| /******************************************************************************* |
| |
| Intel PRO/1000 Linux driver |
| Copyright(c) 1999 - 2008 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| /* ethtool support for e1000 */ |
| |
| #include <linux/netdevice.h> |
| #include <linux/ethtool.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| |
| #include "e1000.h" |
| |
| struct e1000_stats { |
| char stat_string[ETH_GSTRING_LEN]; |
| int sizeof_stat; |
| int stat_offset; |
| }; |
| |
| #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \ |
| offsetof(struct e1000_adapter, m) |
| static const struct e1000_stats e1000_gstrings_stats[] = { |
| { "rx_packets", E1000_STAT(stats.gprc) }, |
| { "tx_packets", E1000_STAT(stats.gptc) }, |
| { "rx_bytes", E1000_STAT(stats.gorc) }, |
| { "tx_bytes", E1000_STAT(stats.gotc) }, |
| { "rx_broadcast", E1000_STAT(stats.bprc) }, |
| { "tx_broadcast", E1000_STAT(stats.bptc) }, |
| { "rx_multicast", E1000_STAT(stats.mprc) }, |
| { "tx_multicast", E1000_STAT(stats.mptc) }, |
| { "rx_errors", E1000_STAT(net_stats.rx_errors) }, |
| { "tx_errors", E1000_STAT(net_stats.tx_errors) }, |
| { "tx_dropped", E1000_STAT(net_stats.tx_dropped) }, |
| { "multicast", E1000_STAT(stats.mprc) }, |
| { "collisions", E1000_STAT(stats.colc) }, |
| { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) }, |
| { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) }, |
| { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, |
| { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, |
| { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, |
| { "rx_missed_errors", E1000_STAT(stats.mpc) }, |
| { "tx_aborted_errors", E1000_STAT(stats.ecol) }, |
| { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, |
| { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) }, |
| { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) }, |
| { "tx_window_errors", E1000_STAT(stats.latecol) }, |
| { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, |
| { "tx_deferred_ok", E1000_STAT(stats.dc) }, |
| { "tx_single_coll_ok", E1000_STAT(stats.scc) }, |
| { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, |
| { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, |
| { "tx_restart_queue", E1000_STAT(restart_queue) }, |
| { "rx_long_length_errors", E1000_STAT(stats.roc) }, |
| { "rx_short_length_errors", E1000_STAT(stats.ruc) }, |
| { "rx_align_errors", E1000_STAT(stats.algnerrc) }, |
| { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, |
| { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, |
| { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, |
| { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, |
| { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, |
| { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, |
| { "rx_long_byte_count", E1000_STAT(stats.gorc) }, |
| { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, |
| { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, |
| { "rx_header_split", E1000_STAT(rx_hdr_split) }, |
| { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, |
| { "tx_smbus", E1000_STAT(stats.mgptc) }, |
| { "rx_smbus", E1000_STAT(stats.mgprc) }, |
| { "dropped_smbus", E1000_STAT(stats.mgpdc) }, |
| { "rx_dma_failed", E1000_STAT(rx_dma_failed) }, |
| { "tx_dma_failed", E1000_STAT(tx_dma_failed) }, |
| }; |
| |
| #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) |
| #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) |
| static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { |
| "Register test (offline)", "Eeprom test (offline)", |
| "Interrupt test (offline)", "Loopback test (offline)", |
| "Link test (on/offline)" |
| }; |
| #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) |
| |
| static int e1000_get_settings(struct net_device *netdev, |
| struct ethtool_cmd *ecmd) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 status; |
| |
| if (hw->phy.media_type == e1000_media_type_copper) { |
| |
| ecmd->supported = (SUPPORTED_10baseT_Half | |
| SUPPORTED_10baseT_Full | |
| SUPPORTED_100baseT_Half | |
| SUPPORTED_100baseT_Full | |
| SUPPORTED_1000baseT_Full | |
| SUPPORTED_Autoneg | |
| SUPPORTED_TP); |
| if (hw->phy.type == e1000_phy_ife) |
| ecmd->supported &= ~SUPPORTED_1000baseT_Full; |
| ecmd->advertising = ADVERTISED_TP; |
| |
| if (hw->mac.autoneg == 1) { |
| ecmd->advertising |= ADVERTISED_Autoneg; |
| /* the e1000 autoneg seems to match ethtool nicely */ |
| ecmd->advertising |= hw->phy.autoneg_advertised; |
| } |
| |
| ecmd->port = PORT_TP; |
| ecmd->phy_address = hw->phy.addr; |
| ecmd->transceiver = XCVR_INTERNAL; |
| |
| } else { |
| ecmd->supported = (SUPPORTED_1000baseT_Full | |
| SUPPORTED_FIBRE | |
| SUPPORTED_Autoneg); |
| |
| ecmd->advertising = (ADVERTISED_1000baseT_Full | |
| ADVERTISED_FIBRE | |
| ADVERTISED_Autoneg); |
| |
| ecmd->port = PORT_FIBRE; |
| ecmd->transceiver = XCVR_EXTERNAL; |
| } |
| |
| status = er32(STATUS); |
| if (status & E1000_STATUS_LU) { |
| if (status & E1000_STATUS_SPEED_1000) |
| ecmd->speed = 1000; |
| else if (status & E1000_STATUS_SPEED_100) |
| ecmd->speed = 100; |
| else |
| ecmd->speed = 10; |
| |
| if (status & E1000_STATUS_FD) |
| ecmd->duplex = DUPLEX_FULL; |
| else |
| ecmd->duplex = DUPLEX_HALF; |
| } else { |
| ecmd->speed = -1; |
| ecmd->duplex = -1; |
| } |
| |
| ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || |
| hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; |
| |
| /* MDI-X => 2; MDI =>1; Invalid =>0 */ |
| if ((hw->phy.media_type == e1000_media_type_copper) && |
| !hw->mac.get_link_status) |
| ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : |
| ETH_TP_MDI; |
| else |
| ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; |
| |
| return 0; |
| } |
| |
| static u32 e1000_get_link(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| return e1000_has_link(adapter); |
| } |
| |
| static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx) |
| { |
| struct e1000_mac_info *mac = &adapter->hw.mac; |
| |
| mac->autoneg = 0; |
| |
| /* Fiber NICs only allow 1000 gbps Full duplex */ |
| if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && |
| spddplx != (SPEED_1000 + DUPLEX_FULL)) { |
| e_err("Unsupported Speed/Duplex configuration\n"); |
| return -EINVAL; |
| } |
| |
| switch (spddplx) { |
| case SPEED_10 + DUPLEX_HALF: |
| mac->forced_speed_duplex = ADVERTISE_10_HALF; |
| break; |
| case SPEED_10 + DUPLEX_FULL: |
| mac->forced_speed_duplex = ADVERTISE_10_FULL; |
| break; |
| case SPEED_100 + DUPLEX_HALF: |
| mac->forced_speed_duplex = ADVERTISE_100_HALF; |
| break; |
| case SPEED_100 + DUPLEX_FULL: |
| mac->forced_speed_duplex = ADVERTISE_100_FULL; |
| break; |
| case SPEED_1000 + DUPLEX_FULL: |
| mac->autoneg = 1; |
| adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; |
| break; |
| case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
| default: |
| e_err("Unsupported Speed/Duplex configuration\n"); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int e1000_set_settings(struct net_device *netdev, |
