blob: 3bbd3fbfce2d751afaead3d0751c14e5eeda82ba [file] [log] [blame]
/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/slab.h>
#include <linux/diagchar.h>
#include <linux/platform_device.h>
#include <linux/kmemleak.h>
#include "diagchar.h"
#include "diagfwd.h"
#include "diagfwd_cntl.h"
#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#endif
/* tracks which peripheral is undergoing SSR */
static uint16_t reg_dirty;
#define HDR_SIZ 8
void diag_clean_modem_reg_fn(struct work_struct *work)
{
pr_debug("diag: clean modem registration\n");
reg_dirty |= DIAG_CON_MPSS;
diag_clear_reg(MODEM_PROC);
reg_dirty ^= DIAG_CON_MPSS;
}
void diag_clean_lpass_reg_fn(struct work_struct *work)
{
pr_debug("diag: clean lpass registration\n");
reg_dirty |= DIAG_CON_LPASS;
diag_clear_reg(LPASS_PROC);
reg_dirty ^= DIAG_CON_LPASS;
}
void diag_clean_wcnss_reg_fn(struct work_struct *work)
{
pr_debug("diag: clean wcnss registration\n");
reg_dirty |= DIAG_CON_WCNSS;
diag_clear_reg(WCNSS_PROC);
reg_dirty ^= DIAG_CON_WCNSS;
}
void diag_smd_cntl_notify(void *ctxt, unsigned event)
{
int r1, r2;
if (!(driver->ch_cntl))
return;
switch (event) {
case SMD_EVENT_DATA:
r1 = smd_read_avail(driver->ch_cntl);
r2 = smd_cur_packet_size(driver->ch_cntl);
if (r1 > 0 && r1 == r2)
queue_work(driver->diag_wq,
&(driver->diag_read_smd_cntl_work));
else
pr_debug("diag: incomplete pkt on Modem CNTL ch\n");
break;
case SMD_EVENT_OPEN:
queue_work(driver->diag_cntl_wq,
&(driver->diag_modem_mask_update_work));
break;
}
}
void diag_smd_lpass_cntl_notify(void *ctxt, unsigned event)
{
int r1, r2;
if (!(driver->chlpass_cntl))
return;
switch (event) {
case SMD_EVENT_DATA:
r1 = smd_read_avail(driver->chlpass_cntl);
r2 = smd_cur_packet_size(driver->chlpass_cntl);
if (r1 > 0 && r1 == r2)
queue_work(driver->diag_wq,
&(driver->diag_read_smd_lpass_cntl_work));
else
pr_debug("diag: incomplete pkt on LPASS CNTL ch\n");
break;
case SMD_EVENT_OPEN:
queue_work(driver->diag_cntl_wq,
&(driver->diag_lpass_mask_update_work));
break;
}
}
void diag_smd_wcnss_cntl_notify(void *ctxt, unsigned event)
{
int r1, r2;
if (!(driver->ch_wcnss_cntl))
return;
switch (event) {
case SMD_EVENT_DATA:
r1 = smd_read_avail(driver->ch_wcnss_cntl);
r2 = smd_cur_packet_size(driver->ch_wcnss_cntl);
if (r1 > 0 && r1 == r2)
queue_work(driver->diag_wq,
&(driver->diag_read_smd_wcnss_cntl_work));
else
pr_debug("diag: incomplete pkt on WCNSS CNTL ch\n");
break;
case SMD_EVENT_OPEN:
queue_work(driver->diag_cntl_wq,
&(driver->diag_wcnss_mask_update_work));
break;
}
}
static void diag_smd_cntl_send_req(int proc_num)
{
int data_len = 0, type = -1, count_bytes = 0, j, r, flag = 0;
struct bindpkt_params_per_process *pkt_params =
kzalloc(sizeof(struct bindpkt_params_per_process), GFP_KERNEL);
struct diag_ctrl_msg *msg;
struct cmd_code_range *range;
struct bindpkt_params *temp;
void *buf = NULL;
smd_channel_t *smd_ch = NULL;
/* tracks which peripheral is sending registration */
uint16_t reg_mask = 0;
if (pkt_params == NULL) {
pr_alert("diag: Memory allocation failure\n");
return;
}
if (proc_num == MODEM_PROC) {
buf = driver->buf_in_cntl;
smd_ch = driver->ch_cntl;
reg_mask = DIAG_CON_MPSS;
} else if (proc_num == LPASS_PROC) {
