blob: a5fc589d6ef5d8f3cf015fb692e8d539bfe5bafb [file] [log] [blame]
/************************************************************************
* Copyright 2003 Digi International (www.digi.com)
*
* Copyright (C) 2004 IBM Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
* implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*
* Contact Information:
* Scott H Kilau <Scott_Kilau@digi.com>
* Wendy Xiong <wendyx@us.ibm.com>
*
***********************************************************************/
#include <linux/delay.h> /* For udelay */
#include <linux/serial_reg.h> /* For the various UART offsets */
#include <linux/tty.h>
#include <linux/pci.h>
#include <asm/io.h>
#include "jsm.h" /* Driver main header file */
static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
/*
* This function allows calls to ensure that all outstanding
* PCI writes have been completed, by doing a PCI read against
* a non-destructive, read-only location on the Neo card.
*
* In this case, we are reading the DVID (Read-only Device Identification)
* value of the Neo card.
*/
static inline void neo_pci_posting_flush(struct jsm_board *bd)
{
readb(bd->re_map_membase + 0x8D);
}
static void neo_set_cts_flow_control(struct jsm_channel *ch)
{
u8 ier, efr;
ier = readb(&ch->ch_neo_uart->ier);
efr = readb(&ch->ch_neo_uart->efr);
jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
/* Turn on auto CTS flow control */
ier |= (UART_17158_IER_CTSDSR);
efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
/* Turn off auto Xon flow control */
efr &= ~(UART_17158_EFR_IXON);
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
writeb(0, &ch->ch_neo_uart->efr);
/* Turn on UART enhanced bits */
writeb(efr, &ch->ch_neo_uart->efr);
/* Turn on table D, with 8 char hi/low watermarks */
writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
/* Feed the UART our trigger levels */
writeb(8, &ch->ch_neo_uart->tfifo);
ch->ch_t_tlevel = 8;
writeb(ier, &ch->ch_neo_uart->ier);
}
static void neo_set_rts_flow_control(struct jsm_channel *ch)
{
u8 ier, efr;
ier = readb(&ch->ch_neo_uart->ier);
efr = readb(&ch->ch_neo_uart->efr);
jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
/* Turn on auto RTS flow control */
ier |= (UART_17158_IER_RTSDTR);
efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
/* Turn off auto Xoff flow control */
ier &= ~(UART_17158_IER_XOFF);
efr &= ~(UART_17158_EFR_IXOFF);
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
writeb(0, &ch->ch_neo_uart->efr);
/* Turn on UART enhanced bits */
writeb(efr, &ch->ch_neo_uart->efr);
writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
ch->ch_r_watermark = 4;
writeb(56, &ch->ch_neo_uart->rfifo);
ch->ch_r_tlevel = 56;
writeb(ier, &ch->ch_neo_uart->ier);
/*
* From the Neo UART spec sheet:
* The auto RTS/DTR function must be started by asserting
* RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
* it is enabled.
*/
ch->ch_mostat |= (UART_MCR_RTS);
}
static void neo_set_ixon_flow_control(struct jsm_channel *ch)
{
u8 ier, efr;
ier = readb(&ch->ch_neo_uart->ier);
efr = readb(&ch->ch_neo_uart->efr);
jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
/* Turn off auto CTS flow control */
ier &= ~(UART_17158_IER_CTSDSR);
efr &= ~(UART_17158_EFR_CTSDSR);
/* Turn on auto Xon flow control */
efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
writeb(0, &ch->ch_neo_uart->efr);
/* Turn on UART enhanced bits */
writeb(efr, &ch->ch_neo_uart->efr);
writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
ch->ch_r_watermark = 4;
writeb(32, &ch->ch_neo_uart->rfifo);
ch->ch_r_tlevel = 32;
/* Tell UART what start/stop chars it should be looking for */
writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
writeb(0, &ch->ch_neo_uart->xonchar2);
writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
writeb(0, &ch->ch_neo_uart->xoffchar2);
writeb(ier, &ch->ch_neo_uart->ier);
}
static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
{
u8 ier, efr;
ier = readb(&ch->ch_neo_uart->ier);
efr = readb(&ch->ch_neo_uart->efr);
jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
/* Turn off auto RTS flow control */
