blob: f416cfcbbc1fb3e01da03cac791283bdbaa1cc54 [file] [log] [blame]
/*
* Copyright (c) 2010,2011, Dan Magenheimer, Oracle Corp.
* Copyright (c) 2010,2011, Nitin Gupta
* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
*
* Qcache provides an in-kernel "host implementation" for transcendent memory
* and, thus indirectly, for cleancache and frontswap. Qcache includes a
* page-accessible memory [1] interface, utilizing lzo1x compression:
* 1) "compression buddies" ("zbud") is used for ephemeral pages
* Zbud allows pairs (and potentially,
* in the future, more than a pair of) compressed pages to be closely linked
* so that reclaiming can be done via the kernel's physical-page-oriented
* "shrinker" interface.
*
* [1] For a definition of page-accessible memory (aka PAM), see:
* http://marc.info/?l=linux-mm&m=127811271605009
*/
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/highmem.h>
#include <linux/list.h>
#include <linux/lzo.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/atomic.h>
#include <linux/math64.h>
#include <linux/bitmap.h>
#include <linux/fmem.h>
#include "tmem.h"
#if !defined(CONFIG_CLEANCACHE)
#error "qcache is useless without CONFIG_CLEANCACHE"
#endif
#include <linux/cleancache.h>
#define ZCACHE_GFP_MASK \
(__GFP_FS | __GFP_NORETRY | __GFP_NOWARN | __GFP_NOMEMALLOC)
#define MAX_POOLS_PER_CLIENT 16
#define MAX_CLIENTS 16
#define LOCAL_CLIENT ((uint16_t)-1)
MODULE_LICENSE("GPL");
struct zcache_client {
struct tmem_pool *tmem_pools[MAX_POOLS_PER_CLIENT];
struct xv_pool *xvpool;
bool allocated;
atomic_t refcount;
};
struct qcache_info {
void *addr;
unsigned long *bitmap;
spinlock_t lock;
unsigned pages;
};
static struct qcache_info qcache_info;
static unsigned long zcache_qc_allocated;
static unsigned long zcache_qc_freed;
static unsigned long zcache_qc_used;
static unsigned long zcache_qc_max_used;
static struct zcache_client zcache_host;
static struct zcache_client zcache_clients[MAX_CLIENTS];
static inline uint16_t get_client_id_from_client(struct zcache_client *cli)
{
BUG_ON(cli == NULL);
if (cli == &zcache_host)
return LOCAL_CLIENT;
return cli - &zcache_clients[0];
}
static inline bool is_local_client(struct zcache_client *cli)
{
return cli == &zcache_host;
}
/**********
* Compression buddies ("zbud") provides for packing two (or, possibly
* in the future, more) compressed ephemeral pages into a single "raw"
* (physical) page and tracking them with data structures so that
* the raw pages can be easily reclaimed.
*
* A zbud page ("zbpg") is an aligned page containing a list_head,
* a lock, and two "zbud headers". The remainder of the physical
* page is divided up into aligned 64-byte "chunks" which contain
* the compressed data for zero, one, or two zbuds. Each zbpg
* resides on: (1) an "unused list" if it has no zbuds; (2) a
* "buddied" list if it is fully populated with two zbuds; or
* (3) one of PAGE_SIZE/64 "unbuddied" lists indexed by how many chunks
* the one unbuddied zbud uses. The data inside a zbpg cannot be
* read or written unless the zbpg's lock is held.
*/
#define ZBH_SENTINEL 0x43214321
#define ZBPG_SENTINEL 0xdeadbeef
#define ZBUD_MAX_BUDS 2
struct zbud_hdr {
uint16_t client_id;
uint16_t pool_id;
struct tmem_oid oid;
uint32_t index;
uint16_t size; /* compressed size in bytes, zero means unused */
DECL_SENTINEL
};
struct zbud_page {
struct list_head bud_list;
spinlock_t lock;
struct zbud_hdr buddy[ZBUD_MAX_BUDS];
DECL_SENTINEL
/* followed by NUM_CHUNK aligned CHUNK_SIZE-byte chunks */
};
#define CHUNK_SHIFT 6
#define CHUNK_SIZE (1 << CHUNK_SHIFT)
#define CHUNK_MASK (~(CHUNK_SIZE-1))
#define NCHUNKS (((PAGE_SIZE - sizeof(struct zbud_page)) & \
CHUNK_MASK) >> CHUNK_SHIFT)
#define MAX_CHUNK (NCHUNKS-1)
static struct {
struct list_head list;
unsigned count;
} zbud_unbuddied[NCHUNKS];
/* list N contains pages with N chunks USED and NCHUNKS-N unused */
/* element 0 is never used but optimizing that isn't worth it */
static unsigned long zbud_cumul_chunk_counts[NCHUNKS];
struct list_head zbud_buddied_list;
static unsigned long zcache_zbud_buddied_count;
/* protects the buddied list and all unbuddied lists */
static DEFINE_SPINLOCK(zbud_budlists_spinlock);
static atomic_t zcache_zbud_curr_raw_pages;
static atomic_t zcache_zbud_curr_zpages;
static unsigned long zcache_zbud_curr_zbytes;
static unsigned long zcache_zbud_cumul_zpages;
static unsigned long zcache_zbud_cumul_zbytes;
static unsigned long zcache_compress_poor;