buf = driver->buf_in_lpass_cntl;
smd_ch = driver->chlpass_cntl;
reg_mask = DIAG_CON_LPASS;
} else if (proc_num == WCNSS_PROC) {
buf = driver->buf_in_wcnss_cntl;
smd_ch = driver->ch_wcnss_cntl;
reg_mask = DIAG_CON_WCNSS;
}
if (!smd_ch || !buf) {
kfree(pkt_params);
return;
}
r = smd_read_avail(smd_ch);
if (r > IN_BUF_SIZE) {
if (r < MAX_IN_BUF_SIZE) {
pr_err("diag: SMD CNTL sending pkt upto %d bytes", r);
buf = krealloc(buf, r, GFP_KERNEL);
} else {
pr_err("diag: CNTL pkt > %d bytes", MAX_IN_BUF_SIZE);
kfree(pkt_params);
return;
}
}
if (buf && r > 0) {
smd_read(smd_ch, buf, r);
while (count_bytes + HDR_SIZ <= r) {
type = *(uint32_t *)(buf);
data_len = *(uint32_t *)(buf + 4);
if (type < DIAG_CTRL_MSG_REG ||
type > DIAG_CTRL_MSG_F3_MASK_V2) {
pr_alert("diag: Invalid Msg type %d proc %d",
type, proc_num);
break;
}
if (data_len < 0 || data_len > r) {
pr_alert("diag: Invalid data len %d proc %d",
data_len, proc_num);
break;
}
count_bytes = count_bytes+HDR_SIZ+data_len;
if (type == DIAG_CTRL_MSG_REG && r >= count_bytes) {
msg = buf+HDR_SIZ;
range = buf+HDR_SIZ+
sizeof(struct diag_ctrl_msg);
pkt_params->count = msg->count_entries;
temp = kzalloc(pkt_params->count * sizeof(struct
bindpkt_params), GFP_KERNEL);
if (temp == NULL) {
pr_alert("diag: Memory alloc fail\n");
kfree(pkt_params);
return;
}
for (j = 0; j < pkt_params->count; j++) {
temp->cmd_code = msg->cmd_code;
temp->subsys_id = msg->subsysid;
temp->client_id = proc_num;
temp->proc_id = proc_num;
temp->cmd_code_lo = range->cmd_code_lo;
temp->cmd_code_hi = range->cmd_code_hi;
range++;
temp++;
}
temp -= pkt_params->count;
pkt_params->params = temp;
flag = 1;
/* peripheral undergoing SSR should not
* record new registration
*/
if (!(reg_dirty & reg_mask))
diagchar_ioctl(NULL,
DIAG_IOCTL_COMMAND_REG, (unsigned long)
pkt_params);
else
pr_err("diag: drop reg proc %d\n",
proc_num);
kfree(temp);
} else if (type != DIAG_CTRL_MSG_REG) {
flag = 1;
}
buf = buf + HDR_SIZ + data_len;
}
}
kfree(pkt_params);
if (flag) {
/* Poll SMD CNTL channels to check for data */
if (proc_num == MODEM_PROC)
diag_smd_cntl_notify(NULL, SMD_EVENT_DATA);
else if (proc_num == LPASS_PROC)
diag_smd_lpass_cntl_notify(NULL, SMD_EVENT_DATA);
else if (proc_num == WCNSS_PROC)
diag_smd_wcnss_cntl_notify(NULL, SMD_EVENT_DATA);
}
}
void diag_read_smd_cntl_work_fn(struct work_struct *work)
{
diag_smd_cntl_send_req(MODEM_PROC);
}
void diag_read_smd_lpass_cntl_work_fn(struct work_struct *work)
{
diag_smd_cntl_send_req(LPASS_PROC);
}
void diag_read_smd_wcnss_cntl_work_fn(struct work_struct *work)
{
diag_smd_cntl_send_req(WCNSS_PROC);
}
static int diag_smd_cntl_probe(struct platform_device *pdev)
{
int r = 0;
/* open control ports only on 8960 & newer targets */
if (chk_apps_only()) {
if (pdev->id == SMD_APPS_MODEM)
r = smd_open("DIAG_CNTL", &driver->ch_cntl, driver,
diag_smd_cntl_notify);
if (pdev->id == SMD_APPS_QDSP)
r = smd_named_open_on_edge("DIAG_CNTL", SMD_APPS_QDSP
, &driver->chlpass_cntl, driver,
diag_smd_lpass_cntl_notify);
if (pdev->id == SMD_APPS_WCNSS)
r = smd_named_open_on_edge("APPS_RIVA_CTRL",
SMD_APPS_WCNSS, &driver->ch_wcnss_cntl,
driver, diag_smd_wcnss_cntl_notify);