ier &= ~(UART_17158_IER_RTSDTR);
efr &= ~(UART_17158_EFR_RTSDTR);
/* Turn on auto Xoff flow control */
ier |= (UART_17158_IER_XOFF);
efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
writeb(0, &ch->ch_neo_uart->efr);
/* Turn on UART enhanced bits */
writeb(efr, &ch->ch_neo_uart->efr);
/* Turn on table D, with 8 char hi/low watermarks */
writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
writeb(8, &ch->ch_neo_uart->tfifo);
ch->ch_t_tlevel = 8;
/* Tell UART what start/stop chars it should be looking for */
writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
writeb(0, &ch->ch_neo_uart->xonchar2);
writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
writeb(0, &ch->ch_neo_uart->xoffchar2);
writeb(ier, &ch->ch_neo_uart->ier);
}
static void neo_set_no_input_flow_control(struct jsm_channel *ch)
{
u8 ier, efr;
ier = readb(&ch->ch_neo_uart->ier);
efr = readb(&ch->ch_neo_uart->efr);
jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
/* Turn off auto RTS flow control */
ier &= ~(UART_17158_IER_RTSDTR);
efr &= ~(UART_17158_EFR_RTSDTR);
/* Turn off auto Xoff flow control */
ier &= ~(UART_17158_IER_XOFF);
if (ch->ch_c_iflag & IXON)
efr &= ~(UART_17158_EFR_IXOFF);
else
efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
writeb(0, &ch->ch_neo_uart->efr);
/* Turn on UART enhanced bits */
writeb(efr, &ch->ch_neo_uart->efr);
/* Turn on table D, with 8 char hi/low watermarks */
writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
ch->ch_r_watermark = 0;
writeb(16, &ch->ch_neo_uart->tfifo);
ch->ch_t_tlevel = 16;
writeb(16, &ch->ch_neo_uart->rfifo);
ch->ch_r_tlevel = 16;
writeb(ier, &ch->ch_neo_uart->ier);
}
static void neo_set_no_output_flow_control(struct jsm_channel *ch)
{
u8 ier, efr;
ier = readb(&ch->ch_neo_uart->ier);
efr = readb(&ch->ch_neo_uart->efr);
jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
/* Turn off auto CTS flow control */
ier &= ~(UART_17158_IER_CTSDSR);
efr &= ~(UART_17158_EFR_CTSDSR);
/* Turn off auto Xon flow control */
if (ch->ch_c_iflag & IXOFF)
efr &= ~(UART_17158_EFR_IXON);
else
efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
writeb(0, &ch->ch_neo_uart->efr);
/* Turn on UART enhanced bits */
writeb(efr, &ch->ch_neo_uart->efr);
/* Turn on table D, with 8 char hi/low watermarks */
writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
ch->ch_r_watermark = 0;
writeb(16, &ch->ch_neo_uart->tfifo);
ch->ch_t_tlevel = 16;
writeb(16, &ch->ch_neo_uart->rfifo);
ch->ch_r_tlevel = 16;
writeb(ier, &ch->ch_neo_uart->ier);
}
static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
{
/* if hardware flow control is set, then skip this whole thing */
if (ch->ch_c_cflag & CRTSCTS)
return;
jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "start\n");
/* Tell UART what start/stop chars it should be looking for */
writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
writeb(0, &ch->ch_neo_uart->xonchar2);
writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
writeb(0, &ch->ch_neo_uart->xoffchar2);
}
static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
{
int qleft = 0;
u8 linestatus = 0;
u8 error_mask = 0;
int n = 0;
int total = 0;
u16 head;
u16 tail;
if (!ch)
return;
/* cache head and tail of queue */
head = ch->ch_r_head & RQUEUEMASK;
tail = ch->ch_r_tail & RQUEUEMASK;
/* Get our cached LSR */
linestatus = ch->ch_cached_lsr;
ch->ch_cached_lsr = 0;
/* Store how much space we have left in the queue */
if ((qleft = tail - head - 1) < 0)
qleft += RQUEUEMASK + 1;
/*
* If the UART is not in FIFO mode, force the FIFO copy to
* NOT be run, by setting total to 0.
*
* On the other hand, if the UART IS in FIFO mode, then ask
* the UART to give us an approximation of data it has RX'ed.
*/
if (!(ch->ch_flags & CH_FIFO_ENABLED))
total = 0;
else {
total = readb(&ch->ch_neo_uart->rfifo);
/*
* EXAR chip bug - RX FIFO COUNT - Fudge factor.
*
* This resolves a problem/bug with the Exar chip that sometimes
* returns a bogus value in the rfifo register.
* The count can be any where from 0-3 bytes "off".
* Bizarre, but true.
*/
total -= 3;
}
/*
* Finally, bound the copy to make sure we don't overflow
* our own queue...