static unsigned long zcache_mean_compress_poor;
/* forward references */
static void *zcache_get_free_page(void);
static void *qcache_alloc(void)
{
void *addr;
unsigned long flags;
int offset;
struct qcache_info *qc = &qcache_info;
spin_lock_irqsave(&qc->lock, flags);
offset = bitmap_find_free_region(qc->bitmap, qc->pages, 0);
if (offset < 0) {
spin_unlock_irqrestore(&qc->lock, flags);
return NULL;
}
zcache_qc_allocated++;
zcache_qc_used++;
zcache_qc_max_used = max(zcache_qc_max_used, zcache_qc_used);
spin_unlock_irqrestore(&qc->lock, flags);
addr = qc->addr + offset * PAGE_SIZE;
return addr;
}
static void qcache_free(void *addr)
{
unsigned long flags;
int offset;
struct qcache_info *qc = &qcache_info;
offset = (addr - qc->addr) / PAGE_SIZE;
spin_lock_irqsave(&qc->lock, flags);
bitmap_release_region(qc->bitmap, offset, 0);
zcache_qc_freed++;
zcache_qc_used--;
spin_unlock_irqrestore(&qc->lock, flags);
}
/*
* zbud helper functions
*/
static inline unsigned zbud_max_buddy_size(void)
{
return MAX_CHUNK << CHUNK_SHIFT;
}
static inline unsigned zbud_size_to_chunks(unsigned size)
{
BUG_ON(size == 0 || size > zbud_max_buddy_size());
return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
}
static inline int zbud_budnum(struct zbud_hdr *zh)
{
unsigned offset = (unsigned long)zh & (PAGE_SIZE - 1);
struct zbud_page *zbpg = NULL;
unsigned budnum = -1U;
int i;
for (i = 0; i < ZBUD_MAX_BUDS; i++)
if (offset == offsetof(typeof(*zbpg), buddy[i])) {
budnum = i;
break;
}
BUG_ON(budnum == -1U);
return budnum;
}
static char *zbud_data(struct zbud_hdr *zh, unsigned size)
{
struct zbud_page *zbpg;
char *p;
unsigned budnum;
ASSERT_SENTINEL(zh, ZBH);
budnum = zbud_budnum(zh);
BUG_ON(size == 0 || size > zbud_max_buddy_size());
zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
p = (char *)zbpg;
if (budnum == 0)
p += ((sizeof(struct zbud_page) + CHUNK_SIZE - 1) &
CHUNK_MASK);
else if (budnum == 1)
p += PAGE_SIZE - ((size + CHUNK_SIZE - 1) & CHUNK_MASK);
return p;
}
/*
* zbud raw page management
*/
static struct zbud_page *zbud_alloc_raw_page(void)
{
struct zbud_page *zbpg = NULL;
struct zbud_hdr *zh0, *zh1;
zbpg = zcache_get_free_page();
if (likely(zbpg != NULL)) {
INIT_LIST_HEAD(&zbpg->bud_list);
zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
spin_lock_init(&zbpg->lock);
atomic_inc(&zcache_zbud_curr_raw_pages);
INIT_LIST_HEAD(&zbpg->bud_list);
SET_SENTINEL(zbpg, ZBPG);
zh0->size = 0; zh1->size = 0;
tmem_oid_set_invalid(&zh0->oid);
tmem_oid_set_invalid(&zh1->oid);
}
return zbpg;
}
static void zbud_free_raw_page(struct zbud_page *zbpg)
{
struct zbud_hdr *zh0 = &zbpg->buddy[0], *zh1 = &zbpg->buddy[1];
ASSERT_SENTINEL(zbpg, ZBPG);
BUG_ON(!list_empty(&zbpg->bud_list));
BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
INVERT_SENTINEL(zbpg, ZBPG);
spin_unlock(&zbpg->lock);
qcache_free(zbpg);
}
/*
* core zbud handling routines
*/
static unsigned zbud_free(struct zbud_hdr *zh)
{
unsigned size;
ASSERT_SENTINEL(zh, ZBH);
BUG_ON(!tmem_oid_valid(&zh->oid));
size = zh->size;
BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
zh->size = 0;
tmem_oid_set_invalid(&zh->oid);
INVERT_SENTINEL(zh, ZBH);
zcache_zbud_curr_zbytes -= size;
atomic_dec(&zcache_zbud_curr_zpages);
return size;
}
static void zbud_free_and_delist(struct zbud_hdr *zh)
{
unsigned chunks;
struct zbud_hdr *zh_other;
unsigned budnum = zbud_budnum(zh), size;
struct zbud_page *zbpg =
container_of(zh, struct zbud_page, buddy[budnum]);
spin_lock(&zbpg->lock);
if (list_empty(&zbpg->bud_list)) {
spin_unlock(&zbpg->lock);
return;
}
size = zbud_free(zh);
zh_other = &zbpg->buddy[(budnum == 0) ? 1 : 0];
if (zh_other->size == 0) { /* was unbuddied: unlist and free */
chunks = zbud_size_to_chunks(size) ;
spin_lock(&zbud_budlists_spinlock);
BUG_ON(list_empty(&zbud_unbuddied[chunks].list));
list_del_init(&zbpg->bud_list);
zbud_unbuddied[chunks].count--;
spin_unlock(&zbud_budlists_spinlock);
zbud_free_raw_page(zbpg);
} else { /* was buddied: move remaining buddy to unbuddied list */
chunks = zbud_size_to_chunks(zh_other->size) ;
spin_lock(&zbud_budlists_spinlock);
list_del_init(&zbpg->bud_list);
zcache_zbud_buddied_count--;
list_add_tail(&zbpg->bud_list, &zbud_unbuddied[chunks].list);
zbud_unbuddied[chunks].count++;
spin_unlock(&zbud_budlists_spinlock);
spin_unlock(&zbpg->lock);
}
}
static struct zbud_hdr *zbud_create(uint16_t client_id, uint16_t pool_id,
struct tmem_oid *oid,
uint32_t index, struct page *page,
void *cdata, unsigned size)
{
struct zbud_hdr *zh0, *zh1, *zh = NULL;
