| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * |
| * Authors: |
| * Avi Kivity <avi@qumranet.com> |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "irq.h" |
| #include "mmu.h" |
| |
| #include <linux/kvm_host.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/sched.h> |
| #include <linux/moduleparam.h> |
| #include <linux/ftrace_event.h> |
| #include "kvm_cache_regs.h" |
| #include "x86.h" |
| |
| #include <asm/io.h> |
| #include <asm/desc.h> |
| #include <asm/vmx.h> |
| #include <asm/virtext.h> |
| #include <asm/mce.h> |
| |
| #include "trace.h" |
| |
| #define __ex(x) __kvm_handle_fault_on_reboot(x) |
| |
| MODULE_AUTHOR("Qumranet"); |
| MODULE_LICENSE("GPL"); |
| |
| static int __read_mostly bypass_guest_pf = 1; |
| module_param(bypass_guest_pf, bool, S_IRUGO); |
| |
| static int __read_mostly enable_vpid = 1; |
| module_param_named(vpid, enable_vpid, bool, 0444); |
| |
| static int __read_mostly flexpriority_enabled = 1; |
| module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); |
| |
| static int __read_mostly enable_ept = 1; |
| module_param_named(ept, enable_ept, bool, S_IRUGO); |
| |
| static int __read_mostly enable_unrestricted_guest = 1; |
| module_param_named(unrestricted_guest, |
| enable_unrestricted_guest, bool, S_IRUGO); |
| |
| static int __read_mostly emulate_invalid_guest_state = 0; |
| module_param(emulate_invalid_guest_state, bool, S_IRUGO); |
| |
| struct vmcs { |
| u32 revision_id; |
| u32 abort; |
| char data[0]; |
| }; |
| |
| struct vcpu_vmx { |
| struct kvm_vcpu vcpu; |
| struct list_head local_vcpus_link; |
| unsigned long host_rsp; |
| int launched; |
| u8 fail; |
| u32 idt_vectoring_info; |
| struct kvm_msr_entry *guest_msrs; |
| struct kvm_msr_entry *host_msrs; |
| int nmsrs; |
| int save_nmsrs; |
| int msr_offset_efer; |
| #ifdef CONFIG_X86_64 |
| int msr_offset_kernel_gs_base; |
| #endif |
| struct vmcs *vmcs; |
| struct { |
| int loaded; |
| u16 fs_sel, gs_sel, ldt_sel; |
| int gs_ldt_reload_needed; |
| int fs_reload_needed; |
| int guest_efer_loaded; |
| } host_state; |
| struct { |
| int vm86_active; |
| u8 save_iopl; |
| struct kvm_save_segment { |
| u16 selector; |
| unsigned long base; |
| u32 limit; |
| u32 ar; |
| } tr, es, ds, fs, gs; |
| struct { |
| bool pending; |
| u8 vector; |
| unsigned rip; |
| } irq; |
| } rmode; |
| int vpid; |
| bool emulation_required; |
| enum emulation_result invalid_state_emulation_result; |
| |
| /* Support for vnmi-less CPUs */ |
| int soft_vnmi_blocked; |
| ktime_t entry_time; |
| s64 vnmi_blocked_time; |
| u32 exit_reason; |
| }; |
| |
| static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) |
| { |
| return container_of(vcpu, struct vcpu_vmx, vcpu); |
| } |
| |
| static int init_rmode(struct kvm *kvm); |
| static u64 construct_eptp(unsigned long root_hpa); |
| |
| static DEFINE_PER_CPU(struct vmcs *, vmxarea); |
| static DEFINE_PER_CPU(struct vmcs *, current_vmcs); |
| static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu); |
| |
| static unsigned long *vmx_io_bitmap_a; |
| static unsigned long *vmx_io_bitmap_b; |
| static unsigned long *vmx_msr_bitmap_legacy; |
| static unsigned long *vmx_msr_bitmap_longmode; |
| |
| static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); |
| static DEFINE_SPINLOCK(vmx_vpid_lock); |
| |
| static struct vmcs_config { |
| int size; |
| int order; |
| u32 revision_id; |
| u32 pin_based_exec_ctrl; |
| u32 cpu_based_exec_ctrl; |
| u32 cpu_based_2nd_exec_ctrl; |
| u32 vmexit_ctrl; |
| u32 vmentry_ctrl; |
| } vmcs_config; |
| |
| static struct vmx_capability { |
| u32 ept; |
| u32 vpid; |
| } vmx_capability; |
| |