* The byte by byte copy loop below this loop this will
* deal with the queue overflow possibility.
*/
total = min(total, qleft);
while (total > 0) {
/*
* Grab the linestatus register, we need to check
* to see if there are any errors in the FIFO.
*/
linestatus = readb(&ch->ch_neo_uart->lsr);
/*
* Break out if there is a FIFO error somewhere.
* This will allow us to go byte by byte down below,
* finding the exact location of the error.
*/
if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
break;
/* Make sure we don't go over the end of our queue */
n = min(((u32) total), (RQUEUESIZE - (u32) head));
/*
* Cut down n even further if needed, this is to fix
* a problem with memcpy_fromio() with the Neo on the
* IBM pSeries platform.
* 15 bytes max appears to be the magic number.
*/
n = min((u32) n, (u32) 12);
/*
* Since we are grabbing the linestatus register, which
* will reset some bits after our read, we need to ensure
* we don't miss our TX FIFO emptys.
*/
if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
linestatus = 0;
/* Copy data from uart to the queue */
memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
/*
* Since RX_FIFO_DATA_ERROR was 0, we are guarenteed
* that all the data currently in the FIFO is free of
* breaks and parity/frame/orun errors.
*/
memset(ch->ch_equeue + head, 0, n);
/* Add to and flip head if needed */
head = (head + n) & RQUEUEMASK;
total -= n;
qleft -= n;
ch->ch_rxcount += n;
}
/*
* Create a mask to determine whether we should
* insert the character (if any) into our queue.
*/
if (ch->ch_c_iflag & IGNBRK)
error_mask |= UART_LSR_BI;
/*
* Now cleanup any leftover bytes still in the UART.
* Also deal with any possible queue overflow here as well.
*/
while (1) {
/*
* Its possible we have a linestatus from the loop above
* this, so we "OR" on any extra bits.
*/
linestatus |= readb(&ch->ch_neo_uart->lsr);
/*
* If the chip tells us there is no more data pending to
* be read, we can then leave.
* But before we do, cache the linestatus, just in case.
*/
if (!(linestatus & UART_LSR_DR)) {
ch->ch_cached_lsr = linestatus;
break;
}
/* No need to store this bit */
linestatus &= ~UART_LSR_DR;
/*
* Since we are grabbing the linestatus register, which
* will reset some bits after our read, we need to ensure
* we don't miss our TX FIFO emptys.
*/
if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
}
/*
* Discard character if we are ignoring the error mask.
*/
if (linestatus & error_mask) {
u8 discard;
linestatus = 0;
memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
continue;
}
/*
* If our queue is full, we have no choice but to drop some data.
* The assumption is that HWFLOW or SWFLOW should have stopped
* things way way before we got to this point.
*
* I decided that I wanted to ditch the oldest data first,
* I hope thats okay with everyone? Yes? Good.
*/
while (qleft < 1) {
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
"Queue full, dropping DATA:%x LSR:%x\n",
ch->ch_rqueue[tail], ch->ch_equeue[tail]);
ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
ch->ch_err_overrun++;
qleft++;
}
memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
ch->ch_equeue[head] = (u8) linestatus;
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
"DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head]);
/* Ditch any remaining linestatus value. */
linestatus = 0;
/* Add to and flip head if needed */
head = (head + 1) & RQUEUEMASK;
qleft--;
ch->ch_rxcount++;
}
/*
* Write new final heads to channel structure.
*/
ch->ch_r_head = head & RQUEUEMASK;
ch->ch_e_head = head & EQUEUEMASK;
jsm_input(ch);
}
static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
{
u16 head;
u16 tail;
int n;
int s;
int qlen;
u32 len_written = 0;
if (!ch)
return;
/* No data to write to the UART */
if (ch->ch_w_tail == ch->ch_w_head)
return;
/* If port is "stopped", don't send any data to the UART */
if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
return;
/*
* If FIFOs are disabled. Send data directly to txrx register
*/
if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
ch->ch_cached_lsr |= lsrbits;
if (ch->ch_cached_lsr & UART_LSR_THRE) {
ch->ch_cached_lsr &= ~(UART_LSR_THRE);
writeb(ch->ch_wqueue[ch->ch_w_tail], &ch->ch_neo_uart->txrx);
jsm_printk(WRITE, INFO, &ch->ch_bd->pci_dev,
"Tx data: %x\n", ch->ch_wqueue[ch->ch_w_head]);
ch->ch_w_tail++;
ch->ch_w_tail &= WQUEUEMASK;
ch->ch_txcount++;
}
return;
}
/*
* We have to do it this way, because of the EXAR TXFIFO count bug.