struct zbud_page *zbpg = NULL, *ztmp;
unsigned nchunks;
char *to;
int i, found_good_buddy = 0;
nchunks = zbud_size_to_chunks(size) ;
for (i = MAX_CHUNK - nchunks + 1; i > 0; i--) {
spin_lock(&zbud_budlists_spinlock);
if (!list_empty(&zbud_unbuddied[i].list)) {
list_for_each_entry_safe(zbpg, ztmp,
&zbud_unbuddied[i].list, bud_list) {
if (spin_trylock(&zbpg->lock)) {
found_good_buddy = i;
goto found_unbuddied;
}
}
}
spin_unlock(&zbud_budlists_spinlock);
}
/* didn't find a good buddy, try allocating a new page */
zbpg = zbud_alloc_raw_page();
if (unlikely(zbpg == NULL))
goto out;
/* ok, have a page, now compress the data before taking locks */
spin_lock(&zbpg->lock);
spin_lock(&zbud_budlists_spinlock);
list_add_tail(&zbpg->bud_list, &zbud_unbuddied[nchunks].list);
zbud_unbuddied[nchunks].count++;
zh = &zbpg->buddy[0];
goto init_zh;
found_unbuddied:
zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
BUG_ON(!((zh0->size == 0) ^ (zh1->size == 0)));
if (zh0->size != 0) { /* buddy0 in use, buddy1 is vacant */
ASSERT_SENTINEL(zh0, ZBH);
zh = zh1;
} else if (zh1->size != 0) { /* buddy1 in use, buddy0 is vacant */
ASSERT_SENTINEL(zh1, ZBH);
zh = zh0;
} else
BUG();
list_del_init(&zbpg->bud_list);
zbud_unbuddied[found_good_buddy].count--;
list_add_tail(&zbpg->bud_list, &zbud_buddied_list);
zcache_zbud_buddied_count++;
init_zh:
SET_SENTINEL(zh, ZBH);
zh->size = size;
zh->index = index;
zh->oid = *oid;
zh->pool_id = pool_id;
zh->client_id = client_id;
/* can wait to copy the data until the list locks are dropped */
spin_unlock(&zbud_budlists_spinlock);
to = zbud_data(zh, size);
memcpy(to, cdata, size);
spin_unlock(&zbpg->lock);
zbud_cumul_chunk_counts[nchunks]++;
atomic_inc(&zcache_zbud_curr_zpages);
zcache_zbud_cumul_zpages++;
zcache_zbud_curr_zbytes += size;
zcache_zbud_cumul_zbytes += size;
out:
return zh;
}
static int zbud_decompress(struct page *page, struct zbud_hdr *zh)
{
struct zbud_page *zbpg;
unsigned budnum = zbud_budnum(zh);
size_t out_len = PAGE_SIZE;
char *to_va, *from_va;
unsigned size;
int ret = 0;
zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
spin_lock(&zbpg->lock);
if (list_empty(&zbpg->bud_list)) {
ret = -EINVAL;
goto out;
}
ASSERT_SENTINEL(zh, ZBH);
BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
to_va = kmap_atomic(page);
size = zh->size;
from_va = zbud_data(zh, size);
ret = lzo1x_decompress_safe(from_va, size, to_va, &out_len);
BUG_ON(ret != LZO_E_OK);
BUG_ON(out_len != PAGE_SIZE);
kunmap_atomic(to_va);
out:
spin_unlock(&zbpg->lock);
return ret;
}
static struct tmem_pool *zcache_get_pool_by_id(uint16_t cli_id,
uint16_t poolid);
static void zcache_put_pool(struct tmem_pool *pool);
static void zbud_init(void)
{
int i;
INIT_LIST_HEAD(&zbud_buddied_list);
zcache_zbud_buddied_count = 0;
for (i = 0; i < NCHUNKS; i++) {
INIT_LIST_HEAD(&zbud_unbuddied[i].list);
zbud_unbuddied[i].count = 0;
}
}
#ifdef CONFIG_SYSFS
/*
* These sysfs routines show a nice distribution of how many zbpg's are
* currently (and have ever been placed) in each unbuddied list. It's fun
* to watch but can probably go away before final merge.
*/
static int zbud_show_unbuddied_list_counts(char *buf)
{
int i;
char *p = buf;
for (i = 0; i < NCHUNKS; i++)
p += sprintf(p, "%u ", zbud_unbuddied[i].count);
return p - buf;
}
static int zbud_show_cumul_chunk_counts(char *buf)
{
unsigned long i, chunks = 0, total_chunks = 0, sum_total_chunks = 0;
unsigned long total_chunks_lte_21 = 0, total_chunks_lte_32 = 0;
unsigned long total_chunks_lte_42 = 0;
char *p = buf;
for (i = 0; i < NCHUNKS; i++) {
p += sprintf(p, "%lu ", zbud_cumul_chunk_counts[i]);
chunks += zbud_cumul_chunk_counts[i];
total_chunks += zbud_cumul_chunk_counts[i];
sum_total_chunks += i * zbud_cumul_chunk_counts[i];
if (i == 21)
total_chunks_lte_21 = total_chunks;
if (i == 32)
total_chunks_lte_32 = total_chunks;
if (i == 42)
total_chunks_lte_42 = total_chunks;
}
p += sprintf(p, "<=21:%lu <=32:%lu <=42:%lu, mean:%lu\n",
total_chunks_lte_21, total_chunks_lte_32, total_chunks_lte_42,
chunks == 0 ? 0 : sum_total_chunks / chunks);
return p - buf;
}
#endif
/*
* zcache core code starts here
*/
/* useful stats not collected by cleancache or frontswap */
static unsigned long zcache_flush_total;
static unsigned long zcache_flush_found;
static unsigned long zcache_flobj_total;
static unsigned long zcache_flobj_found;
static unsigned long zcache_failed_eph_puts;
/*
* Tmem operations assume the poolid implies the invoking client.