pr_debug("diag: open CNTL port, ID = %d,r = %d\n", pdev->id, r);
}
return 0;
}
static int diagfwd_cntl_runtime_suspend(struct device *dev)
{
dev_dbg(dev, "pm_runtime: suspending...\n");
return 0;
}
static int diagfwd_cntl_runtime_resume(struct device *dev)
{
dev_dbg(dev, "pm_runtime: resuming...\n");
return 0;
}
static const struct dev_pm_ops diagfwd_cntl_dev_pm_ops = {
.runtime_suspend = diagfwd_cntl_runtime_suspend,
.runtime_resume = diagfwd_cntl_runtime_resume,
};
static struct platform_driver msm_smd_ch1_cntl_driver = {
.probe = diag_smd_cntl_probe,
.driver = {
.name = "DIAG_CNTL",
.owner = THIS_MODULE,
.pm = &diagfwd_cntl_dev_pm_ops,
},
};
static struct platform_driver diag_smd_lite_cntl_driver = {
.probe = diag_smd_cntl_probe,
.driver = {
.name = "APPS_RIVA_CTRL",
.owner = THIS_MODULE,
.pm = &diagfwd_cntl_dev_pm_ops,
},
};
void diagfwd_cntl_init(void)
{
reg_dirty = 0;
driver->polling_reg_flag = 0;
driver->diag_cntl_wq = create_singlethread_workqueue("diag_cntl_wq");
if (driver->buf_in_cntl == NULL) {
driver->buf_in_cntl = kzalloc(IN_BUF_SIZE, GFP_KERNEL);
if (driver->buf_in_cntl == NULL)
goto err;
kmemleak_not_leak(driver->buf_in_cntl);
}
if (driver->buf_in_lpass_cntl == NULL) {
driver->buf_in_lpass_cntl = kzalloc(IN_BUF_SIZE, GFP_KERNEL);
if (driver->buf_in_lpass_cntl == NULL)
goto err;
kmemleak_not_leak(driver->buf_in_lpass_cntl);
}
if (driver->buf_in_wcnss_cntl == NULL) {
driver->buf_in_wcnss_cntl = kzalloc(IN_BUF_SIZE, GFP_KERNEL);
if (driver->buf_in_wcnss_cntl == NULL)
goto err;
kmemleak_not_leak(driver->buf_in_wcnss_cntl);
}
platform_driver_register(&msm_smd_ch1_cntl_driver);
platform_driver_register(&diag_smd_lite_cntl_driver);
return;
err:
pr_err("diag: Could not initialize diag buffers");
kfree(driver->buf_in_cntl);
kfree(driver->buf_in_lpass_cntl);
kfree(driver->buf_in_wcnss_cntl);
if (driver->diag_cntl_wq)
destroy_workqueue(driver->diag_cntl_wq);
}
void diagfwd_cntl_exit(void)
{
smd_close(driver->ch_cntl);
smd_close(driver->chlpass_cntl);
smd_close(driver->ch_wcnss_cntl);
driver->ch_cntl = 0;
driver->chlpass_cntl = 0;
driver->ch_wcnss_cntl = 0;
destroy_workqueue(driver->diag_cntl_wq);
platform_driver_unregister(&msm_smd_ch1_cntl_driver);
platform_driver_unregister(&diag_smd_lite_cntl_driver);
kfree(driver->buf_in_cntl);
kfree(driver->buf_in_lpass_cntl);
kfree(driver->buf_in_wcnss_cntl);
}
#ifdef CONFIG_DEBUG_FS
#define DEBUG_BUF_SIZE 4096
static struct dentry *diag_dbgfs_dent;
static int diag_dbgfs_table_index;
static ssize_t diag_dbgfs_read_status(struct file *file, char __user *ubuf,
size_t count, loff_t *ppos)
{
char *buf;
int ret;
buf = kzalloc(sizeof(char) * DEBUG_BUF_SIZE, GFP_KERNEL);
if (!buf) {
pr_err("diag: %s, Error allocating memory\n", __func__);
return -ENOMEM;
}
ret = scnprintf(buf, DEBUG_BUF_SIZE,
"modem ch: 0x%x\n"
"lpass ch: 0x%x\n"
"riva ch: 0x%x\n"
"dci ch: 0x%x\n"
"modem cntl_ch: 0x%x\n"
"lpass cntl_ch: 0x%x\n"
"riva cntl_ch: 0x%x\n"
"CPU Tools id: %d\n"
"Apps only: %d\n"
"Apps master: %d\n"
"Check Polling Response: %d\n"
"polling_reg_flag: %d\n"
"uses device tree: %d\n"
"in_busy_1: %d\n"
"in_busy_2: %d\n"
"in_busy_lpass_1: %d\n"
"in_busy_lpass_2: %d\n"
"in_busy_wcnss_1: %d\n"
"in_busy_wcnss_2: %d\n"