*/
if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
return;
len_written = 0;
n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
/* cache head and tail of queue */
head = ch->ch_w_head & WQUEUEMASK;
tail = ch->ch_w_tail & WQUEUEMASK;
qlen = (head - tail) & WQUEUEMASK;
/* Find minimum of the FIFO space, versus queue length */
n = min(n, qlen);
while (n > 0) {
s = ((head >= tail) ? head : WQUEUESIZE) - tail;
s = min(s, n);
if (s <= 0)
break;
memcpy_toio(&ch->ch_neo_uart->txrxburst, ch->ch_wqueue + tail, s);
/* Add and flip queue if needed */
tail = (tail + s) & WQUEUEMASK;
n -= s;
ch->ch_txcount += s;
len_written += s;
}
/* Update the final tail */
ch->ch_w_tail = tail & WQUEUEMASK;
if (len_written >= ch->ch_t_tlevel)
ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
if (!jsm_tty_write(&ch->uart_port))
uart_write_wakeup(&ch->uart_port);
}
static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
{
u8 msignals = signals;
jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
"neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals);
if (!ch)
return;
/* Scrub off lower bits. They signify delta's, which I don't care about */
msignals &= 0xf0;
if (msignals & UART_MSR_DCD)
ch->ch_mistat |= UART_MSR_DCD;
else
ch->ch_mistat &= ~UART_MSR_DCD;
if (msignals & UART_MSR_DSR)
ch->ch_mistat |= UART_MSR_DSR;
else
ch->ch_mistat &= ~UART_MSR_DSR;
if (msignals & UART_MSR_RI)
ch->ch_mistat |= UART_MSR_RI;
else
ch->ch_mistat &= ~UART_MSR_RI;
if (msignals & UART_MSR_CTS)
ch->ch_mistat |= UART_MSR_CTS;
else
ch->ch_mistat &= ~UART_MSR_CTS;
jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
"Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
ch->ch_portnum,
!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
}
/* Make the UART raise any of the output signals we want up */
static void neo_assert_modem_signals(struct jsm_channel *ch)
{
u8 out;
if (!ch)
return;
out = ch->ch_mostat;
writeb(out, &ch->ch_neo_uart->mcr);
/* flush write operation */
neo_pci_posting_flush(ch->ch_bd);
}
/*
* Flush the WRITE FIFO on the Neo.
*
* NOTE: Channel lock MUST be held before calling this function!
*/
static void neo_flush_uart_write(struct jsm_channel *ch)
{
u8 tmp = 0;
int i = 0;
if (!ch)
return;
writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
for (i = 0; i < 10; i++) {
/* Check to see if the UART feels it completely flushed the FIFO. */
tmp = readb(&ch->ch_neo_uart->isr_fcr);
if (tmp & 4) {
jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
"Still flushing TX UART... i: %d\n", i);
udelay(10);
}
else
break;
}
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
}
/*
* Flush the READ FIFO on the Neo.
*
* NOTE: Channel lock MUST be held before calling this function!
*/
static void neo_flush_uart_read(struct jsm_channel *ch)
{
u8 tmp = 0;
int i = 0;
if (!ch)
return;
writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
for (i = 0; i < 10; i++) {
/* Check to see if the UART feels it completely flushed the FIFO. */
tmp = readb(&ch->ch_neo_uart->isr_fcr);
if (tmp & 2) {
jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
"Still flushing RX UART... i: %d\n", i);
udelay(10);
}
else
break;
}
}
/*
* No locks are assumed to be held when calling this function.
*/
static void neo_clear_break(struct jsm_channel *ch, int force)
{
unsigned long lock_flags;
spin_lock_irqsave(&ch->ch_lock, lock_flags);
/* Turn break off, and unset some variables */
if (ch->ch_flags & CH_BREAK_SENDING) {
u8 temp = readb(&ch->ch_neo_uart->lcr);
writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
ch->ch_flags &= ~(CH_BREAK_SENDING);
jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
"clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies);
/* flush write operation */
neo_pci_posting_flush(ch->ch_bd);
}
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
}
/*
* Parse the ISR register.
*/
static inline void neo_parse_isr(struct jsm_board *brd, u32 port)
{
struct jsm_channel *ch;
u8 isr;
u8 cause;
unsigned long lock_flags;
if (!brd)
return;
if (port > brd->maxports)
return;
ch = brd->channels[port];
if (!ch)
return;
/* Here we try to figure out what caused the interrupt to happen */
while (1) {
isr = readb(&ch->ch_neo_uart->isr_fcr);
/* Bail if no pending interrupt */
if (isr & UART_IIR_NO_INT)
break;
/*
* Yank off the upper 2 bits, which just show that the FIFO's are enabled.