* Zcache only has one client (the kernel itself): LOCAL_CLIENT.
* RAMster has each client numbered by cluster node, and a KVM version
* of zcache would have one client per guest and each client might
* have a poolid==N.
*/
static struct tmem_pool *zcache_get_pool_by_id(uint16_t cli_id, uint16_t poolid)
{
struct tmem_pool *pool = NULL;
struct zcache_client *cli = NULL;
if (cli_id == LOCAL_CLIENT)
cli = &zcache_host;
else {
if (cli_id >= MAX_CLIENTS)
goto out;
cli = &zcache_clients[cli_id];
if (cli == NULL)
goto out;
atomic_inc(&cli->refcount);
}
if (poolid < MAX_POOLS_PER_CLIENT) {
pool = cli->tmem_pools[poolid];
if (pool != NULL)
atomic_inc(&pool->refcount);
}
out:
return pool;
}
static void zcache_put_pool(struct tmem_pool *pool)
{
struct zcache_client *cli = NULL;
if (pool == NULL)
BUG();
cli = pool->client;
atomic_dec(&pool->refcount);
atomic_dec(&cli->refcount);
}
int zcache_new_client(uint16_t cli_id)
{
struct zcache_client *cli = NULL;
int ret = -1;
if (cli_id == LOCAL_CLIENT)
cli = &zcache_host;
else if ((unsigned int)cli_id < MAX_CLIENTS)
cli = &zcache_clients[cli_id];
if (cli == NULL)
goto out;
if (cli->allocated)
goto out;
cli->allocated = 1;
ret = 0;
out:
return ret;
}
/* counters for debugging */
static unsigned long zcache_failed_get_free_pages;
static unsigned long zcache_failed_alloc;
static unsigned long zcache_put_to_flush;
static unsigned long zcache_aborted_preload;
static unsigned long zcache_aborted_shrink;
/*
* Ensure that memory allocation requests in zcache don't result
* in direct reclaim requests via the shrinker, which would cause
* an infinite loop. Maybe a GFP flag would be better?
*/
static DEFINE_SPINLOCK(zcache_direct_reclaim_lock);
/*
* for now, used named slabs so can easily track usage; later can
* either just use kmalloc, or perhaps add a slab-like allocator
* to more carefully manage total memory utilization
*/
static struct kmem_cache *zcache_objnode_cache;
static struct kmem_cache *zcache_obj_cache;
static atomic_t zcache_curr_obj_count = ATOMIC_INIT(0);
static unsigned long zcache_curr_obj_count_max;
static atomic_t zcache_curr_objnode_count = ATOMIC_INIT(0);
static unsigned long zcache_curr_objnode_count_max;
/*
* to avoid memory allocation recursion (e.g. due to direct reclaim), we
* preload all necessary data structures so the hostops callbacks never
* actually do a malloc
*/
struct zcache_preload {
void *page;
struct tmem_obj *obj;
int nr;
struct tmem_objnode *objnodes[OBJNODE_TREE_MAX_PATH];
};
static DEFINE_PER_CPU(struct zcache_preload, zcache_preloads) = { 0, };
static int zcache_do_preload(struct tmem_pool *pool)
{
struct zcache_preload *kp;
struct tmem_objnode *objnode;
struct tmem_obj *obj;
void *page;
int ret = -ENOMEM;
if (unlikely(zcache_objnode_cache == NULL))
goto out;
if (unlikely(zcache_obj_cache == NULL))
goto out;
if (!spin_trylock(&zcache_direct_reclaim_lock)) {
zcache_aborted_preload++;
goto out;
}
preempt_disable();
kp = &__get_cpu_var(zcache_preloads);
while (kp->nr < ARRAY_SIZE(kp->objnodes)) {
preempt_enable_no_resched();
objnode = kmem_cache_alloc(zcache_objnode_cache,
ZCACHE_GFP_MASK);
if (unlikely(objnode == NULL)) {
zcache_failed_alloc++;
goto unlock_out;
}
preempt_disable();
kp = &__get_cpu_var(zcache_preloads);
if (kp->nr < ARRAY_SIZE(kp->objnodes))
kp->objnodes[kp->nr++] = objnode;
else
kmem_cache_free(zcache_objnode_cache, objnode);
}
preempt_enable_no_resched();
obj = kmem_cache_alloc(zcache_obj_cache, ZCACHE_GFP_MASK);
if (unlikely(obj == NULL)) {
zcache_failed_alloc++;
goto unlock_out;
}
page = qcache_alloc();
if (unlikely(page == NULL)) {
zcache_failed_get_free_pages++;
kmem_cache_free(zcache_obj_cache, obj);
goto unlock_out;
}
preempt_disable();
kp = &__get_cpu_var(zcache_preloads);
if (kp->obj == NULL)
kp->obj = obj;
else
kmem_cache_free(zcache_obj_cache, obj);
if (kp->page == NULL)
kp->page = page;
else
qcache_free(page);
ret = 0;
unlock_out:
spin_unlock(&zcache_direct_reclaim_lock);
out:
return ret;
}
static void *zcache_get_free_page(void)
{
struct zcache_preload *kp;
void *page;
kp = &__get_cpu_var(zcache_preloads);
page = kp->page;
BUG_ON(page == NULL);
kp->page = NULL;
return page;
}
/*
* zcache implementation for tmem host ops
*/
static struct tmem_objnode *zcache_objnode_alloc(struct tmem_pool *pool)