| struct ethtool_cmd *ecmd) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* |
| * When SoL/IDER sessions are active, autoneg/speed/duplex |
| * cannot be changed |
| */ |
| if (e1000_check_reset_block(hw)) { |
| e_err("Cannot change link characteristics when SoL/IDER is " |
| "active.\n"); |
| return -EINVAL; |
| } |
| |
| while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
| msleep(1); |
| |
| if (ecmd->autoneg == AUTONEG_ENABLE) { |
| hw->mac.autoneg = 1; |
| if (hw->phy.media_type == e1000_media_type_fiber) |
| hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | |
| ADVERTISED_FIBRE | |
| ADVERTISED_Autoneg; |
| else |
| hw->phy.autoneg_advertised = ecmd->advertising | |
| ADVERTISED_TP | |
| ADVERTISED_Autoneg; |
| ecmd->advertising = hw->phy.autoneg_advertised; |
| if (adapter->fc_autoneg) |
| hw->fc.requested_mode = e1000_fc_default; |
| } else { |
| if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) { |
| clear_bit(__E1000_RESETTING, &adapter->state); |
| return -EINVAL; |
| } |
| } |
| |
| /* reset the link */ |
| |
| if (netif_running(adapter->netdev)) { |
| e1000e_down(adapter); |
| e1000e_up(adapter); |
| } else { |
| e1000e_reset(adapter); |
| } |
| |
| clear_bit(__E1000_RESETTING, &adapter->state); |
| return 0; |
| } |
| |
| static void e1000_get_pauseparam(struct net_device *netdev, |
| struct ethtool_pauseparam *pause) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| pause->autoneg = |
| (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); |
| |
| if (hw->fc.current_mode == e1000_fc_rx_pause) { |
| pause->rx_pause = 1; |
| } else if (hw->fc.current_mode == e1000_fc_tx_pause) { |
| pause->tx_pause = 1; |
| } else if (hw->fc.current_mode == e1000_fc_full) { |
| pause->rx_pause = 1; |
| pause->tx_pause = 1; |
| } |
| } |
| |
| static int e1000_set_pauseparam(struct net_device *netdev, |
| struct ethtool_pauseparam *pause) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| int retval = 0; |
| |
| adapter->fc_autoneg = pause->autoneg; |
| |
| while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
| msleep(1); |
| |
| if (adapter->fc_autoneg == AUTONEG_ENABLE) { |
| hw->fc.requested_mode = e1000_fc_default; |
| if (netif_running(adapter->netdev)) { |
| e1000e_down(adapter); |
| e1000e_up(adapter); |
| } else { |
| e1000e_reset(adapter); |
| } |
| } else { |
| if (pause->rx_pause && pause->tx_pause) |
| hw->fc.requested_mode = e1000_fc_full; |
| else if (pause->rx_pause && !pause->tx_pause) |
| hw->fc.requested_mode = e1000_fc_rx_pause; |
| else if (!pause->rx_pause && pause->tx_pause) |
| hw->fc.requested_mode = e1000_fc_tx_pause; |
| else if (!pause->rx_pause && !pause->tx_pause) |
| hw->fc.requested_mode = e1000_fc_none; |
| |
| hw->fc.current_mode = hw->fc.requested_mode; |
| |
| if (hw->phy.media_type == e1000_media_type_fiber) { |
| retval = hw->mac.ops.setup_link(hw); |
| /* implicit goto out */ |
| } else { |
| retval = e1000e_force_mac_fc(hw); |
| if (retval) |
| goto out; |
| e1000e_set_fc_watermarks(hw); |
| } |
| } |
| |
| out: |
| clear_bit(__E1000_RESETTING, &adapter->state); |
| return retval; |
| } |
| |
| static u32 e1000_get_rx_csum(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| return (adapter->flags & FLAG_RX_CSUM_ENABLED); |
| } |
| |
| static int e1000_set_rx_csum(struct net_device *netdev, u32 data) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| if (data) |
| adapter->flags |= FLAG_RX_CSUM_ENABLED; |
| else |
| adapter->flags &= ~FLAG_RX_CSUM_ENABLED; |
| |
| if (netif_running(netdev)) |
| e1000e_reinit_locked(adapter); |
| else |
| e1000e_reset(adapter); |
| return 0; |
| } |
| |
| static u32 e1000_get_tx_csum(struct net_device *netdev) |
| { |
| return ((netdev->features & NETIF_F_HW_CSUM) != 0); |
| } |
| |
| static int e1000_set_tx_csum(struct net_device *netdev, u32 data) |
| { |
| if (data) |
| netdev->features |= NETIF_F_HW_CSUM; |
| else |
| netdev->features &= ~NETIF_F_HW_CSUM; |
| |
| return 0; |
| } |
| |
| static int e1000_set_tso(struct net_device *netdev, u32 data) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| if (data) { |
| netdev->features |= NETIF_F_TSO; |
| netdev->features |= NETIF_F_TSO6; |
| } else { |
| netdev->features &= ~NETIF_F_TSO; |
| netdev->features &= ~NETIF_F_TSO6; |
| } |
| |
| e_info("TSO is %s\n", data ? "Enabled" : "Disabled"); |
| adapter->flags |= FLAG_TSO_FORCE; |
| return 0; |
| } |
| |
| static u32 e1000_get_msglevel(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| return adapter->msg_enable; |
| } |
| |
| static void e1000_set_msglevel(struct net_device *netdev, u32 data) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| adapter->msg_enable = data; |
| } |
| |
| static int e1000_get_regs_len(struct net_device *netdev) |
| { |
| #define E1000_REGS_LEN 32 /* overestimate */ |
| return E1000_REGS_LEN * sizeof(u32); |
| } |
| |
| static void e1000_get_regs(struct net_device *netdev, |
| struct ethtool_regs *regs, void *p) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 *regs_buff = p; |
| u16 phy_data; |
| u8 revision_id; |
| |
| memset(p, 0, E1000_REGS_LEN * sizeof(u32)); |
| |
| pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id); |
| |
| regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device; |
| |
| regs_buff[0] = er32(CTRL); |
| regs_buff[1] = er32(STATUS); |
| |
| regs_buff[2] = er32(RCTL); |
| regs_buff[3] = er32(RDLEN); |
| regs_buff[4] = er32(RDH); |
| regs_buff[5] = er32(RDT); |
| regs_buff[6] = er32(RDTR); |
| |
| regs_buff[7] = er32(TCTL); |
| regs_buff[8] = er32(TDLEN); |
| regs_buff[9] = er32(TDH); |
| regs_buff[10] = er32(TDT); |
| regs_buff[11] = er32(TIDV); |
| |
| regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ |
| |
| /* ethtool doesn't use anything past this point, so all this |
| * code is likely legacy junk for apps that may or may not |
| * exist */ |
| if (hw->phy.type == e1000_phy_m88) { |
| e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| regs_buff[13] = (u32)phy_data; /* cable length */ |
| regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ |
| regs_buff[18] = regs_buff[13]; /* cable polarity */ |
| regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| regs_buff[20] = regs_buff[17]; /* polarity correction */ |
| /* phy receive errors */ |
| regs_buff[22] = adapter->phy_stats.receive_errors; |
| regs_buff[23] = regs_buff[13]; /* mdix mode */ |
| } |
| regs_buff[21] = 0; /* was idle_errors */ |
| e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); |
| regs_buff[24] = (u32)phy_data; /* phy local receiver status */ |
| regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ |
| } |
| |
| static int e1000_get_eeprom_len(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| return adapter->hw.nvm.word_size * 2; |
| } |
| |
| static int e1000_get_eeprom(struct net_device *netdev, |
| struct ethtool_eeprom *eeprom, u8 *bytes) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u16 *eeprom_buff; |
| int first_word; |
| int last_word; |