| #define VMX_SEGMENT_FIELD(seg) \ |
| [VCPU_SREG_##seg] = { \ |
| .selector = GUEST_##seg##_SELECTOR, \ |
| .base = GUEST_##seg##_BASE, \ |
| .limit = GUEST_##seg##_LIMIT, \ |
| .ar_bytes = GUEST_##seg##_AR_BYTES, \ |
| } |
| |
| static struct kvm_vmx_segment_field { |
| unsigned selector; |
| unsigned base; |
| unsigned limit; |
| unsigned ar_bytes; |
| } kvm_vmx_segment_fields[] = { |
| VMX_SEGMENT_FIELD(CS), |
| VMX_SEGMENT_FIELD(DS), |
| VMX_SEGMENT_FIELD(ES), |
| VMX_SEGMENT_FIELD(FS), |
| VMX_SEGMENT_FIELD(GS), |
| VMX_SEGMENT_FIELD(SS), |
| VMX_SEGMENT_FIELD(TR), |
| VMX_SEGMENT_FIELD(LDTR), |
| }; |
| |
| static void ept_save_pdptrs(struct kvm_vcpu *vcpu); |
| |
| /* |
| * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it |
| * away by decrementing the array size. |
| */ |
| static const u32 vmx_msr_index[] = { |
| #ifdef CONFIG_X86_64 |
| MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE, |
| #endif |
| MSR_EFER, MSR_K6_STAR, |
| }; |
| #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index) |
| |
| static void load_msrs(struct kvm_msr_entry *e, int n) |
| { |
| int i; |
| |
| for (i = 0; i < n; ++i) |
| wrmsrl(e[i].index, e[i].data); |
| } |
| |
| static void save_msrs(struct kvm_msr_entry *e, int n) |
| { |
| int i; |
| |
| for (i = 0; i < n; ++i) |
| rdmsrl(e[i].index, e[i].data); |
| } |
| |
| static inline int is_page_fault(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | |
| INTR_INFO_VALID_MASK)) == |
| (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK); |
| } |
| |
| static inline int is_no_device(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | |
| INTR_INFO_VALID_MASK)) == |
| (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK); |
| } |
| |
| static inline int is_invalid_opcode(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | |
| INTR_INFO_VALID_MASK)) == |
| (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK); |
| } |
| |
| static inline int is_external_interrupt(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) |
| == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); |
| } |
| |
| static inline int is_machine_check(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | |
| INTR_INFO_VALID_MASK)) == |
| (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK); |
| } |
| |
| static inline int cpu_has_vmx_msr_bitmap(void) |
| { |
| return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS; |
| } |
| |
| static inline int cpu_has_vmx_tpr_shadow(void) |
| { |
| return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW; |
| } |
| |
| static inline int vm_need_tpr_shadow(struct kvm *kvm) |
| { |
| return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)); |
| } |
| |
| static inline int cpu_has_secondary_exec_ctrls(void) |
| { |
| return vmcs_config.cpu_based_exec_ctrl & |
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; |
| } |
| |
| static inline bool cpu_has_vmx_virtualize_apic_accesses(void) |
| { |
| return vmcs_config.cpu_based_2nd_exec_ctrl & |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| } |
| |
| static inline bool cpu_has_vmx_flexpriority(void) |
| { |
| return cpu_has_vmx_tpr_shadow() && |
| cpu_has_vmx_virtualize_apic_accesses(); |
| } |
| |
| static inline bool cpu_has_vmx_ept_execute_only(void) |
| { |
| return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT); |
| } |
| |
| static inline bool cpu_has_vmx_eptp_uncacheable(void) |
| { |
| return !!(vmx_capability.ept & VMX_EPTP_UC_BIT); |
| } |
| |
| static inline bool cpu_has_vmx_eptp_writeback(void) |
| { |
| return !!(vmx_capability.ept & VMX_EPTP_WB_BIT); |
| } |
| |
| static inline bool cpu_has_vmx_ept_2m_page(void) |
| { |