{
struct tmem_objnode *objnode = NULL;
unsigned long count;
struct zcache_preload *kp;
kp = &__get_cpu_var(zcache_preloads);
if (kp->nr <= 0)
goto out;
objnode = kp->objnodes[kp->nr - 1];
BUG_ON(objnode == NULL);
kp->objnodes[kp->nr - 1] = NULL;
kp->nr--;
count = atomic_inc_return(&zcache_curr_objnode_count);
if (count > zcache_curr_objnode_count_max)
zcache_curr_objnode_count_max = count;
out:
return objnode;
}
static void zcache_objnode_free(struct tmem_objnode *objnode,
struct tmem_pool *pool)
{
atomic_dec(&zcache_curr_objnode_count);
BUG_ON(atomic_read(&zcache_curr_objnode_count) < 0);
kmem_cache_free(zcache_objnode_cache, objnode);
}
static struct tmem_obj *zcache_obj_alloc(struct tmem_pool *pool)
{
struct tmem_obj *obj = NULL;
unsigned long count;
struct zcache_preload *kp;
kp = &__get_cpu_var(zcache_preloads);
obj = kp->obj;
BUG_ON(obj == NULL);
kp->obj = NULL;
count = atomic_inc_return(&zcache_curr_obj_count);
if (count > zcache_curr_obj_count_max)
zcache_curr_obj_count_max = count;
return obj;
}
static void zcache_obj_free(struct tmem_obj *obj, struct tmem_pool *pool)
{
atomic_dec(&zcache_curr_obj_count);
BUG_ON(atomic_read(&zcache_curr_obj_count) < 0);
kmem_cache_free(zcache_obj_cache, obj);
}
static void zcache_flush_all_obj(void)
{
struct tmem_pool *pool;
int pool_id;
struct zcache_preload *kp;
kp = &__get_cpu_var(zcache_preloads);
for (pool_id = 0; pool_id < MAX_POOLS_PER_CLIENT; pool_id++) {
pool = zcache_get_pool_by_id(LOCAL_CLIENT, pool_id);
tmem_flush_pool(pool);
if (pool)
zcache_put_pool(pool);
}
if (kp->page) {
qcache_free(kp->page);
kp->page = NULL;
}
if (zcache_qc_used)
pr_warn("pages used not 0 after qcache flush all, is %ld\n",
zcache_qc_used);
}
/*
* When zcache is disabled ("frozen"), pools can be created and destroyed,
* but all puts (and thus all other operations that require memory allocation)
* must fail. If zcache is unfrozen, accepts puts, then frozen again,
* data consistency requires all puts while frozen to be converted into
* flushes.
*/
static bool zcache_freeze;
static void zcache_control(bool freeze)
{
zcache_freeze = freeze;
}
static struct tmem_hostops zcache_hostops = {
.obj_alloc = zcache_obj_alloc,
.obj_free = zcache_obj_free,
.objnode_alloc = zcache_objnode_alloc,
.objnode_free = zcache_objnode_free,
.flush_all_obj = zcache_flush_all_obj,
.control = zcache_control,
};
/*
* zcache implementations for PAM page descriptor ops
*/
static atomic_t zcache_curr_eph_pampd_count = ATOMIC_INIT(0);
static unsigned long zcache_curr_eph_pampd_count_max;
/* forward reference */
static int zcache_compress(struct page *from, void **out_va, size_t *out_len);
static void *zcache_pampd_create(char *data, size_t size, bool raw, int eph,
struct tmem_pool *pool, struct tmem_oid *oid,
uint32_t index)
{
void *pampd = NULL, *cdata;
size_t clen;
int ret;
unsigned long count;
struct page *page = (struct page *)(data);
struct zcache_client *cli = pool->client;
uint16_t client_id = get_client_id_from_client(cli);
ret = zcache_compress(page, &cdata, &clen);
if (ret == 0)
goto out;
if (clen == 0 || clen > zbud_max_buddy_size()) {
zcache_compress_poor++;
goto out;
}
pampd = (void *)zbud_create(client_id, pool->pool_id, oid,
index, page, cdata, clen);
if (pampd != NULL) {
count = atomic_inc_return(&zcache_curr_eph_pampd_count);
if (count > zcache_curr_eph_pampd_count_max)
zcache_curr_eph_pampd_count_max = count;
}
out:
return pampd;
}
/*
* fill the pageframe corresponding to the struct page with the data
* from the passed pampd
*/
static int zcache_pampd_get_data(char *data, size_t *bufsize, bool raw,
void *pampd, struct tmem_pool *pool,
struct tmem_oid *oid, uint32_t index)
{
BUG();
return 0;
}
/*
* fill the pageframe corresponding to the struct page with the data
* from the passed pampd
*/
static int zcache_pampd_get_data_and_free(char *data, size_t *bufsize, bool raw,
void *pampd, struct tmem_pool *pool,
struct tmem_oid *oid, uint32_t index)
{
int ret = 0;
zbud_decompress((struct page *)(data), pampd);
zbud_free_and_delist((struct zbud_hdr *)pampd);
atomic_dec(&zcache_curr_eph_pampd_count);
return ret;
}
/*
* free the pampd and remove it from any zcache lists
* pampd must no longer be pointed to from any tmem data structures!