| int ret_val = 0; |
| u16 i; |
| |
| if (eeprom->len == 0) |
| return -EINVAL; |
| |
| eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); |
| |
| first_word = eeprom->offset >> 1; |
| last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
| |
| eeprom_buff = kmalloc(sizeof(u16) * |
| (last_word - first_word + 1), GFP_KERNEL); |
| if (!eeprom_buff) |
| return -ENOMEM; |
| |
| if (hw->nvm.type == e1000_nvm_eeprom_spi) { |
| ret_val = e1000_read_nvm(hw, first_word, |
| last_word - first_word + 1, |
| eeprom_buff); |
| } else { |
| for (i = 0; i < last_word - first_word + 1; i++) { |
| ret_val = e1000_read_nvm(hw, first_word + i, 1, |
| &eeprom_buff[i]); |
| if (ret_val) |
| break; |
| } |
| } |
| |
| if (ret_val) { |
| /* a read error occurred, throw away the result */ |
| memset(eeprom_buff, 0xff, sizeof(eeprom_buff)); |
| } else { |
| /* Device's eeprom is always little-endian, word addressable */ |
| for (i = 0; i < last_word - first_word + 1; i++) |
| le16_to_cpus(&eeprom_buff[i]); |
| } |
| |
| memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); |
| kfree(eeprom_buff); |
| |
| return ret_val; |
| } |
| |
| static int e1000_set_eeprom(struct net_device *netdev, |
| struct ethtool_eeprom *eeprom, u8 *bytes) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u16 *eeprom_buff; |
| void *ptr; |
| int max_len; |
| int first_word; |
| int last_word; |
| int ret_val = 0; |
| u16 i; |
| |
| if (eeprom->len == 0) |
| return -EOPNOTSUPP; |
| |
| if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16))) |
| return -EFAULT; |
| |
| if (adapter->flags & FLAG_READ_ONLY_NVM) |
| return -EINVAL; |
| |
| max_len = hw->nvm.word_size * 2; |
| |
| first_word = eeprom->offset >> 1; |
| last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
| eeprom_buff = kmalloc(max_len, GFP_KERNEL); |
| if (!eeprom_buff) |
| return -ENOMEM; |
| |
| ptr = (void *)eeprom_buff; |
| |
| if (eeprom->offset & 1) { |
| /* need read/modify/write of first changed EEPROM word */ |
| /* only the second byte of the word is being modified */ |
| ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); |
| ptr++; |
| } |
| if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) |
| /* need read/modify/write of last changed EEPROM word */ |
| /* only the first byte of the word is being modified */ |
| ret_val = e1000_read_nvm(hw, last_word, 1, |
| &eeprom_buff[last_word - first_word]); |
| |
| if (ret_val) |
| goto out; |
| |
| /* Device's eeprom is always little-endian, word addressable */ |
| for (i = 0; i < last_word - first_word + 1; i++) |
| le16_to_cpus(&eeprom_buff[i]); |
| |
| memcpy(ptr, bytes, eeprom->len); |
| |
| for (i = 0; i < last_word - first_word + 1; i++) |
| eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); |
| |
| ret_val = e1000_write_nvm(hw, first_word, |
| last_word - first_word + 1, eeprom_buff); |
| |
| if (ret_val) |
| goto out; |
| |
| /* |
| * Update the checksum over the first part of the EEPROM if needed |
| * and flush shadow RAM for applicable controllers |
| */ |
| if ((first_word <= NVM_CHECKSUM_REG) || |
| (hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82573)) |
| ret_val = e1000e_update_nvm_checksum(hw); |
| |
| out: |
| kfree(eeprom_buff); |
| return ret_val; |
| } |
| |
| static void e1000_get_drvinfo(struct net_device *netdev, |
| struct ethtool_drvinfo *drvinfo) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| char firmware_version[32]; |
| |
| strncpy(drvinfo->driver, e1000e_driver_name, 32); |
| strncpy(drvinfo->version, e1000e_driver_version, 32); |
| |
| /* |
| * EEPROM image version # is reported as firmware version # for |
| * PCI-E controllers |
| */ |
| sprintf(firmware_version, "%d.%d-%d", |
| (adapter->eeprom_vers & 0xF000) >> 12, |
| (adapter->eeprom_vers & 0x0FF0) >> 4, |
| (adapter->eeprom_vers & 0x000F)); |
| |
| strncpy(drvinfo->fw_version, firmware_version, 32); |
| strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); |
| drvinfo->regdump_len = e1000_get_regs_len(netdev); |
| drvinfo->eedump_len = e1000_get_eeprom_len(netdev); |
| } |
| |
| static void e1000_get_ringparam(struct net_device *netdev, |
| struct ethtool_ringparam *ring) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| |
| ring->rx_max_pending = E1000_MAX_RXD; |
| ring->tx_max_pending = E1000_MAX_TXD; |
| ring->rx_mini_max_pending = 0; |
| ring->rx_jumbo_max_pending = 0; |
| ring->rx_pending = rx_ring->count; |
| ring->tx_pending = tx_ring->count; |
| ring->rx_mini_pending = 0; |
| ring->rx_jumbo_pending = 0; |
| } |
| |
| static int e1000_set_ringparam(struct net_device *netdev, |
| struct ethtool_ringparam *ring) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_ring *tx_ring, *tx_old; |
| struct e1000_ring *rx_ring, *rx_old; |
| int err; |
| |
| if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
| return -EINVAL; |
| |
| while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
| msleep(1); |
| |
| if (netif_running(adapter->netdev)) |
| e1000e_down(adapter); |
| |
| tx_old = adapter->tx_ring; |
| rx_old = adapter->rx_ring; |
| |
| err = -ENOMEM; |
| tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); |
| if (!tx_ring) |
| goto err_alloc_tx; |
| /* |
| * use a memcpy to save any previously configured |
| * items like napi structs from having to be |
| * reinitialized |
| */ |
| memcpy(tx_ring, tx_old, sizeof(struct e1000_ring)); |
| |
| rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); |
| if (!rx_ring) |
| goto err_alloc_rx; |
| memcpy(rx_ring, rx_old, sizeof(struct e1000_ring)); |
| |
| adapter->tx_ring = tx_ring; |
| adapter->rx_ring = rx_ring; |
| |
| rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD); |
| rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD)); |
| rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE); |
| |
| tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD); |
| tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD)); |
| tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE); |
| |
| if (netif_running(adapter->netdev)) { |
| /* Try to get new resources before deleting old */ |
| err = e1000e_setup_rx_resources(adapter); |
| if (err) |
| goto err_setup_rx; |
| err = e1000e_setup_tx_resources(adapter); |
| if (err) |
| goto err_setup_tx; |
| |
| /* |
| * restore the old in order to free it, |
| * then add in the new |
| */ |
| adapter->rx_ring = rx_old; |
| adapter->tx_ring = tx_old; |
| e1000e_free_rx_resources(adapter); |
| e1000e_free_tx_resources(adapter); |
| kfree(tx_old); |
| kfree(rx_old); |
| adapter->rx_ring = rx_ring; |
| adapter->tx_ring = tx_ring; |
| err = e1000e_up(adapter); |
| if (err) |
| goto err_setup; |
| } |
| |
| clear_bit(__E1000_RESETTING, &adapter->state); |
| return 0; |
| err_setup_tx: |
| e1000e_free_rx_resources(adapter); |
| err_setup_rx: |
| adapter->rx_ring = rx_old; |
| adapter->tx_ring = tx_old; |
| kfree(rx_ring); |
| err_alloc_rx: |
| kfree(tx_ring); |
| err_alloc_tx: |
| e1000e_up(adapter); |
| err_setup: |
| clear_bit(__E1000_RESETTING, &adapter->state); |