"in_busy_dci: %d\n"
"logging_mode: %d\n",
(unsigned int)driver->ch,
(unsigned int)driver->chlpass,
(unsigned int)driver->ch_wcnss,
(unsigned int)driver->ch_dci,
(unsigned int)driver->ch_cntl,
(unsigned int)driver->chlpass_cntl,
(unsigned int)driver->ch_wcnss_cntl,
chk_config_get_id(),
chk_apps_only(),
chk_apps_master(),
chk_polling_response(),
driver->polling_reg_flag,
driver->use_device_tree,
driver->in_busy_1,
driver->in_busy_2,
driver->in_busy_lpass_1,
driver->in_busy_lpass_2,
driver->in_busy_wcnss_1,
driver->in_busy_wcnss_2,
driver->in_busy_dci,
driver->logging_mode);
#ifdef CONFIG_DIAG_OVER_USB
ret += scnprintf(buf+ret, DEBUG_BUF_SIZE,
"usb_connected: %d\n",
driver->usb_connected);
#endif
ret = simple_read_from_buffer(ubuf, count, ppos, buf, ret);
kfree(buf);
return ret;
}
static ssize_t diag_dbgfs_read_workpending(struct file *file,
char __user *ubuf, size_t count, loff_t *ppos)
{
char *buf;
int ret;
buf = kzalloc(sizeof(char) * DEBUG_BUF_SIZE, GFP_KERNEL);
if (!buf) {
pr_err("diag: %s, Error allocating memory\n", __func__);
return -ENOMEM;
}
ret = scnprintf(buf, DEBUG_BUF_SIZE,
"Pending status for work_stucts:\n"
"diag_drain_work: %d\n"
"diag_read_smd_work: %d\n"
"diag_read_smd_cntl_work: %d\n"
"diag_read_smd_lpass_work: %d\n"
"diag_read_smd_lpass_cntl_work: %d\n"
"diag_read_smd_wcnss_work: %d\n"
"diag_read_smd_wcnss_cntl_work: %d\n"
"diag_modem_mask_update_work: %d\n"
"diag_lpass_mask_update_work: %d\n"
"diag_wcnss_mask_update_work: %d\n"
"diag_read_smd_dci_work: %d\n",
work_pending(&(driver->diag_drain_work)),
work_pending(&(driver->diag_read_smd_work)),
work_pending(&(driver->diag_read_smd_cntl_work)),
work_pending(&(driver->diag_read_smd_lpass_work)),
work_pending(&(driver->diag_read_smd_lpass_cntl_work)),
work_pending(&(driver->diag_read_smd_wcnss_work)),
work_pending(&(driver->diag_read_smd_wcnss_cntl_work)),
work_pending(&(driver->diag_modem_mask_update_work)),
work_pending(&(driver->diag_lpass_mask_update_work)),
work_pending(&(driver->diag_wcnss_mask_update_work)),
work_pending(&(driver->diag_read_smd_dci_work)));
#ifdef CONFIG_DIAG_OVER_USB
ret += scnprintf(buf+ret, DEBUG_BUF_SIZE,
"diag_proc_hdlc_work: %d\n"
"diag_read_work: %d\n",
work_pending(&(driver->diag_proc_hdlc_work)),
work_pending(&(driver->diag_read_work)));
#endif
ret = simple_read_from_buffer(ubuf, count, ppos, buf, ret);
kfree(buf);
return ret;
}
static ssize_t diag_dbgfs_read_table(struct file *file, char __user *ubuf,
size_t count, loff_t *ppos)
{
char *buf;
int ret = 0;
int i;
int bytes_remaining;
int bytes_in_buffer = 0;
int bytes_written;
int buf_size = (DEBUG_BUF_SIZE < count) ? DEBUG_BUF_SIZE : count;
if (diag_dbgfs_table_index >= diag_max_reg) {
/* Done. Reset to prepare for future requests */
diag_dbgfs_table_index = 0;
return 0;
}
buf = kzalloc(sizeof(char) * buf_size, GFP_KERNEL);
if (!buf) {
pr_err("diag: %s, Error allocating memory\n", __func__);
return -ENOMEM;
}
bytes_remaining = buf_size;
for (i = diag_dbgfs_table_index; i < diag_max_reg; i++) {
/* Do not process empty entries in the table */
if (driver->table[i].process_id == 0)
continue;
bytes_written = scnprintf(buf+bytes_in_buffer, bytes_remaining,