*/
static void zcache_pampd_free(void *pampd, struct tmem_pool *pool,
struct tmem_oid *oid, uint32_t index)
{
zbud_free_and_delist((struct zbud_hdr *)pampd);
atomic_dec(&zcache_curr_eph_pampd_count);
BUG_ON(atomic_read(&zcache_curr_eph_pampd_count) < 0);
}
static void zcache_pampd_free_obj(struct tmem_pool *pool, struct tmem_obj *obj)
{
}
static void zcache_pampd_new_obj(struct tmem_obj *obj)
{
}
static int zcache_pampd_replace_in_obj(void *pampd, struct tmem_obj *obj)
{
return -1;
}
static bool zcache_pampd_is_remote(void *pampd)
{
return 0;
}
static struct tmem_pamops zcache_pamops = {
.create = zcache_pampd_create,
.get_data = zcache_pampd_get_data,
.get_data_and_free = zcache_pampd_get_data_and_free,
.free = zcache_pampd_free,
.free_obj = zcache_pampd_free_obj,
.new_obj = zcache_pampd_new_obj,
.replace_in_obj = zcache_pampd_replace_in_obj,
.is_remote = zcache_pampd_is_remote,
};
/*
* zcache compression/decompression and related per-cpu stuff
*/
#define LZO_WORKMEM_BYTES LZO1X_1_MEM_COMPRESS
#define LZO_DSTMEM_PAGE_ORDER 1
static DEFINE_PER_CPU(unsigned char *, zcache_workmem);
static DEFINE_PER_CPU(unsigned char *, zcache_dstmem);
static int zcache_compress(struct page *from, void **out_va, size_t *out_len)
{
int ret = 0;
unsigned char *dmem = __get_cpu_var(zcache_dstmem);
unsigned char *wmem = __get_cpu_var(zcache_workmem);
char *from_va;
BUG_ON(!irqs_disabled());
if (unlikely(dmem == NULL || wmem == NULL))
goto out; /* no buffer, so can't compress */
from_va = kmap_atomic(from);
mb();
ret = lzo1x_1_compress(from_va, PAGE_SIZE, dmem, out_len, wmem);
BUG_ON(ret != LZO_E_OK);
*out_va = dmem;
kunmap_atomic(from_va);
ret = 1;
out:
return ret;
}
#ifdef CONFIG_SYSFS
#define ZCACHE_SYSFS_RO(_name) \
static ssize_t zcache_##_name##_show(struct kobject *kobj, \
struct kobj_attribute *attr, char *buf) \
{ \
return sprintf(buf, "%lu\n", zcache_##_name); \
} \
static struct kobj_attribute zcache_##_name##_attr = { \
.attr = { .name = __stringify(_name), .mode = 0444 }, \
.show = zcache_##_name##_show, \
}
#define ZCACHE_SYSFS_RO_ATOMIC(_name) \
static ssize_t zcache_##_name##_show(struct kobject *kobj, \
struct kobj_attribute *attr, char *buf) \
{ \
return sprintf(buf, "%d\n", atomic_read(&zcache_##_name)); \
} \
static struct kobj_attribute zcache_##_name##_attr = { \
.attr = { .name = __stringify(_name), .mode = 0444 }, \
.show = zcache_##_name##_show, \
}
#define ZCACHE_SYSFS_RO_CUSTOM(_name, _func) \
static ssize_t zcache_##_name##_show(struct kobject *kobj, \
struct kobj_attribute *attr, char *buf) \
{ \
return _func(buf); \
} \
static struct kobj_attribute zcache_##_name##_attr = { \
.attr = { .name = __stringify(_name), .mode = 0444 }, \
.show = zcache_##_name##_show, \
}
ZCACHE_SYSFS_RO(curr_obj_count_max);
ZCACHE_SYSFS_RO(curr_objnode_count_max);
ZCACHE_SYSFS_RO(flush_total);
ZCACHE_SYSFS_RO(flush_found);
ZCACHE_SYSFS_RO(flobj_total);
ZCACHE_SYSFS_RO(flobj_found);
ZCACHE_SYSFS_RO(failed_eph_puts);
ZCACHE_SYSFS_RO(zbud_curr_zbytes);
ZCACHE_SYSFS_RO(zbud_cumul_zpages);
ZCACHE_SYSFS_RO(zbud_cumul_zbytes);
ZCACHE_SYSFS_RO(zbud_buddied_count);
ZCACHE_SYSFS_RO(failed_get_free_pages);
ZCACHE_SYSFS_RO(failed_alloc);
ZCACHE_SYSFS_RO(put_to_flush);
ZCACHE_SYSFS_RO(aborted_preload);
ZCACHE_SYSFS_RO(aborted_shrink);
ZCACHE_SYSFS_RO(compress_poor);
ZCACHE_SYSFS_RO(mean_compress_poor);
ZCACHE_SYSFS_RO(qc_allocated);
ZCACHE_SYSFS_RO(qc_freed);
ZCACHE_SYSFS_RO(qc_used);
ZCACHE_SYSFS_RO(qc_max_used);
ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_raw_pages);
ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_zpages);
ZCACHE_SYSFS_RO_ATOMIC(curr_obj_count);
ZCACHE_SYSFS_RO_ATOMIC(curr_objnode_count);
ZCACHE_SYSFS_RO_CUSTOM(zbud_unbuddied_list_counts,
zbud_show_unbuddied_list_counts);
ZCACHE_SYSFS_RO_CUSTOM(zbud_cumul_chunk_counts,
zbud_show_cumul_chunk_counts);
static struct attribute *qcache_attrs[] = {
&zcache_curr_obj_count_attr.attr,
&zcache_curr_obj_count_max_attr.attr,
&zcache_curr_objnode_count_attr.attr,
&zcache_curr_objnode_count_max_attr.attr,
&zcache_flush_total_attr.attr,
&zcache_flobj_total_attr.attr,
&zcache_flush_found_attr.attr,
&zcache_flobj_found_attr.attr,
&zcache_failed_eph_puts_attr.attr,
&zcache_compress_poor_attr.attr,
&zcache_mean_compress_poor_attr.attr,
&zcache_zbud_curr_raw_pages_attr.attr,
&zcache_zbud_curr_zpages_attr.attr,
&zcache_zbud_curr_zbytes_attr.attr,
&zcache_zbud_cumul_zpages_attr.attr,
&zcache_zbud_cumul_zbytes_attr.attr,
&zcache_zbud_buddied_count_attr.attr,
&zcache_failed_get_free_pages_attr.attr,