| return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT); |
| } |
| |
| static inline int cpu_has_vmx_invept_individual_addr(void) |
| { |
| return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT); |
| } |
| |
| static inline int cpu_has_vmx_invept_context(void) |
| { |
| return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT); |
| } |
| |
| static inline int cpu_has_vmx_invept_global(void) |
| { |
| return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT); |
| } |
| |
| static inline int cpu_has_vmx_ept(void) |
| { |
| return vmcs_config.cpu_based_2nd_exec_ctrl & |
| SECONDARY_EXEC_ENABLE_EPT; |
| } |
| |
| static inline int cpu_has_vmx_unrestricted_guest(void) |
| { |
| return vmcs_config.cpu_based_2nd_exec_ctrl & |
| SECONDARY_EXEC_UNRESTRICTED_GUEST; |
| } |
| |
| static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm) |
| { |
| return flexpriority_enabled && |
| (cpu_has_vmx_virtualize_apic_accesses()) && |
| (irqchip_in_kernel(kvm)); |
| } |
| |
| static inline int cpu_has_vmx_vpid(void) |
| { |
| return vmcs_config.cpu_based_2nd_exec_ctrl & |
| SECONDARY_EXEC_ENABLE_VPID; |
| } |
| |
| static inline int cpu_has_virtual_nmis(void) |
| { |
| return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS; |
| } |
| |
| static inline bool report_flexpriority(void) |
| { |
| return flexpriority_enabled; |
| } |
| |
| static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) |
| { |
| int i; |
| |
| for (i = 0; i < vmx->nmsrs; ++i) |
| if (vmx->guest_msrs[i].index == msr) |
| return i; |
| return -1; |
| } |
| |
| static inline void __invvpid(int ext, u16 vpid, gva_t gva) |
| { |
| struct { |
| u64 vpid : 16; |
| u64 rsvd : 48; |
| u64 gva; |
| } operand = { vpid, 0, gva }; |
| |
| asm volatile (__ex(ASM_VMX_INVVPID) |
| /* CF==1 or ZF==1 --> rc = -1 */ |
| "; ja 1f ; ud2 ; 1:" |
| : : "a"(&operand), "c"(ext) : "cc", "memory"); |
| } |
| |
| static inline void __invept(int ext, u64 eptp, gpa_t gpa) |
| { |
| struct { |
| u64 eptp, gpa; |
| } operand = {eptp, gpa}; |
| |
| asm volatile (__ex(ASM_VMX_INVEPT) |
| /* CF==1 or ZF==1 --> rc = -1 */ |
| "; ja 1f ; ud2 ; 1:\n" |
| : : "a" (&operand), "c" (ext) : "cc", "memory"); |
| } |
| |
| static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) |
| { |
| int i; |
| |
| i = __find_msr_index(vmx, msr); |
| if (i >= 0) |
| return &vmx->guest_msrs[i]; |
| return NULL; |
| } |
| |
| static void vmcs_clear(struct vmcs *vmcs) |
| { |
| u64 phys_addr = __pa(vmcs); |
| u8 error; |
| |
| asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0" |
| : "=g"(error) : "a"(&phys_addr), "m"(phys_addr) |
| : "cc", "memory"); |
| if (error) |
| printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", |
| vmcs, phys_addr); |
| } |
| |
| static void __vcpu_clear(void *arg) |
| { |
| struct vcpu_vmx *vmx = arg; |
| int cpu = raw_smp_processor_id(); |
| |
| if (vmx->vcpu.cpu == cpu) |
| vmcs_clear(vmx->vmcs); |
| if (per_cpu(current_vmcs, cpu) == vmx->vmcs) |
| per_cpu(current_vmcs, cpu) = NULL; |
| rdtscll(vmx->vcpu.arch.host_tsc); |
| list_del(&vmx->local_vcpus_link); |
| vmx->vcpu.cpu = -1; |
| vmx->launched = 0; |
| } |
| |
| static void vcpu_clear(struct vcpu_vmx *vmx) |
| { |
| if (vmx->vcpu.cpu == -1) |
| return; |
| smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1); |
| } |
| |
| static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx) |
| { |
| if (vmx->vpid == 0) |
| return; |
| |
| __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0); |
| } |
| |
| static inline void ept_sync_global(void) |
| { |
| if (cpu_has_vmx_invept_global()) |
| __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0); |