"i: %3d, cmd_code: %4x, subsys_id: %4x, "
"client: %2d, cmd_code_lo: %4x, "
"cmd_code_hi: %4x, process_id: %5d\n",
i,
driver->table[i].cmd_code,
driver->table[i].subsys_id,
driver->table[i].client_id,
driver->table[i].cmd_code_lo,
driver->table[i].cmd_code_hi,
driver->table[i].process_id);
bytes_in_buffer += bytes_written;
/* Check if there is room to add another table entry */
bytes_remaining = buf_size - bytes_in_buffer;
if (bytes_remaining < bytes_written)
break;
}
diag_dbgfs_table_index = i;
*ppos = 0;
ret = simple_read_from_buffer(ubuf, count, ppos, buf, bytes_in_buffer);
kfree(buf);
return ret;
}
#ifdef CONFIG_DIAG_BRIDGE_CODE
static ssize_t diag_dbgfs_read_hsic(struct file *file, char __user *ubuf,
size_t count, loff_t *ppos)
{
char *buf;
int ret;
buf = kzalloc(sizeof(char) * DEBUG_BUF_SIZE, GFP_KERNEL);
if (!buf) {
pr_err("diag: %s, Error allocating memory\n", __func__);
return -ENOMEM;
}
ret = scnprintf(buf, DEBUG_BUF_SIZE,
"hsic ch: %d\n"
"hsic_inited: %d\n"
"hsic enabled: %d\n"
"hsic_opened: %d\n"
"hsic_suspend: %d\n"
"in_busy_hsic_read_on_device: %d\n"
"in_busy_hsic_write: %d\n"
"count_hsic_pool: %d\n"
"count_hsic_write_pool: %d\n"
"diag_hsic_pool: %x\n"
"diag_hsic_write_pool: %x\n"
"write_len_mdm: %d\n"
"num_hsic_buf_tbl_entries: %d\n"
"usb_mdm_connected: %d\n"
"diag_read_mdm_work: %d\n"
"diag_read_hsic_work: %d\n"
"diag_disconnect_work: %d\n"
"diag_usb_read_complete_work: %d\n",
driver->hsic_ch,
driver->hsic_inited,
driver->hsic_device_enabled,
driver->hsic_device_opened,
driver->hsic_suspend,
driver->in_busy_hsic_read_on_device,
driver->in_busy_hsic_write,
driver->count_hsic_pool,
driver->count_hsic_write_pool,
(unsigned int)driver->diag_hsic_pool,
(unsigned int)driver->diag_hsic_write_pool,
driver->write_len_mdm,
driver->num_hsic_buf_tbl_entries,
driver->usb_mdm_connected,
work_pending(&(driver->diag_read_mdm_work)),
work_pending(&(driver->diag_read_hsic_work)),
work_pending(&(driver->diag_disconnect_work)),
work_pending(&(driver->diag_usb_read_complete_work)));
ret = simple_read_from_buffer(ubuf, count, ppos, buf, ret);
kfree(buf);
return ret;
}
const struct file_operations diag_dbgfs_hsic_ops = {
.read = diag_dbgfs_read_hsic,
};
#endif
const struct file_operations diag_dbgfs_status_ops = {
.read = diag_dbgfs_read_status,
};
const struct file_operations diag_dbgfs_table_ops = {
.read = diag_dbgfs_read_table,
};
const struct file_operations diag_dbgfs_workpending_ops = {
.read = diag_dbgfs_read_workpending,
};
void diag_debugfs_init(void)
{
diag_dbgfs_dent = debugfs_create_dir("diag", 0);
if (IS_ERR(diag_dbgfs_dent))
return;
debugfs_create_file("status", 0444, diag_dbgfs_dent, 0,
&diag_dbgfs_status_ops);
debugfs_create_file("table", 0444, diag_dbgfs_dent, 0,
&diag_dbgfs_table_ops);
debugfs_create_file("work_pending", 0444, diag_dbgfs_dent, 0,
&diag_dbgfs_workpending_ops);
#ifdef CONFIG_DIAG_BRIDGE_CODE
debugfs_create_file("hsic", 0444, diag_dbgfs_dent, 0,
&diag_dbgfs_hsic_ops);
#endif
diag_dbgfs_table_index = 0;
}
void diag_debugfs_cleanup(void)
{
if (diag_dbgfs_dent) {
debugfs_remove_recursive(diag_dbgfs_dent);
diag_dbgfs_dent = NULL;
}
}
#else
void diag_debugfs_init(void) { }
void diag_debugfs_cleanup(void) { }
#endif