| return err; |
| } |
| |
| static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, |
| int reg, int offset, u32 mask, u32 write) |
| { |
| u32 pat, val; |
| static const u32 test[] = |
| {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; |
| for (pat = 0; pat < ARRAY_SIZE(test); pat++) { |
| E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, |
| (test[pat] & write)); |
| val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); |
| if (val != (test[pat] & write & mask)) { |
| e_err("pattern test reg %04X failed: got 0x%08X " |
| "expected 0x%08X\n", reg + offset, val, |
| (test[pat] & write & mask)); |
| *data = reg; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, |
| int reg, u32 mask, u32 write) |
| { |
| u32 val; |
| __ew32(&adapter->hw, reg, write & mask); |
| val = __er32(&adapter->hw, reg); |
| if ((write & mask) != (val & mask)) { |
| e_err("set/check reg %04X test failed: got 0x%08X " |
| "expected 0x%08X\n", reg, (val & mask), (write & mask)); |
| *data = reg; |
| return 1; |
| } |
| return 0; |
| } |
| #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ |
| do { \ |
| if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ |
| return 1; \ |
| } while (0) |
| #define REG_PATTERN_TEST(reg, mask, write) \ |
| REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) |
| |
| #define REG_SET_AND_CHECK(reg, mask, write) \ |
| do { \ |
| if (reg_set_and_check(adapter, data, reg, mask, write)) \ |
| return 1; \ |
| } while (0) |
| |
| static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_mac_info *mac = &adapter->hw.mac; |
| u32 value; |
| u32 before; |
| u32 after; |
| u32 i; |
| u32 toggle; |
| u32 mask; |
| |
| /* |
| * The status register is Read Only, so a write should fail. |
| * Some bits that get toggled are ignored. |
| */ |
| switch (mac->type) { |
| /* there are several bits on newer hardware that are r/w */ |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_80003es2lan: |
| toggle = 0x7FFFF3FF; |
| break; |
| default: |
| toggle = 0x7FFFF033; |
| break; |
| } |
| |
| before = er32(STATUS); |
| value = (er32(STATUS) & toggle); |
| ew32(STATUS, toggle); |
| after = er32(STATUS) & toggle; |
| if (value != after) { |
| e_err("failed STATUS register test got: 0x%08X expected: " |
| "0x%08X\n", after, value); |
| *data = 1; |
| return 1; |
| } |
| /* restore previous status */ |
| ew32(STATUS, before); |
| |
| if (!(adapter->flags & FLAG_IS_ICH)) { |
| REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); |
| REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); |
| REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); |
| REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); |
| } |
| |
| REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); |
| REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); |
| REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF); |
| REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF); |
| REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF); |
| REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); |
| REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); |
| REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); |
| REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); |
| REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF); |
| |
| REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); |
| |
| before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); |
| REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); |
| REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); |
| |
| REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); |
| REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); |
| if (!(adapter->flags & FLAG_IS_ICH)) |
| REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); |
| REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); |
| REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); |
| mask = 0x8003FFFF; |
| switch (mac->type) { |
| case e1000_ich10lan: |
| case e1000_pchlan: |
| mask |= (1 << 18); |
| break; |
| default: |
| break; |
| } |
| for (i = 0; i < mac->rar_entry_count; i++) |
| REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), |
| mask, 0xFFFFFFFF); |
| |
| for (i = 0; i < mac->mta_reg_count; i++) |
| REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); |
| |
| *data = 0; |
| return 0; |
| } |
| |
| static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) |
| { |
| u16 temp; |
| u16 checksum = 0; |
| u16 i; |
| |
| *data = 0; |
| /* Read and add up the contents of the EEPROM */ |
| for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { |
| if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { |
| *data = 1; |
| return *data; |
| } |
| checksum += temp; |
| } |
| |
| /* If Checksum is not Correct return error else test passed */ |
| if ((checksum != (u16) NVM_SUM) && !(*data)) |
| *data = 2; |
| |
| return *data; |
| } |
| |
| static irqreturn_t e1000_test_intr(int irq, void *data) |
| { |
| struct net_device *netdev = (struct net_device *) data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| adapter->test_icr |= er32(ICR); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 mask; |
| u32 shared_int = 1; |
| u32 irq = adapter->pdev->irq; |
| int i; |
| int ret_val = 0; |
| int int_mode = E1000E_INT_MODE_LEGACY; |
| |
| *data = 0; |
| |
| /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ |
| if (adapter->int_mode == E1000E_INT_MODE_MSIX) { |
| int_mode = adapter->int_mode; |
| e1000e_reset_interrupt_capability(adapter); |
| adapter->int_mode = E1000E_INT_MODE_LEGACY; |
| e1000e_set_interrupt_capability(adapter); |
| } |
| /* Hook up test interrupt handler just for this test */ |
| if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, |
| netdev)) { |
| shared_int = 0; |
| } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED, |
| netdev->name, netdev)) { |
| *data = 1; |
| ret_val = -1; |
| goto out; |
| } |
| e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); |
| |
| /* Disable all the interrupts */ |
| ew32(IMC, 0xFFFFFFFF); |
| msleep(10); |
| |
| /* Test each interrupt */ |
| for (i = 0; i < 10; i++) { |
| /* Interrupt to test */ |
| mask = 1 << i; |
| |
| if (adapter->flags & FLAG_IS_ICH) { |
| switch (mask) { |
| case E1000_ICR_RXSEQ: |
| continue; |
| case 0x00000100: |
| if (adapter->hw.mac.type == e1000_ich8lan || |
| adapter->hw.mac.type == e1000_ich9lan) |
| continue; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (!shared_int) { |
| /* |
| * Disable the interrupt to be reported in |
| * the cause register and then force the same |
| * interrupt and see if one gets posted. If |
| * an interrupt was posted to the bus, the |
| * test failed. |
| */ |
| adapter->test_icr = 0; |
| ew32(IMC, mask); |
| ew32(ICS, mask); |
| msleep(10); |
| |
| if (adapter->test_icr & mask) { |
| *data = 3; |
| break; |
| } |
| } |
| |
| /* |
| * Enable the interrupt to be reported in |
| * the cause register and then force the same |