| } |
| |
| static inline void ept_sync_context(u64 eptp) |
| { |
| if (enable_ept) { |
| if (cpu_has_vmx_invept_context()) |
| __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0); |
| else |
| ept_sync_global(); |
| } |
| } |
| |
| static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa) |
| { |
| if (enable_ept) { |
| if (cpu_has_vmx_invept_individual_addr()) |
| __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR, |
| eptp, gpa); |
| else |
| ept_sync_context(eptp); |
| } |
| } |
| |
| static unsigned long vmcs_readl(unsigned long field) |
| { |
| unsigned long value; |
| |
| asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX) |
| : "=a"(value) : "d"(field) : "cc"); |
| return value; |
| } |
| |
| static u16 vmcs_read16(unsigned long field) |
| { |
| return vmcs_readl(field); |
| } |
| |
| static u32 vmcs_read32(unsigned long field) |
| { |
| return vmcs_readl(field); |
| } |
| |
| static u64 vmcs_read64(unsigned long field) |
| { |
| #ifdef CONFIG_X86_64 |
| return vmcs_readl(field); |
| #else |
| return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32); |
| #endif |
| } |
| |
| static noinline void vmwrite_error(unsigned long field, unsigned long value) |
| { |
| printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", |
| field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); |
| dump_stack(); |
| } |
| |
| static void vmcs_writel(unsigned long field, unsigned long value) |
| { |
| u8 error; |
| |
| asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0" |
| : "=q"(error) : "a"(value), "d"(field) : "cc"); |
| if (unlikely(error)) |
| vmwrite_error(field, value); |
| } |
| |
| static void vmcs_write16(unsigned long field, u16 value) |
| { |
| vmcs_writel(field, value); |
| } |
| |
| static void vmcs_write32(unsigned long field, u32 value) |
| { |
| vmcs_writel(field, value); |
| } |
| |
| static void vmcs_write64(unsigned long field, u64 value) |
| { |
| vmcs_writel(field, value); |
| #ifndef CONFIG_X86_64 |
| asm volatile (""); |
| vmcs_writel(field+1, value >> 32); |
| #endif |
| } |
| |
| static void vmcs_clear_bits(unsigned long field, u32 mask) |
| { |
| vmcs_writel(field, vmcs_readl(field) & ~mask); |
| } |
| |
| static void vmcs_set_bits(unsigned long field, u32 mask) |
| { |
| vmcs_writel(field, vmcs_readl(field) | mask); |
| } |
| |
| static void update_exception_bitmap(struct kvm_vcpu *vcpu) |
| { |
| u32 eb; |
| |
| eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR); |
| if (!vcpu->fpu_active) |
| eb |= 1u << NM_VECTOR; |
| /* |
| * Unconditionally intercept #DB so we can maintain dr6 without |
| * reading it every exit. |
| */ |
| eb |= 1u << DB_VECTOR; |
| if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) |
| eb |= 1u << BP_VECTOR; |
| } |
| if (to_vmx(vcpu)->rmode.vm86_active) |
| eb = ~0; |
| if (enable_ept) |
| eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ |
| vmcs_write32(EXCEPTION_BITMAP, eb); |
| } |
| |
| static void reload_tss(void) |
| { |
| /* |
| * VT restores TR but not its size. Useless. |
| */ |
| struct descriptor_table gdt; |
| struct desc_struct *descs; |
| |
| kvm_get_gdt(&gdt); |
| descs = (void *)gdt.base; |
| descs[GDT_ENTRY_TSS].type = 9; /* available TSS */ |
| load_TR_desc(); |
| } |
| |
| static void load_transition_efer(struct vcpu_vmx *vmx) |
| { |
| int efer_offset = vmx->msr_offset_efer; |
| u64 host_efer; |
| u64 guest_efer; |
| u64 ignore_bits; |
| |
| if (efer_offset < 0) |
| return; |
| host_efer = vmx->host_msrs[efer_offset].data; |
| guest_efer = vmx->guest_msrs[efer_offset].data; |
| |
| /* |
| * NX is emulated; LMA and LME handled by hardware; SCE meaninless |