&zcache_failed_alloc_attr.attr,
&zcache_put_to_flush_attr.attr,
&zcache_aborted_preload_attr.attr,
&zcache_aborted_shrink_attr.attr,
&zcache_zbud_unbuddied_list_counts_attr.attr,
&zcache_zbud_cumul_chunk_counts_attr.attr,
&zcache_qc_allocated_attr.attr,
&zcache_qc_freed_attr.attr,
&zcache_qc_used_attr.attr,
&zcache_qc_max_used_attr.attr,
NULL,
};
static struct attribute_group qcache_attr_group = {
.attrs = qcache_attrs,
.name = "qcache",
};
#endif /* CONFIG_SYSFS */
/*
* zcache shims between cleancache ops and tmem
*/
static int zcache_put_page(int cli_id, int pool_id, struct tmem_oid *oidp,
uint32_t index, struct page *page)
{
struct tmem_pool *pool;
int ret = -1;
BUG_ON(!irqs_disabled());
pool = zcache_get_pool_by_id(cli_id, pool_id);
if (unlikely(pool == NULL))
goto out;
if (!zcache_freeze && zcache_do_preload(pool) == 0) {
/* preload does preempt_disable on success */
ret = tmem_put(pool, oidp, index, (char *)(page),
PAGE_SIZE, 0, is_ephemeral(pool));
if (ret < 0) {
zcache_failed_eph_puts++;
}
zcache_put_pool(pool);
preempt_enable_no_resched();
} else {
zcache_put_to_flush++;
if (atomic_read(&pool->obj_count) > 0)
/* the put fails whether the flush succeeds or not */
(void)tmem_flush_page(pool, oidp, index);
zcache_put_pool(pool);
}
out:
return ret;
}
static int zcache_get_page(int cli_id, int pool_id, struct tmem_oid *oidp,
uint32_t index, struct page *page)
{
struct tmem_pool *pool;
int ret = -1;
unsigned long flags;
size_t size = PAGE_SIZE;
local_irq_save(flags);
pool = zcache_get_pool_by_id(cli_id, pool_id);
if (likely(pool != NULL)) {
if (atomic_read(&pool->obj_count) > 0)
ret = tmem_get(pool, oidp, index, (char *)(page),
&size, 0, is_ephemeral(pool));
zcache_put_pool(pool);
}
local_irq_restore(flags);
return ret;
}
static int zcache_flush_page(int cli_id, int pool_id,
struct tmem_oid *oidp, uint32_t index)
{
struct tmem_pool *pool;
int ret = -1;
unsigned long flags;
local_irq_save(flags);
zcache_flush_total++;
pool = zcache_get_pool_by_id(cli_id, pool_id);
if (likely(pool != NULL)) {
if (atomic_read(&pool->obj_count) > 0)
ret = tmem_flush_page(pool, oidp, index);
zcache_put_pool(pool);
}
if (ret >= 0)
zcache_flush_found++;
local_irq_restore(flags);
return ret;
}
static int zcache_flush_object(int cli_id, int pool_id,
struct tmem_oid *oidp)
{
struct tmem_pool *pool;
int ret = -1;
unsigned long flags;
local_irq_save(flags);
zcache_flobj_total++;
pool = zcache_get_pool_by_id(cli_id, pool_id);
if (likely(pool != NULL)) {
if (atomic_read(&pool->obj_count) > 0)
ret = tmem_flush_object(pool, oidp);
zcache_put_pool(pool);
}
if (ret >= 0)
zcache_flobj_found++;
local_irq_restore(flags);
return ret;
}
static int zcache_destroy_pool(int cli_id, int pool_id)
{
struct tmem_pool *pool = NULL;
struct zcache_client *cli = NULL;
int ret = -1;
if (pool_id < 0)
goto out;
if (cli_id == LOCAL_CLIENT)
cli = &zcache_host;
else if ((unsigned int)cli_id < MAX_CLIENTS)
cli = &zcache_clients[cli_id];
if (cli == NULL)
goto out;
atomic_inc(&cli->refcount);
pool = cli->tmem_pools[pool_id];
if (pool == NULL)
goto out;
cli->tmem_pools[pool_id] = NULL;
/* wait for pool activity on other cpus to quiesce */
while (atomic_read(&pool->refcount) != 0)
;
atomic_dec(&cli->refcount);
local_bh_disable();
ret = tmem_destroy_pool(pool);
local_bh_enable();
kfree(pool);
pr_info("qcache: destroyed pool id=%d, cli_id=%d\n",
pool_id, cli_id);
out:
return ret;
}
static int zcache_new_pool(uint16_t cli_id, uint32_t flags)
{
int poolid = -1;
struct tmem_pool *pool;
struct zcache_client *cli = NULL;
if (cli_id == LOCAL_CLIENT)
cli = &zcache_host;
else if ((unsigned int)cli_id < MAX_CLIENTS)
cli = &zcache_clients[cli_id];
if (cli == NULL)
goto out;
atomic_inc(&cli->refcount);
pool = kmalloc(sizeof(struct tmem_pool), GFP_KERNEL);
if (pool == NULL) {
pr_info("qcache: pool creation failed: out of memory\n");
goto out;
}
for (poolid = 0; poolid < MAX_POOLS_PER_CLIENT; poolid++)
if (cli->tmem_pools[poolid] == NULL)
break;
if (poolid >= MAX_POOLS_PER_CLIENT) {
pr_info("qcache: pool creation failed: max exceeded\n");
kfree(pool);
poolid = -1;
goto out;
}
atomic_set(&pool->refcount, 0);
pool->client = cli;
pool->pool_id = poolid;
tmem_new_pool(pool, flags);
cli->tmem_pools[poolid] = pool;
pr_info("qcache: created %s tmem pool, id=%d, client=%d\n",
flags & TMEM_POOL_PERSIST ? "persistent" : "ephemeral",
poolid, cli_id);
out:
if (cli != NULL)
atomic_dec(&cli->refcount);
return poolid;
}
/**********
* Two kernel functionalities currently can be layered on top of tmem.