| * interrupt and see if one gets posted. If |
| * an interrupt was not posted to the bus, the |
| * test failed. |
| */ |
| adapter->test_icr = 0; |
| ew32(IMS, mask); |
| ew32(ICS, mask); |
| msleep(10); |
| |
| if (!(adapter->test_icr & mask)) { |
| *data = 4; |
| break; |
| } |
| |
| if (!shared_int) { |
| /* |
| * Disable the other interrupts to be reported in |
| * the cause register and then force the other |
| * interrupts and see if any get posted. If |
| * an interrupt was posted to the bus, the |
| * test failed. |
| */ |
| adapter->test_icr = 0; |
| ew32(IMC, ~mask & 0x00007FFF); |
| ew32(ICS, ~mask & 0x00007FFF); |
| msleep(10); |
| |
| if (adapter->test_icr) { |
| *data = 5; |
| break; |
| } |
| } |
| } |
| |
| /* Disable all the interrupts */ |
| ew32(IMC, 0xFFFFFFFF); |
| msleep(10); |
| |
| /* Unhook test interrupt handler */ |
| free_irq(irq, netdev); |
| |
| out: |
| if (int_mode == E1000E_INT_MODE_MSIX) { |
| e1000e_reset_interrupt_capability(adapter); |
| adapter->int_mode = int_mode; |
| e1000e_set_interrupt_capability(adapter); |
| } |
| |
| return ret_val; |
| } |
| |
| static void e1000_free_desc_rings(struct e1000_adapter *adapter) |
| { |
| struct e1000_ring *tx_ring = &adapter->test_tx_ring; |
| struct e1000_ring *rx_ring = &adapter->test_rx_ring; |
| struct pci_dev *pdev = adapter->pdev; |
| int i; |
| |
| if (tx_ring->desc && tx_ring->buffer_info) { |
| for (i = 0; i < tx_ring->count; i++) { |
| if (tx_ring->buffer_info[i].dma) |
| pci_unmap_single(pdev, |
| tx_ring->buffer_info[i].dma, |
| tx_ring->buffer_info[i].length, |
| PCI_DMA_TODEVICE); |
| if (tx_ring->buffer_info[i].skb) |
| dev_kfree_skb(tx_ring->buffer_info[i].skb); |
| } |
| } |
| |
| if (rx_ring->desc && rx_ring->buffer_info) { |
| for (i = 0; i < rx_ring->count; i++) { |
| if (rx_ring->buffer_info[i].dma) |
| pci_unmap_single(pdev, |
| rx_ring->buffer_info[i].dma, |
| 2048, PCI_DMA_FROMDEVICE); |
| if (rx_ring->buffer_info[i].skb) |
| dev_kfree_skb(rx_ring->buffer_info[i].skb); |
| } |
| } |
| |
| if (tx_ring->desc) { |
| dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, |
| tx_ring->dma); |
| tx_ring->desc = NULL; |
| } |
| if (rx_ring->desc) { |
| dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
| rx_ring->dma); |
| rx_ring->desc = NULL; |
| } |
| |
| kfree(tx_ring->buffer_info); |
| tx_ring->buffer_info = NULL; |
| kfree(rx_ring->buffer_info); |
| rx_ring->buffer_info = NULL; |
| } |
| |
| static int e1000_setup_desc_rings(struct e1000_adapter *adapter) |
| { |
| struct e1000_ring *tx_ring = &adapter->test_tx_ring; |
| struct e1000_ring *rx_ring = &adapter->test_rx_ring; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl; |
| int i; |
| int ret_val; |
| |
| /* Setup Tx descriptor ring and Tx buffers */ |
| |
| if (!tx_ring->count) |
| tx_ring->count = E1000_DEFAULT_TXD; |
| |
| tx_ring->buffer_info = kcalloc(tx_ring->count, |
| sizeof(struct e1000_buffer), |
| GFP_KERNEL); |
| if (!(tx_ring->buffer_info)) { |
| ret_val = 1; |
| goto err_nomem; |
| } |
| |
| tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); |
| tx_ring->size = ALIGN(tx_ring->size, 4096); |
| tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, |
| &tx_ring->dma, GFP_KERNEL); |
| if (!tx_ring->desc) { |
| ret_val = 2; |
| goto err_nomem; |
| } |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| |
| ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); |
| ew32(TDBAH, ((u64) tx_ring->dma >> 32)); |
| ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc)); |
| ew32(TDH, 0); |
| ew32(TDT, 0); |
| ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | |
| E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | |
| E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); |
| |
| for (i = 0; i < tx_ring->count; i++) { |
| struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); |
| struct sk_buff *skb; |
| unsigned int skb_size = 1024; |
| |
| skb = alloc_skb(skb_size, GFP_KERNEL); |
| if (!skb) { |
| ret_val = 3; |
| goto err_nomem; |
| } |
| skb_put(skb, skb_size); |
| tx_ring->buffer_info[i].skb = skb; |
| tx_ring->buffer_info[i].length = skb->len; |
| tx_ring->buffer_info[i].dma = |
| pci_map_single(pdev, skb->data, skb->len, |
| PCI_DMA_TODEVICE); |
| if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) { |
| ret_val = 4; |
| goto err_nomem; |
| } |
| tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); |
| tx_desc->lower.data = cpu_to_le32(skb->len); |
| tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | |
| E1000_TXD_CMD_IFCS | |
| E1000_TXD_CMD_RS); |
| tx_desc->upper.data = 0; |
| } |
| |
| /* Setup Rx descriptor ring and Rx buffers */ |
| |
| if (!rx_ring->count) |
| rx_ring->count = E1000_DEFAULT_RXD; |
| |
| rx_ring->buffer_info = kcalloc(rx_ring->count, |
| sizeof(struct e1000_buffer), |
| GFP_KERNEL); |
| if (!(rx_ring->buffer_info)) { |
| ret_val = 5; |
| goto err_nomem; |
| } |
| |
| rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc); |
| rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, |
| &rx_ring->dma, GFP_KERNEL); |
| if (!rx_ring->desc) { |
| ret_val = 6; |
| goto err_nomem; |
| } |
| rx_ring->next_to_use = 0; |
| rx_ring->next_to_clean = 0; |
| |
| rctl = er32(RCTL); |
| ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF)); |
| ew32(RDBAH, ((u64) rx_ring->dma >> 32)); |
| ew32(RDLEN, rx_ring->size); |
| ew32(RDH, 0); |
| ew32(RDT, 0); |
| rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | |
| E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | |
| E1000_RCTL_SBP | E1000_RCTL_SECRC | |
| E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
| (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); |
| ew32(RCTL, rctl); |
| |
| for (i = 0; i < rx_ring->count; i++) { |
| struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); |
| struct sk_buff *skb; |
| |
| skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); |
| if (!skb) { |
| ret_val = 7; |
| goto err_nomem; |
| } |
| skb_reserve(skb, NET_IP_ALIGN); |
| rx_ring->buffer_info[i].skb = skb; |
| rx_ring->buffer_info[i].dma = |
| pci_map_single(pdev, skb->data, 2048, |
| PCI_DMA_FROMDEVICE); |
| if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) { |
| ret_val = 8; |
| goto err_nomem; |
| } |
| rx_desc->buffer_addr = |
| cpu_to_le64(rx_ring->buffer_info[i].dma); |
| memset(skb->data, 0x00, skb->len); |
| } |
| |
| return 0; |
| |
| err_nomem: |
| e1000_free_desc_rings(adapter); |
| return ret_val; |
| } |
| |
| static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) |
| { |
| /* Write out to PHY registers 29 and 30 to disable the Receiver. */ |
| e1e_wphy(&adapter->hw, 29, 0x001F); |
| e1e_wphy(&adapter->hw, 30, 0x8FFC); |
| e1e_wphy(&adapter->hw, 29, 0x001A); |
| e1e_wphy(&adapter->hw, 30, 0x8FF0); |
| } |
| |
| static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl_reg = 0; |
| u32 stat_reg = 0; |
| u16 phy_reg = 0; |
| |
| hw->mac.autoneg = 0; |
| |
| if (hw->phy.type == e1000_phy_m88) { |
| /* Auto-MDI/MDIX Off */ |
