dev, "Unable to map PTE eFuse base\n"); |
| return NULL; |
| } |
| params->get_bin_info(pte_efuse_base, &bin); |
| iounmap(pte_efuse_base); |
| |
| if (bin.speed_valid) { |
| drv.speed_bin = bin.speed; |
| dev_info(drv.dev, "SPEED BIN: %d\n", drv.speed_bin); |
| } else { |
| drv.speed_bin = 0; |
| dev_warn(drv.dev, "SPEED BIN: Defaulting to %d\n", |
| drv.speed_bin); |
| } |
| |
| if (bin.pvs_valid) { |
| drv.pvs_bin = bin.pvs; |
| dev_info(drv.dev, "ACPU PVS: %d\n", drv.pvs_bin); |
| } else { |
| drv.pvs_bin = 0; |
| dev_warn(drv.dev, "ACPU PVS: Defaulting to %d\n", |
| drv.pvs_bin); |
| } |
| |
| return ¶ms->pvs_tables[drv.speed_bin][drv.pvs_bin]; |
| } |
| |
| static void __init drv_data_init(struct device *dev, |
| const struct acpuclk_krait_params *params) |
| { |
| struct pvs_table *pvs; |
| |
| drv.dev = dev; |
| drv.scalable = kmemdup(params->scalable, params->scalable_size, |
| GFP_KERNEL); |
| BUG_ON(!drv.scalable); |
| |
| drv.hfpll_data = kmemdup(params->hfpll_data, sizeof(*drv.hfpll_data), |
| GFP_KERNEL); |
| BUG_ON(!drv.hfpll_data); |
| |
| drv.l2_freq_tbl = kmemdup(params->l2_freq_tbl, params->l2_freq_tbl_size, |
| GFP_KERNEL); |
| BUG_ON(!drv.l2_freq_tbl); |
| |
| drv.bus_scale = kmemdup(params->bus_scale, sizeof(*drv.bus_scale), |
| GFP_KERNEL); |
| BUG_ON(!drv.bus_scale); |
| drv.bus_scale->usecase = kmemdup(drv.bus_scale->usecase, |
| drv.bus_scale->num_usecases * sizeof(*drv.bus_scale->usecase), |
| GFP_KERNEL); |
| BUG_ON(!drv.bus_scale->usecase); |
| |
| pvs = select_freq_plan(params); |
| BUG_ON(!pvs->table); |
| |
| drv.acpu_freq_tbl = kmemdup(pvs->table, pvs->size, GFP_KERNEL); |
| BUG_ON(!drv.acpu_freq_tbl); |
| drv.boost_uv = pvs->boost_uv; |
| |
| acpuclk_krait_data.power_collapse_khz = params->stby_khz; |
| acpuclk_krait_data.wait_for_irq_khz = params->stby_khz; |
| } |
| |
| static void __init hw_init(void) |
| { |
| struct scalable *l2 = &drv.scalable[L2]; |
| const struct l2_level *l2_level; |
| int cpu, rc; |
| |
| if (krait_needs_vmin()) |
| krait_apply_vmin(drv.acpu_freq_tbl); |
| |
| l2->hfpll_base = ioremap(l2->hfpll_phys_base, SZ_32); |
| BUG_ON(!l2->hfpll_base); |
| |
| rc = rpm_regulator_init(l2, VREG_HFPLL_A, |
| l2->vreg[VREG_HFPLL_A].max_vdd, false); |
| BUG_ON(rc); |
| rc = rpm_regulator_init(l2, VREG_HFPLL_B, |
| l2->vreg[VREG_HFPLL_B].max_vdd, false); |
| BUG_ON(rc); |
| |
| l2_level = find_cur_l2_level(); |
| if (!l2_level) { |
| l2_level = drv.l2_freq_tbl; |
| dev_dbg(drv.dev, "L2 is running at an unknown rate. Defaulting to %lu KHz.\n", |
| l2_level->speed.khz); |
| } else { |
| dev_dbg(drv.dev, "L2 is running at %lu KHz\n", |
| l2_level->speed.khz); |
| } |
| |
| rc = init_clock_sources(l2, &l2_level->speed); |
| BUG_ON(rc); |
| |
| for_each_online_cpu(cpu) { |
| rc = per_cpu_init(cpu); |
| BUG_ON(rc); |
| } |
| |
| bus_init(l2_level); |
| } |
| |
| int __init acpuclk_krait_init(struct device *dev, |
| const struct acpuclk_krait_params *params) |
| { |
| drv_data_init(dev, params); |
| hw_init(); |
| |
| cpufreq_table_init(); |
| dcvs_freq_init(); |
| acpuclk_register(&acpuclk_krait_data); |
| register_hotcpu_notifier(&acpuclk_cpu_notifier); |
| |
| acpuclk_krait_debug_init(&drv); |
| |
| return 0; |
| } |