| /* cyberstorm.c: Driver for CyberStorm SCSI Controller. |
| * |
| * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) |
| * |
| * The CyberStorm SCSI driver is based on David S. Miller's ESP driver |
| * for the Sparc computers. |
| * |
| * This work was made possible by Phase5 who willingly (and most generously) |
| * supported me with hardware and all the information I needed. |
| */ |
| |
| /* TODO: |
| * |
| * 1) Figure out how to make a cleaner merge with the sparc driver with regard |
| * to the caches and the Sparc MMU mapping. |
| * 2) Make as few routines required outside the generic driver. A lot of the |
| * routines in this file used to be inline! |
| */ |
| |
| #include <linux/module.h> |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/blkdev.h> |
| #include <linux/proc_fs.h> |
| #include <linux/stat.h> |
| #include <linux/interrupt.h> |
| |
| #include "scsi.h" |
| #include <scsi/scsi_host.h> |
| #include "NCR53C9x.h" |
| |
| #include <linux/zorro.h> |
| #include <asm/irq.h> |
| #include <asm/amigaints.h> |
| #include <asm/amigahw.h> |
| |
| #include <asm/pgtable.h> |
| |
| /* The controller registers can be found in the Z2 config area at these |
| * offsets: |
| */ |
| #define CYBER_ESP_ADDR 0xf400 |
| #define CYBER_DMA_ADDR 0xf800 |
| |
| |
| /* The CyberStorm DMA interface */ |
| struct cyber_dma_registers { |
| volatile unsigned char dma_addr0; /* DMA address (MSB) [0x000] */ |
| unsigned char dmapad1[1]; |
| volatile unsigned char dma_addr1; /* DMA address [0x002] */ |
| unsigned char dmapad2[1]; |
| volatile unsigned char dma_addr2; /* DMA address [0x004] */ |
| unsigned char dmapad3[1]; |
| volatile unsigned char dma_addr3; /* DMA address (LSB) [0x006] */ |
| unsigned char dmapad4[0x3fb]; |
| volatile unsigned char cond_reg; /* DMA cond (ro) [0x402] */ |
| #define ctrl_reg cond_reg /* DMA control (wo) [0x402] */ |
| }; |
| |
| /* DMA control bits */ |
| #define CYBER_DMA_LED 0x80 /* HD led control 1 = on */ |
| #define CYBER_DMA_WRITE 0x40 /* DMA direction. 1 = write */ |
| #define CYBER_DMA_Z3 0x20 /* 16 (Z2) or 32 (CHIP/Z3) bit DMA transfer */ |
| |
| /* DMA status bits */ |
| #define CYBER_DMA_HNDL_INTR 0x80 /* DMA IRQ pending? */ |
| |
| /* The bits below appears to be Phase5 Debug bits only; they were not |
| * described by Phase5 so using them may seem a bit stupid... |
| */ |
| #define CYBER_HOST_ID 0x02 /* If set, host ID should be 7, otherwise |
| * it should be 6. |
| */ |
| #define CYBER_SLOW_CABLE 0x08 /* If *not* set, assume SLOW_CABLE */ |
| |
| static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); |
| static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); |
| static void dma_dump_state(struct NCR_ESP *esp); |
| static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); |
| static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); |
| static void dma_ints_off(struct NCR_ESP *esp); |
| static void dma_ints_on(struct NCR_ESP *esp); |
| static int dma_irq_p(struct NCR_ESP *esp); |
| static void dma_led_off(struct NCR_ESP *esp); |
| static void dma_led_on(struct NCR_ESP *esp); |
| static int dma_ports_p(struct NCR_ESP *esp); |
| static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); |
| |
| static unsigned char ctrl_data = 0; /* Keep backup of the stuff written |
| * to ctrl_reg. Always write a copy |
| * to this register when writing to |
| * the hardware register! |
| */ |
| |
| static volatile unsigned char cmd_buffer[16]; |
| /* This is where all commands are put |
| * before they are transferred to the ESP chip |
| * via PIO. |
| */ |
| |
| /***************************************************************** Detection */ |
| int __init cyber_esp_detect(struct scsi_host_template *tpnt) |
| { |
| struct NCR_ESP *esp; |
| struct zorro_dev *z = NULL; |
| unsigned long address; |
| |
| while ((z = zorro_find_device(ZORRO_WILDCARD, z))) { |
| unsigned long board = z->resource.start; |
| if ((z->id == ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM || |
| z->id == ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060) && |
| request_mem_region(board+CYBER_ESP_ADDR, |
| sizeof(struct ESP_regs), "NCR53C9x")) { |
| /* Figure out if this is a CyberStorm or really a |
| * Fastlane/Blizzard Mk II by looking at the board size. |
| * CyberStorm maps 64kB |
| * (ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM does anyway) |
| */ |
| if(z->resource.end-board != 0xffff) { |
| release_mem_region(board+CYBER_ESP_ADDR, |
| sizeof(struct ESP_regs)); |
| return 0; |
| } |
| esp = esp_allocate(tpnt, (void *)board + CYBER_ESP_ADDR, 0); |
| |
| /* Do command transfer with programmed I/O */ |
| esp->do_pio_cmds = 1; |
| |
| /* Required functions */ |
| esp->dma_bytes_sent = &dma_bytes_sent; |
| esp->dma_can_transfer = &dma_can_transfer; |
| esp->dma_dump_state = &dma_dump_state; |
| esp->dma_init_read = &dma_init_read; |
| esp->dma_init_write = &dma_init_write; |
| esp->dma_ints_off = &dma_ints_off; |
| esp->dma_ints_on = &dma_ints_on; |
| esp->dma_irq_p = &dma_irq_p; |
| esp->dma_ports_p = &dma_ports_p; |
| esp->dma_setup = &dma_setup; |
| |
| /* Optional functions */ |
| esp->dma_barrier = 0; |
| esp->dma_drain = 0; |
| esp->dma_invalidate = 0; |
| esp->dma_irq_entry = 0; |
| esp->dma_irq_exit = 0; |
| esp->dma_led_on = &dma_led_on; |
| esp->dma_led_off = &dma_led_off; |
| esp->dma_poll = 0; |
| esp->dma_reset = 0; |
| |
| /* SCSI chip speed */ |
| esp->cfreq = 40000000; |
| |
| /* The DMA registers on the CyberStorm are mapped |
| * relative to the device (i.e. in the same Zorro |
| * I/O block). |
| */ |
| address = (unsigned long)ZTWO_VADDR(board); |
| esp->dregs = (void *)(address + CYBER_DMA_ADDR); |
| |
| /* ESP register base */ |
| esp->eregs = (struct ESP_regs *)(address + CYBER_ESP_ADDR); |
| |
| /* Set the command buffer */ |
| esp->esp_command = cmd_buffer; |
| esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); |
| |
| esp->irq = IRQ_AMIGA_PORTS; |
| request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, |
| "CyberStorm SCSI", esp->ehost); |
| /* Figure out our scsi ID on the bus */ |
| /* The DMA cond flag contains a hardcoded jumper bit |
| * which can be used to select host number 6 or 7. |
| * However, even though it may change, we use a hardcoded |
| * value of 7. |
| */ |
| esp->scsi_id = 7; |
| |
| /* We don't have a differential SCSI-bus. */ |
| esp->diff = 0; |
| |
| esp_initialize(esp); |
| |
| printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); |
| esps_running = esps_in_use; |
| return esps_in_use; |
| } |
| } |
| return 0; |
| } |
| |
| /************************************************************* DMA Functions */ |
| static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) |
| { |
| /* Since the CyberStorm DMA is fully dedicated to the ESP chip, |
| * the number of bytes sent (to the ESP chip) equals the number |
| * of bytes in the FIFO - there is no buffering in the DMA controller. |
| * XXXX Do I read this right? It is from host to ESP, right? |
| */ |
| return fifo_count; |
| } |
| |
| static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) |
| { |
| /* I don't think there's any limit on the CyberDMA. So we use what |
| * the ESP chip can handle (24 bit). |
| */ |
| unsigned long sz = sp->SCp.this_residual; |
| if(sz > 0x1000000) |
| sz = 0x1000000; |
| return sz; |
| } |
| |
| static void dma_dump_state(struct NCR_ESP *esp) |
| { |
| ESPLOG(("esp%d: dma -- cond_reg<%02x>\n", |
| esp->esp_id, ((struct cyber_dma_registers *) |
| (esp->dregs))->cond_reg)); |
| ESPLOG(("intreq:<%04x>, intena:<%04x>\n", |
| amiga_custom.intreqr, amiga_custom.intenar)); |
| } |
| |
| static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) |
| { |
| struct cyber_dma_registers *dregs = |
| (struct cyber_dma_registers *) esp->dregs; |
| |
| cache_clear(addr, length); |
| |
| addr &= ~(1); |
| dregs->dma_addr0 = (addr >> 24) & 0xff; |
| dregs->dma_addr1 = (addr >> 16) & 0xff; |