| e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); |
| /* reset to update Auto-MDI/MDIX */ |
| e1e_wphy(hw, PHY_CONTROL, 0x9140); |
| /* autoneg off */ |
| e1e_wphy(hw, PHY_CONTROL, 0x8140); |
| } else if (hw->phy.type == e1000_phy_gg82563) |
| e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); |
| |
| ctrl_reg = er32(CTRL); |
| |
| switch (hw->phy.type) { |
| case e1000_phy_ife: |
| /* force 100, set loopback */ |
| e1e_wphy(hw, PHY_CONTROL, 0x6100); |
| |
| /* Now set up the MAC to the same speed/duplex as the PHY. */ |
| ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ |
| ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
| E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
| E1000_CTRL_SPD_100 |/* Force Speed to 100 */ |
| E1000_CTRL_FD); /* Force Duplex to FULL */ |
| break; |
| case e1000_phy_bm: |
| /* Set Default MAC Interface speed to 1GB */ |
| e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); |
| phy_reg &= ~0x0007; |
| phy_reg |= 0x006; |
| e1e_wphy(hw, PHY_REG(2, 21), phy_reg); |
| /* Assert SW reset for above settings to take effect */ |
| e1000e_commit_phy(hw); |
| mdelay(1); |
| /* Force Full Duplex */ |
| e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); |
| e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); |
| /* Set Link Up (in force link) */ |
| e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); |
| e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); |
| /* Force Link */ |
| e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); |
| e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); |
| /* Set Early Link Enable */ |
| e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); |
| e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); |
| /* fall through */ |
| default: |
| /* force 1000, set loopback */ |
| e1e_wphy(hw, PHY_CONTROL, 0x4140); |
| mdelay(250); |
| |
| /* Now set up the MAC to the same speed/duplex as the PHY. */ |
| ctrl_reg = er32(CTRL); |
| ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ |
| ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
| E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
| E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ |
| E1000_CTRL_FD); /* Force Duplex to FULL */ |
| |
| if (adapter->flags & FLAG_IS_ICH) |
| ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ |
| } |
| |
| if (hw->phy.media_type == e1000_media_type_copper && |
| hw->phy.type == e1000_phy_m88) { |
| ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ |
| } else { |
| /* |
| * Set the ILOS bit on the fiber Nic if half duplex link is |
| * detected. |
| */ |
| stat_reg = er32(STATUS); |
| if ((stat_reg & E1000_STATUS_FD) == 0) |
| ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); |
| } |
| |
| ew32(CTRL, ctrl_reg); |
| |
| /* |
| * Disable the receiver on the PHY so when a cable is plugged in, the |
| * PHY does not begin to autoneg when a cable is reconnected to the NIC. |
| */ |
| if (hw->phy.type == e1000_phy_m88) |
| e1000_phy_disable_receiver(adapter); |
| |
| udelay(500); |
| |
| return 0; |
| } |
| |
| static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl = er32(CTRL); |
| int link = 0; |
| |
| /* special requirements for 82571/82572 fiber adapters */ |
| |
| /* |
| * jump through hoops to make sure link is up because serdes |
| * link is hardwired up |
| */ |
| ctrl |= E1000_CTRL_SLU; |
| ew32(CTRL, ctrl); |
| |
| /* disable autoneg */ |
| ctrl = er32(TXCW); |
| ctrl &= ~(1 << 31); |
| ew32(TXCW, ctrl); |
| |
| link = (er32(STATUS) & E1000_STATUS_LU); |
| |
| if (!link) { |
| /* set invert loss of signal */ |
| ctrl = er32(CTRL); |
| ctrl |= E1000_CTRL_ILOS; |
| ew32(CTRL, ctrl); |
| } |
| |
| /* |
| * special write to serdes control register to enable SerDes analog |
| * loopback |
| */ |
| #define E1000_SERDES_LB_ON 0x410 |
| ew32(SCTL, E1000_SERDES_LB_ON); |
| msleep(10); |
| |
| return 0; |
| } |
| |
| /* only call this for fiber/serdes connections to es2lan */ |
| static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrlext = er32(CTRL_EXT); |
| u32 ctrl = er32(CTRL); |
| |
| /* |
| * save CTRL_EXT to restore later, reuse an empty variable (unused |
| * on mac_type 80003es2lan) |
| */ |
| adapter->tx_fifo_head = ctrlext; |
| |
| /* clear the serdes mode bits, putting the device into mac loopback */ |
| ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; |
| ew32(CTRL_EXT, ctrlext); |
| |
| /* force speed to 1000/FD, link up */ |
| ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
| ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | |
| E1000_CTRL_SPD_1000 | E1000_CTRL_FD); |
| ew32(CTRL, ctrl); |
| |
| /* set mac loopback */ |
| ctrl = er32(RCTL); |
| ctrl |= E1000_RCTL_LBM_MAC; |
| ew32(RCTL, ctrl); |
| |
| /* set testing mode parameters (no need to reset later) */ |
| #define KMRNCTRLSTA_OPMODE (0x1F << 16) |
| #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 |
| ew32(KMRNCTRLSTA, |
| (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); |
| |
| return 0; |
| } |
| |
| static int e1000_setup_loopback_test(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl; |
| |
| if (hw->phy.media_type == e1000_media_type_fiber || |
| hw->phy.media_type == e1000_media_type_internal_serdes) { |
| switch (hw->mac.type) { |
| case e1000_80003es2lan: |
| return e1000_set_es2lan_mac_loopback(adapter); |
| break; |
| case e1000_82571: |
| case e1000_82572: |
| return e1000_set_82571_fiber_loopback(adapter); |
| break; |
| default: |
| rctl = er32(RCTL); |
| rctl |= E1000_RCTL_LBM_TCVR; |
| ew32(RCTL, rctl); |
| return 0; |
| } |
| } else if (hw->phy.media_type == e1000_media_type_copper) { |
| return e1000_integrated_phy_loopback(adapter); |
| } |
| |
| return 7; |
| } |
| |
| static void e1000_loopback_cleanup(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl; |
| u16 phy_reg; |
| |
| rctl = er32(RCTL); |
| rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); |
| ew32(RCTL, rctl); |
| |
| switch (hw->mac.type) { |
| case e1000_80003es2lan: |
| if (hw->phy.media_type == e1000_media_type_fiber || |
| hw->phy.media_type == e1000_media_type_internal_serdes) { |
| /* restore CTRL_EXT, stealing space from tx_fifo_head */ |
| ew32(CTRL_EXT, adapter->tx_fifo_head); |
| adapter->tx_fifo_head = 0; |
| } |
| /* fall through */ |
| case e1000_82571: |
| case e1000_82572: |
| if (hw->phy.media_type == e1000_media_type_fiber || |
| hw->phy.media_type == e1000_media_type_internal_serdes) { |
| #define E1000_SERDES_LB_OFF 0x400 |
| ew32(SCTL, E1000_SERDES_LB_OFF); |
| msleep(10); |
| break; |
| } |
| /* Fall Through */ |
| default: |
| hw->mac.autoneg = 1; |
| if (hw->phy.type == e1000_phy_gg82563) |
| e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); |
| e1e_rphy(hw, PHY_CONTROL, &phy_reg); |
| if (phy_reg & MII_CR_LOOPBACK) { |
| phy_reg &= ~MII_CR_LOOPBACK; |
| e1e_wphy(hw, PHY_CONTROL, phy_reg); |
| e1000e_commit_phy(hw); |
| } |
| break; |
| } |
| } |
| |
| static void e1000_create_lbtest_frame(struct sk_buff *skb, |