* These are "cleancache" which is used as a second-chance cache for clean
* page cache pages; and "frontswap" which is used for swap pages
* to avoid writes to disk. A generic "shim" is provided here for each
* to translate in-kernel semantics to zcache semantics.
*/
static void zcache_cleancache_put_page(int pool_id,
struct cleancache_filekey key,
pgoff_t index, struct page *page)
{
u32 ind = (u32) index;
struct tmem_oid oid = *(struct tmem_oid *)&key;
if (likely(ind == index))
(void)zcache_put_page(LOCAL_CLIENT, pool_id, &oid, index, page);
}
static int zcache_cleancache_get_page(int pool_id,
struct cleancache_filekey key,
pgoff_t index, struct page *page)
{
u32 ind = (u32) index;
struct tmem_oid oid = *(struct tmem_oid *)&key;
int ret = -1;
if (likely(ind == index))
ret = zcache_get_page(LOCAL_CLIENT, pool_id, &oid, index, page);
return ret;
}
static void zcache_cleancache_flush_page(int pool_id,
struct cleancache_filekey key,
pgoff_t index)
{
u32 ind = (u32) index;
struct tmem_oid oid = *(struct tmem_oid *)&key;
if (likely(ind == index))
(void)zcache_flush_page(LOCAL_CLIENT, pool_id, &oid, ind);
}
static void zcache_cleancache_flush_inode(int pool_id,
struct cleancache_filekey key)
{
struct tmem_oid oid = *(struct tmem_oid *)&key;
(void)zcache_flush_object(LOCAL_CLIENT, pool_id, &oid);
}
static void zcache_cleancache_flush_fs(int pool_id)
{
if (pool_id >= 0)
(void)zcache_destroy_pool(LOCAL_CLIENT, pool_id);
}
static int zcache_cleancache_init_fs(size_t pagesize)
{
BUG_ON(sizeof(struct cleancache_filekey) !=
sizeof(struct tmem_oid));
BUG_ON(pagesize != PAGE_SIZE);
return zcache_new_pool(LOCAL_CLIENT, 0);
}
static int zcache_cleancache_init_shared_fs(char *uuid, size_t pagesize)
{
/* shared pools are unsupported and map to private */
BUG_ON(sizeof(struct cleancache_filekey) !=
sizeof(struct tmem_oid));
BUG_ON(pagesize != PAGE_SIZE);
return zcache_new_pool(LOCAL_CLIENT, 0);
}
static struct cleancache_ops zcache_cleancache_ops = {
.put_page = zcache_cleancache_put_page,
.get_page = zcache_cleancache_get_page,
.invalidate_page = zcache_cleancache_flush_page,
.invalidate_inode = zcache_cleancache_flush_inode,
.invalidate_fs = zcache_cleancache_flush_fs,
.init_shared_fs = zcache_cleancache_init_shared_fs,
.init_fs = zcache_cleancache_init_fs
};
struct cleancache_ops zcache_cleancache_register_ops(void)
{
struct cleancache_ops old_ops =
cleancache_register_ops(&zcache_cleancache_ops);
return old_ops;
}
static int __init qcache_init(void)
{
int ret = 0;
struct qcache_info *qc = &qcache_info;
struct fmem_data *fdp;
int bitmap_size;
unsigned int cpu;
struct cleancache_ops old_ops;
#ifdef CONFIG_SYSFS
ret = sysfs_create_group(mm_kobj, &qcache_attr_group);
if (ret) {
pr_err("qcache: can't create sysfs\n");
goto out;
}
#endif /* CONFIG_SYSFS */
fdp = fmem_get_info();
qc->addr = fdp->virt;
qc->pages = fdp->size >> PAGE_SHIFT;
if (!qc->pages)
goto out;
tmem_register_hostops(&zcache_hostops);
tmem_register_pamops(&zcache_pamops);
for_each_online_cpu(cpu) {
per_cpu(zcache_dstmem, cpu) = (void *)__get_free_pages(
GFP_KERNEL | __GFP_REPEAT,
LZO_DSTMEM_PAGE_ORDER),
per_cpu(zcache_workmem, cpu) =
kzalloc(LZO1X_MEM_COMPRESS,
GFP_KERNEL | __GFP_REPEAT);
}
zcache_objnode_cache = kmem_cache_create("zcache_objnode",
sizeof(struct tmem_objnode), 0, 0, NULL);
zcache_obj_cache = kmem_cache_create("zcache_obj",
sizeof(struct tmem_obj), 0, 0, NULL);
ret = zcache_new_client(LOCAL_CLIENT);
if (ret) {
pr_err("qcache: can't create client\n");
goto out;
}
zbud_init();
old_ops = zcache_cleancache_register_ops();
pr_info("qcache: cleancache enabled using kernel "
"transcendent memory and compression buddies\n");
if (old_ops.init_fs != NULL)
pr_warning("qcache: cleancache_ops overridden");
bitmap_size = BITS_TO_LONGS(qc->pages) * sizeof(long);
qc->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
if (!qc->bitmap) {
pr_info("can't allocate qcache bitmap!\n");
ret = -ENOMEM;
goto out;
}
spin_lock_init(&qc->lock);
fmem_set_state(FMEM_T_STATE);
out:
return ret;
}
module_init(qcache_init)