| /* |
| * Aptina Sensor PLL Configuration |
| * |
| * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA |
| * 02110-1301 USA |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/gcd.h> |
| #include <linux/kernel.h> |
| #include <linux/lcm.h> |
| #include <linux/module.h> |
| |
| #include "aptina-pll.h" |
| |
| int aptina_pll_calculate(struct device *dev, |
| const struct aptina_pll_limits *limits, |
| struct aptina_pll *pll) |
| { |
| unsigned int mf_min; |
| unsigned int mf_max; |
| unsigned int p1_min; |
| unsigned int p1_max; |
| unsigned int p1; |
| unsigned int div; |
| |
| dev_dbg(dev, "PLL: ext clock %u pix clock %u\n", |
| pll->ext_clock, pll->pix_clock); |
| |
| if (pll->ext_clock < limits->ext_clock_min || |
| pll->ext_clock > limits->ext_clock_max) { |
| dev_err(dev, "pll: invalid external clock frequency.\n"); |
| return -EINVAL; |
| } |
| |
| if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) { |
| dev_err(dev, "pll: invalid pixel clock frequency.\n"); |
| return -EINVAL; |
| } |
| |
| /* Compute the multiplier M and combined N*P1 divisor. */ |
| div = gcd(pll->pix_clock, pll->ext_clock); |
| pll->m = pll->pix_clock / div; |
| div = pll->ext_clock / div; |
| |
| /* We now have the smallest M and N*P1 values that will result in the |
| * desired pixel clock frequency, but they might be out of the valid |
| * range. Compute the factor by which we should multiply them given the |
| * following constraints: |
| * |
| * - minimum/maximum multiplier |
| * - minimum/maximum multiplier output clock frequency assuming the |
| * minimum/maximum N value |
| * - minimum/maximum combined N*P1 divisor |
| */ |
| mf_min = DIV_ROUND_UP(limits->m_min, pll->m); |
| mf_min = max(mf_min, limits->out_clock_min / |
| (pll->ext_clock / limits->n_min * pll->m)); |
| mf_min = max(mf_min, limits->n_min * limits->p1_min / div); |
| mf_max = limits->m_max / pll->m; |
| mf_max = min(mf_max, limits->out_clock_max / |
| (pll->ext_clock / limits->n_max * pll->m)); |
| mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div)); |
| |
| dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max); |
| if (mf_min > mf_max) { |
| dev_err(dev, "pll: no valid combined N*P1 divisor.\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * We're looking for the highest acceptable P1 value for which a |
| * multiplier factor MF exists that fulfills the following conditions: |
| * |
| * 1. p1 is in the [p1_min, p1_max] range given by the limits and is |
| * even |
| * 2. mf is in the [mf_min, mf_max] range computed above |
| * 3. div * mf is a multiple of p1, in order to compute |
| * n = div * mf / p1 |
| * m = pll->m * mf |
| * 4. the internal clock frequency, given by ext_clock / n, is in the |
| * [int_clock_min, int_clock_max] range given by the limits |
| * 5. the output clock frequency, given by ext_clock / n * m, is in the |
| * [out_clock_min, out_clock_max] range given by the limits |
| * |
| * The first naive approach is to iterate over all p1 values acceptable |
| * according to (1) and all mf values acceptable according to (2), and |
| * stop at the first combination that fulfills (3), (4) and (5). This |
| * has a O(n^2) complexity. |
| * |
| * Instead of iterating over all mf values in the [mf_min, mf_max] range |
| * we can compute the mf increment between two acceptable values |
| * according to (3) with |
| * |
| * mf_inc = p1 / gcd(div, p1) (6) |
| * |
| * and round the minimum up to the nearest multiple of mf_inc. This will |
| * restrict the number of mf values to be checked. |
| * |
| * Furthermore, conditions (4) and (5) only restrict the range of |
| * acceptable p1 and mf values by modifying the minimum and maximum |
| * limits. (5) can be expressed as |
| * |
| * ext_clock / (div * mf / p1) * m * mf >= out_clock_min |
| * ext_clock / (div * mf / p1) * m * mf <= out_clock_max |
| * |
| * or |
| * |
| * p1 >= out_clock_min * div / (ext_clock * m) (7) |
| * p1 <= out_clock_max * div / (ext_clock * m) |
| * |
| * Similarly, (4) can be expressed as |
| * |
| * mf >= ext_clock * p1 / (int_clock_max * div) (8) |
| * mf <= ext_clock * p1 / (int_clock_min * div) |
| * |
| * We can thus iterate over the restricted p1 range defined by the |
| * combination of (1) and (7), and then compute the restricted mf range |
| * defined by the combination of (2), (6) and (8). If the resulting mf |
| * range is not empty, any value in the mf range is acceptable. We thus |
| * select the mf lwoer bound and the corresponding p1 value. |
| */ |
| if (limits->p1_min == 0) { |
| dev_err(dev, "pll: P1 minimum value must be >0.\n"); |
| return -EINVAL; |
| } |
| |
| p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div, |
| pll->ext_clock * pll->m)); |
| p1_max = min(limits->p1_max, limits->out_clock_max * div / |
| (pll->ext_clock * pll->m)); |
| |
| for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) { |
| unsigned int mf_inc = p1 / gcd(div, p1); |
| unsigned int mf_high; |
| unsigned int mf_low; |
| |
| mf_low = max(roundup(mf_min, mf_inc), |
| DIV_ROUND_UP(pll->ext_clock * p1, |
| limits->int_clock_max * div)); |
| mf_high = min(mf_max, pll->ext_clock * p1 / |
| (limits->int_clock_min * div)); |
| |
| if (mf_low > mf_high) |
| continue; |
| |
| pll->n = div * mf_low / p1; |
| pll->m *= mf_low; |
| pll->p1 = p1; |
| dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1); |
| return 0; |
| } |
| |
| dev_err(dev, "pll: no valid N and P1 divisors found.\n"); |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL_GPL(aptina_pll_calculate); |
| |
| MODULE_DESCRIPTION("Aptina PLL Helpers"); |
| MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>"); |
| MODULE_LICENSE("GPL v2"); |