| unsigned int frame_size) |
| { |
| memset(skb->data, 0xFF, frame_size); |
| frame_size &= ~1; |
| memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); |
| memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); |
| memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); |
| } |
| |
| static int e1000_check_lbtest_frame(struct sk_buff *skb, |
| unsigned int frame_size) |
| { |
| frame_size &= ~1; |
| if (*(skb->data + 3) == 0xFF) |
| if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && |
| (*(skb->data + frame_size / 2 + 12) == 0xAF)) |
| return 0; |
| return 13; |
| } |
| |
| static int e1000_run_loopback_test(struct e1000_adapter *adapter) |
| { |
| struct e1000_ring *tx_ring = &adapter->test_tx_ring; |
| struct e1000_ring *rx_ring = &adapter->test_rx_ring; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_hw *hw = &adapter->hw; |
| int i, j, k, l; |
| int lc; |
| int good_cnt; |
| int ret_val = 0; |
| unsigned long time; |
| |
| ew32(RDT, rx_ring->count - 1); |
| |
| /* |
| * Calculate the loop count based on the largest descriptor ring |
| * The idea is to wrap the largest ring a number of times using 64 |
| * send/receive pairs during each loop |
| */ |
| |
| if (rx_ring->count <= tx_ring->count) |
| lc = ((tx_ring->count / 64) * 2) + 1; |
| else |
| lc = ((rx_ring->count / 64) * 2) + 1; |
| |
| k = 0; |
| l = 0; |
| for (j = 0; j <= lc; j++) { /* loop count loop */ |
| for (i = 0; i < 64; i++) { /* send the packets */ |
| e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb, |
| 1024); |
| pci_dma_sync_single_for_device(pdev, |
| tx_ring->buffer_info[k].dma, |
| tx_ring->buffer_info[k].length, |
| PCI_DMA_TODEVICE); |
| k++; |
| if (k == tx_ring->count) |
| k = 0; |
| } |
| ew32(TDT, k); |
| msleep(200); |
| time = jiffies; /* set the start time for the receive */ |
| good_cnt = 0; |
| do { /* receive the sent packets */ |
| pci_dma_sync_single_for_cpu(pdev, |
| rx_ring->buffer_info[l].dma, 2048, |
| PCI_DMA_FROMDEVICE); |
| |
| ret_val = e1000_check_lbtest_frame( |
| rx_ring->buffer_info[l].skb, 1024); |
| if (!ret_val) |
| good_cnt++; |
| l++; |
| if (l == rx_ring->count) |
| l = 0; |
| /* |
| * time + 20 msecs (200 msecs on 2.4) is more than |
| * enough time to complete the receives, if it's |
| * exceeded, break and error off |
| */ |
| } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); |
| if (good_cnt != 64) { |
| ret_val = 13; /* ret_val is the same as mis-compare */ |
| break; |
| } |
| if (jiffies >= (time + 20)) { |
| ret_val = 14; /* error code for time out error */ |
| break; |
| } |
| } /* end loop count loop */ |
| return ret_val; |
| } |
| |
| static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) |
| { |
| /* |
| * PHY loopback cannot be performed if SoL/IDER |
| * sessions are active |
| */ |
| if (e1000_check_reset_block(&adapter->hw)) { |
| e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); |
| *data = 0; |
| goto out; |
| } |
| |
| *data = e1000_setup_desc_rings(adapter); |
| if (*data) |
| goto out; |
| |
| *data = e1000_setup_loopback_test(adapter); |
| if (*data) |
| goto err_loopback; |
| |
| *data = e1000_run_loopback_test(adapter); |
| e1000_loopback_cleanup(adapter); |
| |
| err_loopback: |
| e1000_free_desc_rings(adapter); |
| out: |
| return *data; |
| } |
| |
| static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| *data = 0; |
| if (hw->phy.media_type == e1000_media_type_internal_serdes) { |
| int i = 0; |
| hw->mac.serdes_has_link = false; |
| |
| /* |
| * On some blade server designs, link establishment |
| * could take as long as 2-3 minutes |
| */ |
| do { |
| hw->mac.ops.check_for_link(hw); |
| if (hw->mac.serdes_has_link) |
| return *data; |
| msleep(20); |
| } while (i++ < 3750); |
| |
| *data = 1; |
| } else { |
| hw->mac.ops.check_for_link(hw); |
| if (hw->mac.autoneg) |
| msleep(4000); |
| |
| if (!(er32(STATUS) & |
| E1000_STATUS_LU)) |
| *data = 1; |
| } |
| return *data; |
| } |
| |
| static int e1000e_get_sset_count(struct net_device *netdev, int sset) |
| { |
| switch (sset) { |
| case ETH_SS_TEST: |
| return E1000_TEST_LEN; |
| case ETH_SS_STATS: |
| return E1000_STATS_LEN; |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static void e1000_diag_test(struct net_device *netdev, |
| struct ethtool_test *eth_test, u64 *data) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| u16 autoneg_advertised; |
| u8 forced_speed_duplex; |
| u8 autoneg; |
| bool if_running = netif_running(netdev); |
| |
| set_bit(__E1000_TESTING, &adapter->state); |
| if (eth_test->flags == ETH_TEST_FL_OFFLINE) { |
| /* Offline tests */ |
| |
| /* save speed, duplex, autoneg settings */ |
| autoneg_advertised = adapter->hw.phy.autoneg_advertised; |
| forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; |
| autoneg = adapter->hw.mac.autoneg; |
| |
| e_info("offline testing starting\n"); |
| |
| /* |
| * Link test performed before hardware reset so autoneg doesn't |
| * interfere with test result |
| */ |
| if (e1000_link_test(adapter, &data[4])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| if (if_running) |
| /* indicate we're in test mode */ |
| dev_close(netdev); |
| else |
| e1000e_reset(adapter); |
| |
| if (e1000_reg_test(adapter, &data[0])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| e1000e_reset(adapter); |
| if (e1000_eeprom_test(adapter, &data[1])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| e1000e_reset(adapter); |
| if (e1000_intr_test(adapter, &data[2])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| e1000e_reset(adapter); |
| /* make sure the phy is powered up */ |
| e1000e_power_up_phy(adapter); |
| if (e1000_loopback_test(adapter, &data[3])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| /* restore speed, duplex, autoneg settings */ |
| adapter->hw.phy.autoneg_advertised = autoneg_advertised; |
| adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; |
| adapter->hw.mac.autoneg = autoneg; |
| |
| /* force this routine to wait until autoneg complete/timeout */ |
| adapter->hw.phy.autoneg_wait_to_complete = 1; |
| e1000e_reset(adapter); |
| adapter->hw.phy.autoneg_wait_to_complete = 0; |
| |
| clear_bit(__E1000_TESTING, &adapter->state); |
| if (if_running) |
| dev_open(netdev); |
| } else { |
| e_info("online testing starting\n"); |
| /* Online tests */ |
| if (e1000_link_test(adapter, &data[4])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| /* Online tests aren't run; pass by default */ |
| data[0] = 0; |
| data[1] = 0; |
| data[2] = 0; |
| data[3] = 0; |
| |
| clear_bit(__E1000_TESTING, &adapter->state); |
| } |
| msleep_interruptible(4 * 1000); |
| } |
| |
| static void e1000_get_wol(struct net_device *netdev, |
| struct ethtool_wolinfo *wol) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| wol->supported = 0; |
| wol->wolopts = 0; |
| |
| if (!(adapter->flags & FLAG_HAS_WOL) || |
| !device_can_wakeup(&adapter->pdev->dev)) |
| return; |
| |
| wol->supported = WAKE_UCAST | WAKE_MCAST | |
| WAKE_BCAST | WAKE_MAGIC | |