*/
isr &= ~(UART_17158_IIR_FIFO_ENABLED);
jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
"%s:%d isr: %x\n", __FILE__, __LINE__, isr);
if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
/* Read data from uart -> queue */
neo_copy_data_from_uart_to_queue(ch);
/* Call our tty layer to enforce queue flow control if needed. */
spin_lock_irqsave(&ch->ch_lock, lock_flags);
jsm_check_queue_flow_control(ch);
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
}
if (isr & UART_IIR_THRI) {
/* Transfer data (if any) from Write Queue -> UART. */
spin_lock_irqsave(&ch->ch_lock, lock_flags);
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
neo_copy_data_from_queue_to_uart(ch);
}
if (isr & UART_17158_IIR_XONXOFF) {
cause = readb(&ch->ch_neo_uart->xoffchar1);
jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
"Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause);
/*
* Since the UART detected either an XON or
* XOFF match, we need to figure out which
* one it was, so we can suspend or resume data flow.
*/
spin_lock_irqsave(&ch->ch_lock, lock_flags);
if (cause == UART_17158_XON_DETECT) {
/* Is output stopped right now, if so, resume it */
if (brd->channels[port]->ch_flags & CH_STOP) {
ch->ch_flags &= ~(CH_STOP);
}
jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
"Port %d. XON detected in incoming data\n", port);
}
else if (cause == UART_17158_XOFF_DETECT) {
if (!(brd->channels[port]->ch_flags & CH_STOP)) {
ch->ch_flags |= CH_STOP;
jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
"Setting CH_STOP\n");
}
jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
"Port: %d. XOFF detected in incoming data\n", port);
}
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
}
if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
/*
* If we get here, this means the hardware is doing auto flow control.
* Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
*/
cause = readb(&ch->ch_neo_uart->mcr);
/* Which pin is doing auto flow? RTS or DTR? */
spin_lock_irqsave(&ch->ch_lock, lock_flags);
if ((cause & 0x4) == 0) {
if (cause & UART_MCR_RTS)
ch->ch_mostat |= UART_MCR_RTS;
else
ch->ch_mostat &= ~(UART_MCR_RTS);
} else {
if (cause & UART_MCR_DTR)
ch->ch_mostat |= UART_MCR_DTR;
else
ch->ch_mostat &= ~(UART_MCR_DTR);
}
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
}
/* Parse any modem signal changes */
jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
"MOD_STAT: sending to parse_modem_sigs\n");
neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
}
}
static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
{
struct jsm_channel *ch;
int linestatus;
unsigned long lock_flags;
if (!brd)
return;
if (port > brd->maxports)
return;
ch = brd->channels[port];
if (!ch)
return;
linestatus = readb(&ch->ch_neo_uart->lsr);
jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
"%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus);
ch->ch_cached_lsr |= linestatus;
if (ch->ch_cached_lsr & UART_LSR_DR) {
/* Read data from uart -> queue */
neo_copy_data_from_uart_to_queue(ch);
spin_lock_irqsave(&ch->ch_lock, lock_flags);
jsm_check_queue_flow_control(ch);
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
}
/*
* This is a special flag. It indicates that at least 1
* RX error (parity, framing, or break) has happened.
* Mark this in our struct, which will tell me that I have
*to do the special RX+LSR read for this FIFO load.
*/
if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
"%s:%d Port: %d Got an RX error, need to parse LSR\n",
__FILE__, __LINE__, port);
/*
* The next 3 tests should *NOT* happen, as the above test
* should encapsulate all 3... At least, thats what Exar says.
*/
if (linestatus & UART_LSR_PE) {
ch->ch_err_parity++;
jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
"%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port);
}
if (linestatus & UART_LSR_FE) {
ch->ch_err_frame++;
jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
"%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port);
}
if (linestatus & UART_LSR_BI) {
ch->ch_err_break++;
jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
"%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port);
}
if (linestatus & UART_LSR_OE) {
/*
* Rx Oruns. Exar says that an orun will NOT corrupt
* the FIFO. It will just replace the holding register
* with this new data byte. So basically just ignore this.
* Probably we should eventually have an orun stat in our driver...