| dregs->dma_addr2 = (addr >> 8) & 0xff; |
| dregs->dma_addr3 = (addr ) & 0xff; |
| ctrl_data &= ~(CYBER_DMA_WRITE); |
| |
| /* Check if physical address is outside Z2 space and of |
| * block length/block aligned in memory. If this is the |
| * case, enable 32 bit transfer. In all other cases, fall back |
| * to 16 bit transfer. |
| * Obviously 32 bit transfer should be enabled if the DMA address |
| * and length are 32 bit aligned. However, this leads to some |
| * strange behavior. Even 64 bit aligned addr/length fails. |
| * Until I've found a reason for this, 32 bit transfer is only |
| * used for full-block transfers (1kB). |
| * -jskov |
| */ |
| #if 0 |
| if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) && |
| (addr < 0xff0000))) |
| ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ |
| else |
| ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */ |
| #else |
| ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ |
| #endif |
| dregs->ctrl_reg = ctrl_data; |
| } |
| |
| static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) |
| { |
| struct cyber_dma_registers *dregs = |
| (struct cyber_dma_registers *) esp->dregs; |
| |
| cache_push(addr, length); |
| |
| addr |= 1; |
| dregs->dma_addr0 = (addr >> 24) & 0xff; |
| dregs->dma_addr1 = (addr >> 16) & 0xff; |
| dregs->dma_addr2 = (addr >> 8) & 0xff; |
| dregs->dma_addr3 = (addr ) & 0xff; |
| ctrl_data |= CYBER_DMA_WRITE; |
| |
| /* See comment above */ |
| #if 0 |
| if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) && |
| (addr < 0xff0000))) |
| ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ |
| else |
| ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */ |
| #else |
| ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ |
| #endif |
| dregs->ctrl_reg = ctrl_data; |
| } |
| |
| static void dma_ints_off(struct NCR_ESP *esp) |
| { |
| disable_irq(esp->irq); |
| } |
| |
| static void dma_ints_on(struct NCR_ESP *esp) |
| { |
| enable_irq(esp->irq); |
| } |
| |
| static int dma_irq_p(struct NCR_ESP *esp) |
| { |
| /* It's important to check the DMA IRQ bit in the correct way! */ |
| return ((esp_read(esp->eregs->esp_status) & ESP_STAT_INTR) && |
| ((((struct cyber_dma_registers *)(esp->dregs))->cond_reg) & |
| CYBER_DMA_HNDL_INTR)); |
| } |
| |
| static void dma_led_off(struct NCR_ESP *esp) |
| { |
| ctrl_data &= ~CYBER_DMA_LED; |
| ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; |
| } |
| |
| static void dma_led_on(struct NCR_ESP *esp) |
| { |
| ctrl_data |= CYBER_DMA_LED; |
| ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; |
| } |
| |
| static int dma_ports_p(struct NCR_ESP *esp) |
| { |
| return ((amiga_custom.intenar) & IF_PORTS); |
| } |
| |
| static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) |
| { |
| /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" |
| * so when (write) is true, it actually means READ! |
| */ |
| if(write){ |
| dma_init_read(esp, addr, count); |
| } else { |
| dma_init_write(esp, addr, count); |
| } |
| } |
| |
| #define HOSTS_C |
| |
| int cyber_esp_release(struct Scsi_Host *instance) |
| { |
| #ifdef MODULE |
| unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; |
| |
| esp_deallocate((struct NCR_ESP *)instance->hostdata); |
| esp_release(); |
| release_mem_region(address, sizeof(struct ESP_regs)); |
| free_irq(IRQ_AMIGA_PORTS, esp_intr); |
| #endif |
| return 1; |
| } |
| |
| |
| static struct scsi_host_template driver_template = { |
| .proc_name = "esp-cyberstorm", |
| .proc_info = esp_proc_info, |
| .name = "CyberStorm SCSI", |
| .detect = cyber_esp_detect, |
| .slave_alloc = esp_slave_alloc, |
| .slave_destroy = esp_slave_destroy, |
| .release = cyber_esp_release, |
| .queuecommand = esp_queue, |
| .eh_abort_handler = esp_abort, |
| .eh_bus_reset_handler = esp_reset, |
| .can_queue = 7, |
| .this_id = 7, |
| .sg_tablesize = SG_ALL, |
| .cmd_per_lun = 1, |
| .use_clustering = ENABLE_CLUSTERING |
| }; |
| |
| |
| #include "scsi_module.c" |
| |
| MODULE_LICENSE("GPL"); |