| WAKE_PHY | WAKE_ARP; |
| |
| /* apply any specific unsupported masks here */ |
| if (adapter->flags & FLAG_NO_WAKE_UCAST) { |
| wol->supported &= ~WAKE_UCAST; |
| |
| if (adapter->wol & E1000_WUFC_EX) |
| e_err("Interface does not support directed (unicast) " |
| "frame wake-up packets\n"); |
| } |
| |
| if (adapter->wol & E1000_WUFC_EX) |
| wol->wolopts |= WAKE_UCAST; |
| if (adapter->wol & E1000_WUFC_MC) |
| wol->wolopts |= WAKE_MCAST; |
| if (adapter->wol & E1000_WUFC_BC) |
| wol->wolopts |= WAKE_BCAST; |
| if (adapter->wol & E1000_WUFC_MAG) |
| wol->wolopts |= WAKE_MAGIC; |
| if (adapter->wol & E1000_WUFC_LNKC) |
| wol->wolopts |= WAKE_PHY; |
| if (adapter->wol & E1000_WUFC_ARP) |
| wol->wolopts |= WAKE_ARP; |
| } |
| |
| static int e1000_set_wol(struct net_device *netdev, |
| struct ethtool_wolinfo *wol) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| if (wol->wolopts & WAKE_MAGICSECURE) |
| return -EOPNOTSUPP; |
| |
| if (!(adapter->flags & FLAG_HAS_WOL) || |
| !device_can_wakeup(&adapter->pdev->dev)) |
| return wol->wolopts ? -EOPNOTSUPP : 0; |
| |
| /* these settings will always override what we currently have */ |
| adapter->wol = 0; |
| |
| if (wol->wolopts & WAKE_UCAST) |
| adapter->wol |= E1000_WUFC_EX; |
| if (wol->wolopts & WAKE_MCAST) |
| adapter->wol |= E1000_WUFC_MC; |
| if (wol->wolopts & WAKE_BCAST) |
| adapter->wol |= E1000_WUFC_BC; |
| if (wol->wolopts & WAKE_MAGIC) |
| adapter->wol |= E1000_WUFC_MAG; |
| if (wol->wolopts & WAKE_PHY) |
| adapter->wol |= E1000_WUFC_LNKC; |
| if (wol->wolopts & WAKE_ARP) |
| adapter->wol |= E1000_WUFC_ARP; |
| |
| device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
| |
| return 0; |
| } |
| |
| /* toggle LED 4 times per second = 2 "blinks" per second */ |
| #define E1000_ID_INTERVAL (HZ/4) |
| |
| /* bit defines for adapter->led_status */ |
| #define E1000_LED_ON 0 |
| |
| static void e1000e_led_blink_task(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter = container_of(work, |
| struct e1000_adapter, led_blink_task); |
| |
| if (test_and_change_bit(E1000_LED_ON, &adapter->led_status)) |
| adapter->hw.mac.ops.led_off(&adapter->hw); |
| else |
| adapter->hw.mac.ops.led_on(&adapter->hw); |
| } |
| |
| static void e1000_led_blink_callback(unsigned long data) |
| { |
| struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
| |
| schedule_work(&adapter->led_blink_task); |
| mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); |
| } |
| |
| static int e1000_phys_id(struct net_device *netdev, u32 data) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (!data) |
| data = INT_MAX; |
| |
| if ((hw->phy.type == e1000_phy_ife) || |
| (hw->mac.type == e1000_pchlan) || |
| (hw->mac.type == e1000_82574)) { |
| INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task); |
| if (!adapter->blink_timer.function) { |
| init_timer(&adapter->blink_timer); |
| adapter->blink_timer.function = |
| e1000_led_blink_callback; |
| adapter->blink_timer.data = (unsigned long) adapter; |
| } |
| mod_timer(&adapter->blink_timer, jiffies); |
| msleep_interruptible(data * 1000); |
| del_timer_sync(&adapter->blink_timer); |
| if (hw->phy.type == e1000_phy_ife) |
| e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); |
| } else { |
| e1000e_blink_led(hw); |
| msleep_interruptible(data * 1000); |
| } |
| |
| hw->mac.ops.led_off(hw); |
| clear_bit(E1000_LED_ON, &adapter->led_status); |
| hw->mac.ops.cleanup_led(hw); |
| |
| return 0; |
| } |
| |
| static int e1000_get_coalesce(struct net_device *netdev, |
| struct ethtool_coalesce *ec) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| if (adapter->itr_setting <= 3) |
| ec->rx_coalesce_usecs = adapter->itr_setting; |
| else |
| ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; |
| |
| return 0; |
| } |
| |
| static int e1000_set_coalesce(struct net_device *netdev, |
| struct ethtool_coalesce *ec) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || |
| ((ec->rx_coalesce_usecs > 3) && |
| (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || |
| (ec->rx_coalesce_usecs == 2)) |
| return -EINVAL; |
| |
| if (ec->rx_coalesce_usecs <= 3) { |
| adapter->itr = 20000; |
| adapter->itr_setting = ec->rx_coalesce_usecs; |
| } else { |
| adapter->itr = (1000000 / ec->rx_coalesce_usecs); |
| adapter->itr_setting = adapter->itr & ~3; |
| } |
| |
| if (adapter->itr_setting != 0) |
| ew32(ITR, 1000000000 / (adapter->itr * 256)); |
| else |
| ew32(ITR, 0); |
| |
| return 0; |
| } |
| |
| static int e1000_nway_reset(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| if (netif_running(netdev)) |
| e1000e_reinit_locked(adapter); |
| return 0; |
| } |
| |
| static void e1000_get_ethtool_stats(struct net_device *netdev, |
| struct ethtool_stats *stats, |
| u64 *data) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| int i; |
| |
| e1000e_update_stats(adapter); |
| for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { |
| char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset; |
| data[i] = (e1000_gstrings_stats[i].sizeof_stat == |
| sizeof(u64)) ? *(u64 *)p : *(u32 *)p; |
| } |
| } |
| |
| static void e1000_get_strings(struct net_device *netdev, u32 stringset, |
| u8 *data) |
| { |
| u8 *p = data; |
| int i; |
| |
| switch (stringset) { |
| case ETH_SS_TEST: |
| memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test)); |
| break; |
| case ETH_SS_STATS: |
| for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { |
| memcpy(p, e1000_gstrings_stats[i].stat_string, |
| ETH_GSTRING_LEN); |
| p += ETH_GSTRING_LEN; |
| } |
| break; |
| } |
| } |
| |
| static const struct ethtool_ops e1000_ethtool_ops = { |
| .get_settings = e1000_get_settings, |
| .set_settings = e1000_set_settings, |
| .get_drvinfo = e1000_get_drvinfo, |
| .get_regs_len = e1000_get_regs_len, |
| .get_regs = e1000_get_regs, |
| .get_wol = e1000_get_wol, |
| .set_wol = e1000_set_wol, |
| .get_msglevel = e1000_get_msglevel, |
| .set_msglevel = e1000_set_msglevel, |
| .nway_reset = e1000_nway_reset, |
| .get_link = e1000_get_link, |
| .get_eeprom_len = e1000_get_eeprom_len, |
| .get_eeprom = e1000_get_eeprom, |
| .set_eeprom = e1000_set_eeprom, |
| .get_ringparam = e1000_get_ringparam, |
| .set_ringparam = e1000_set_ringparam, |
| .get_pauseparam = e1000_get_pauseparam, |
| .set_pauseparam = e1000_set_pauseparam, |
| .get_rx_csum = e1000_get_rx_csum, |
| .set_rx_csum = e1000_set_rx_csum, |
| .get_tx_csum = e1000_get_tx_csum, |
| .set_tx_csum = e1000_set_tx_csum, |
| .get_sg = ethtool_op_get_sg, |
| .set_sg = ethtool_op_set_sg, |
| .get_tso = ethtool_op_get_tso, |
| .set_tso = e1000_set_tso, |
| .self_test = e1000_diag_test, |
| .get_strings = e1000_get_strings, |
| .phys_id = e1000_phys_id, |
| .get_ethtool_stats = e1000_get_ethtool_stats, |
| .get_sset_count = e1000e_get_sset_count, |
| .get_coalesce = e1000_get_coalesce, |
| .set_coalesce = e1000_set_coalesce, |
| }; |
| |
| void e1000e_set_ethtool_ops(struct net_device *netdev) |
| { |
| SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); |
| } |