*/
ch->ch_err_overrun++;
jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
"%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port);
}
if (linestatus & UART_LSR_THRE) {
spin_lock_irqsave(&ch->ch_lock, lock_flags);
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
/* Transfer data (if any) from Write Queue -> UART. */
neo_copy_data_from_queue_to_uart(ch);
}
else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
spin_lock_irqsave(&ch->ch_lock, lock_flags);
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
/* Transfer data (if any) from Write Queue -> UART. */
neo_copy_data_from_queue_to_uart(ch);
}
}
/*
* neo_param()
* Send any/all changes to the line to the UART.
*/
static void neo_param(struct jsm_channel *ch)
{
u8 lcr = 0;
u8 uart_lcr = 0;
u8 ier = 0;
u32 baud = 9600;
int quot = 0;
struct jsm_board *bd;
bd = ch->ch_bd;
if (!bd)
return;
/*
* If baud rate is zero, flush queues, and set mval to drop DTR.
*/
if ((ch->ch_c_cflag & (CBAUD)) == 0) {
ch->ch_r_head = ch->ch_r_tail = 0;
ch->ch_e_head = ch->ch_e_tail = 0;
ch->ch_w_head = ch->ch_w_tail = 0;
neo_flush_uart_write(ch);
neo_flush_uart_read(ch);
ch->ch_flags |= (CH_BAUD0);
ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
neo_assert_modem_signals(ch);
ch->ch_old_baud = 0;
return;
} else if (ch->ch_custom_speed) {
baud = ch->ch_custom_speed;
if (ch->ch_flags & CH_BAUD0)
ch->ch_flags &= ~(CH_BAUD0);
} else {
int i;
unsigned int cflag;
static struct {
unsigned int rate;
unsigned int cflag;
} baud_rates[] = {
{ 921600, B921600 },
{ 460800, B460800 },
{ 230400, B230400 },
{ 115200, B115200 },
{ 57600, B57600 },
{ 38400, B38400 },
{ 19200, B19200 },
{ 9600, B9600 },
{ 4800, B4800 },
{ 2400, B2400 },
{ 1200, B1200 },
{ 600, B600 },
{ 300, B300 },
{ 200, B200 },
{ 150, B150 },
{ 134, B134 },
{ 110, B110 },
{ 75, B75 },
{ 50, B50 },
};
cflag = C_BAUD(ch->uart_port.info->tty);
baud = 9600;
for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
if (baud_rates[i].cflag == cflag) {
baud = baud_rates[i].rate;
break;
}
}
if (ch->ch_flags & CH_BAUD0)
ch->ch_flags &= ~(CH_BAUD0);
}
if (ch->ch_c_cflag & PARENB)
lcr |= UART_LCR_PARITY;
if (!(ch->ch_c_cflag & PARODD))
lcr |= UART_LCR_EPAR;
/*
* Not all platforms support mark/space parity,
* so this will hide behind an ifdef.
*/
#ifdef CMSPAR
if (ch->ch_c_cflag & CMSPAR)
lcr |= UART_LCR_SPAR;
#endif
if (ch->ch_c_cflag & CSTOPB)
lcr |= UART_LCR_STOP;
switch (ch->ch_c_cflag & CSIZE) {
case CS5:
lcr |= UART_LCR_WLEN5;
break;
case CS6:
lcr |= UART_LCR_WLEN6;
break;
case CS7:
lcr |= UART_LCR_WLEN7;
break;
case CS8:
default:
lcr |= UART_LCR_WLEN8;
break;
}
ier = readb(&ch->ch_neo_uart->ier);
uart_lcr = readb(&ch->ch_neo_uart->lcr);
if (baud == 0)
baud = 9600;
quot = ch->ch_bd->bd_dividend / baud;
if (quot != 0) {
ch->ch_old_baud = baud;
writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
writeb((quot >> 8), &ch->ch_neo_uart->ier);
writeb(lcr, &ch->ch_neo_uart->lcr);
}
if (uart_lcr != lcr)
writeb(lcr, &ch->ch_neo_uart->lcr);
if (ch->ch_c_cflag & CREAD)
ier |= (UART_IER_RDI | UART_IER_RLSI);
ier |= (UART_IER_THRI | UART_IER_MSI);
writeb(ier, &ch->ch_neo_uart->ier);
/* Set new start/stop chars */
neo_set_new_start_stop_chars(ch);
if (ch->ch_c_cflag & CRTSCTS)
neo_set_cts_flow_control(ch);
else if (ch->ch_c_iflag & IXON) {
/* If start/stop is set to disable, then we should disable flow control */
if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
neo_set_no_output_flow_control(ch);
else
neo_set_ixon_flow_control(ch);
}
else
neo_set_no_output_flow_control(ch);
if (ch->ch_c_cflag & CRTSCTS)
neo_set_rts_flow_control(ch);
else if (ch->ch_c_iflag & IXOFF) {
/* If start/stop is set to disable, then we should disable flow control */
if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
neo_set_no_input_flow_control(ch);
else
neo_set_ixoff_flow_control(ch);
}
else
neo_set_no_input_flow_control(ch);
/*
* Adjust the RX FIFO Trigger level if baud is less than 9600.
* Not exactly elegant, but this is needed because of the Exar chip's
* delay on firing off the RX FIFO interrupt on slower baud rates.
*/
if (baud < 9600) {
writeb(1, &ch->ch_neo_uart->rfifo);
ch->ch_r_tlevel = 1;
}
neo_assert_modem_signals(ch);
/* Get current status of the modem signals now */
neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
return;
}
/*
* jsm_neo_intr()
*
* Neo specific interrupt handler.
*/
static irqreturn_t neo_intr(int irq, void *voidbrd, struct pt_regs *regs)
{
struct jsm_board *brd = (struct jsm_board *) voidbrd;
struct jsm_channel *ch;
int port = 0;
int type = 0;
int current_port;
u32 tmp;
u32 uart_poll;
unsigned long lock_flags;
unsigned long lock_flags2;
int outofloop_count = 0;
brd->intr_count++;
/* Lock out the slow poller from running on this board. */
spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
/*
* Read in "extended" IRQ information from the 32bit Neo register.
* Bits 0-7: What port triggered the interrupt.
* Bits 8-31: Each 3bits indicate what type of interrupt occurred.
*/
uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
jsm_printk(INTR, INFO, &brd->pci_dev,
"%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll);
if (!uart_poll) {
jsm_printk(INTR, INFO, &brd->pci_dev,
"Kernel interrupted to me, but no pending interrupts...\n");
spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
return IRQ_NONE;
}
/* At this point, we have at least SOMETHING to service, dig further... */
current_port = 0;
/* Loop on each port */
while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
tmp = uart_poll;
outofloop_count++;
/* Check current port to see if it has interrupt pending */
if ((tmp & jsm_offset_table[current_port]) != 0) {
port = current_port;
type = tmp >> (8 + (port * 3));
type &= 0x7;
} else {
current_port++;
continue;
}
jsm_printk(INTR, INFO, &brd->pci_dev,
"%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type);
/* Remove this port + type from uart_poll */
uart_poll &= ~(jsm_offset_table[port]);
if (!type) {
/* If no type, just ignore it, and move onto next port */
jsm_printk(INTR, ERR, &brd->pci_dev,
"Interrupt with no type! port: %d\n", port);
continue;
}
/* Switch on type of interrupt we have */
switch (type) {
case UART_17158_RXRDY_TIMEOUT:
/*
* RXRDY Time-out is cleared by reading data in the
* RX FIFO until it falls below the trigger level.
*/
/* Verify the port is in range. */
if (port > brd->nasync)
continue;
ch = brd->channels[port];
neo_copy_data_from_uart_to_queue(ch);
/* Call our tty layer to enforce queue flow control if needed. */
spin_lock_irqsave(&ch->ch_lock, lock_flags2);
jsm_check_queue_flow_control(ch);
spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
continue;
case UART_17158_RX_LINE_STATUS:
/*
* RXRDY and RX LINE Status (logic OR of LSR[4:1])
*/
neo_parse_lsr(brd, port);
continue;
case UART_17158_TXRDY:
/*
* TXRDY interrupt clears after reading ISR register for the UART channel.
*/
/*
* Yes, this is odd...
* Why would I check EVERY possibility of type of
* interrupt, when we know its TXRDY???
* Becuz for some reason, even tho we got triggered for TXRDY,
* it seems to be occassionally wrong. Instead of TX, which
* it should be, I was getting things like RXDY too. Weird.
*/
neo_parse_isr(brd, port);
continue;
case UART_17158_MSR:
/*
* MSR or flow control was seen.
*/
neo_parse_isr(brd, port);
continue;
default:
/*
* The UART triggered us with a bogus interrupt type.
* It appears the Exar chip, when REALLY bogged down, will throw
* these once and awhile.
* Its harmless, just ignore it and move on.
*/
jsm_printk(INTR, ERR, &brd->pci_dev,
"%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type);
continue;
}
}
spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
jsm_printk(INTR, INFO, &brd->pci_dev, "finish.\n");
return IRQ_HANDLED;
}
/*
* Neo specific way of turning off the receiver.
* Used as a way to enforce queue flow control when in
* hardware flow control mode.
*/
static void neo_disable_receiver(struct jsm_channel *ch)
{
u8 tmp = readb(&ch->ch_neo_uart->ier);
tmp &= ~(UART_IER_RDI);
writeb(tmp, &ch->ch_neo_uart->ier);
/* flush write operation */
neo_pci_posting_flush(ch->ch_bd);
}
/*
* Neo specific way of turning on the receiver.
* Used as a way to un-enforce queue flow control when in
* hardware flow control mode.
*/
static void neo_enable_receiver(struct jsm_channel *ch)
{
u8 tmp = readb(&ch->ch_neo_uart->ier);
tmp |= (UART_IER_RDI);
writeb(tmp, &ch->ch_neo_uart->ier);
/* flush write operation */
neo_pci_posting_flush(ch->ch_bd);
}
static void neo_send_start_character(struct jsm_channel *ch)
{
if (!ch)
return;
if (ch->ch_startc != __DISABLED_CHAR) {
ch->ch_xon_sends++;
writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
/* flush write operation */
neo_pci_posting_flush(ch->ch_bd);
}
}
static void neo_send_stop_character(struct jsm_channel *ch)
{
if (!ch)
return;
if (ch->ch_stopc != __DISABLED_CHAR) {
ch->ch_xoff_sends++;
writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
/* flush write operation */
neo_pci_posting_flush(ch->ch_bd);
}
}
/*
* neo_uart_init
*/
static void neo_uart_init(struct jsm_channel *ch)
{
writeb(0, &ch->ch_neo_uart->ier);
writeb(0, &ch->ch_neo_uart->efr);
writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
/* Clear out UART and FIFO */
readb(&ch->ch_neo_uart->txrx);
writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
readb(&ch->ch_neo_uart->lsr);
readb(&ch->ch_neo_uart->msr);
ch->ch_flags |= CH_FIFO_ENABLED;
/* Assert any signals we want up */
writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
}
/*
* Make the UART completely turn off.
*/
static void neo_uart_off(struct jsm_channel *ch)
{
/* Turn off UART enhanced bits */
writeb(0, &ch->ch_neo_uart->efr);
/* Stop all interrupts from occurring. */
writeb(0, &ch->ch_neo_uart->ier);
}
static u32 neo_get_uart_bytes_left(struct jsm_channel *ch)
{
u8 left = 0;
u8 lsr = readb(&ch->ch_neo_uart->lsr);
/* We must cache the LSR as some of the bits get reset once read... */
ch->ch_cached_lsr |= lsr;
/* Determine whether the Transmitter is empty or not */
if (!(lsr & UART_LSR_TEMT))
left = 1;
else {
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
left = 0;
}
return left;
}
/* Channel lock MUST be held by the calling function! */
static void neo_send_break(struct jsm_channel *ch)
{
/*
* Set the time we should stop sending the break.
* If we are already sending a break, toss away the existing
* time to stop, and use this new value instead.
*/
/* Tell the UART to start sending the break */
if (!(ch->ch_flags & CH_BREAK_SENDING)) {
u8 temp = readb(&ch->ch_neo_uart->lcr);
writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
ch->ch_flags |= (CH_BREAK_SENDING);
/* flush write operation */
neo_pci_posting_flush(ch->ch_bd);
}
}
/*
* neo_send_immediate_char.
*
* Sends a specific character as soon as possible to the UART,
* jumping over any bytes that might be in the write queue.
*
* The channel lock MUST be held by the calling function.
*/
static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c)
{
if (!ch)
return;
writeb(c, &ch->ch_neo_uart->txrx);
/* flush write operation */
neo_pci_posting_flush(ch->ch_bd);
}
struct board_ops jsm_neo_ops = {
.intr = neo_intr,
.uart_init = neo_uart_init,
.uart_off = neo_uart_off,
.param = neo_param,
.assert_modem_signals = neo_assert_modem_signals,
.flush_uart_write = neo_flush_uart_write,
.flush_uart_read = neo_flush_uart_read,
.disable_receiver = neo_disable_receiver,
.enable_receiver = neo_enable_receiver,
.send_break = neo_send_break,
.clear_break = neo_clear_break,
.send_start_character = neo_send_start_character,
.send_stop_character = neo_send_stop_character,
.copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart,
.get_uart_bytes_left = neo_get_uart_bytes_left,
.send_immediate_char = neo_send_immediate_char
};