| * outside long mode |
| */ |
| ignore_bits = EFER_NX | EFER_SCE; |
| #ifdef CONFIG_X86_64 |
| ignore_bits |= EFER_LMA | EFER_LME; |
| /* SCE is meaningful only in long mode on Intel */ |
| if (guest_efer & EFER_LMA) |
| ignore_bits &= ~(u64)EFER_SCE; |
| #endif |
| if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits)) |
| return; |
| |
| vmx->host_state.guest_efer_loaded = 1; |
| guest_efer &= ~ignore_bits; |
| guest_efer |= host_efer & ignore_bits; |
| wrmsrl(MSR_EFER, guest_efer); |
| vmx->vcpu.stat.efer_reload++; |
| } |
| |
| static void reload_host_efer(struct vcpu_vmx *vmx) |
| { |
| if (vmx->host_state.guest_efer_loaded) { |
| vmx->host_state.guest_efer_loaded = 0; |
| load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1); |
| } |
| } |
| |
| static void vmx_save_host_state(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (vmx->host_state.loaded) |
| return; |
| |
| vmx->host_state.loaded = 1; |
| /* |
| * Set host fs and gs selectors. Unfortunately, 22.2.3 does not |
| * allow segment selectors with cpl > 0 or ti == 1. |
| */ |
| vmx->host_state.ldt_sel = kvm_read_ldt(); |
| vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel; |
| vmx->host_state.fs_sel = kvm_read_fs(); |
| if (!(vmx->host_state.fs_sel & 7)) { |
| vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel); |
| vmx->host_state.fs_reload_needed = 0; |
| } else { |
| vmcs_write16(HOST_FS_SELECTOR, 0); |
| vmx->host_state.fs_reload_needed = 1; |
| } |
| vmx->host_state.gs_sel = kvm_read_gs(); |
| if (!(vmx->host_state.gs_sel & 7)) |
| vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel); |
| else { |
| vmcs_write16(HOST_GS_SELECTOR, 0); |
| vmx->host_state.gs_ldt_reload_needed = 1; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE)); |
| vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE)); |
| #else |
| vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel)); |
| vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel)); |
| #endif |
| |
| #ifdef CONFIG_X86_64 |
| if (is_long_mode(&vmx->vcpu)) |
| save_msrs(vmx->host_msrs + |
| vmx->msr_offset_kernel_gs_base, 1); |
| |
| #endif |
| load_msrs(vmx->guest_msrs, vmx->save_nmsrs); |
| load_transition_efer(vmx); |
| } |
| |
| static void __vmx_load_host_state(struct vcpu_vmx *vmx) |
| { |
| unsigned long flags; |
| |
| if (!vmx->host_state.loaded) |
| return; |
| |
| ++vmx->vcpu.stat.host_state_reload; |
| vmx->host_state.loaded = 0; |
| if (vmx->host_state.fs_reload_needed) |
| kvm_load_fs(vmx->host_state.fs_sel); |
| if (vmx->host_state.gs_ldt_reload_needed) { |
| kvm_load_ldt(vmx->host_state.ldt_sel); |
| /* |
| * If we have to reload gs, we must take care to |
| * preserve our gs base. |
| */ |
| local_irq_save(flags); |
| kvm_load_gs(vmx->host_state.gs_sel); |
| #ifdef CONFIG_X86_64 |
| wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE)); |
| #endif |
| local_irq_restore(flags); |
| } |
| reload_tss(); |
| save_msrs(vmx->guest_msrs, vmx->save_nmsrs); |
| load_msrs(vmx->host_msrs, vmx->save_nmsrs); |
| reload_host_efer(vmx); |
| } |
| |
| static void vmx_load_host_state(struct vcpu_vmx *vmx) |
| { |
| preempt_disable(); |
| __vmx_load_host_state(vmx); |
| preempt_enable(); |
| } |
| |
| /* |
| * Switches to specified vcpu, until a matching vcpu_put(), but assumes |
| * vcpu mutex is already taken. |
| */ |
| static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u64 phys_addr = __pa(vmx->vmcs); |
| u64 tsc_this, delta, new_offset; |
| |
| if (vcpu->cpu != cpu) { |
| vcpu_clear(vmx); |
| kvm_migrate_timers(vcpu); |
| set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests); |
| local_irq_disable(); |
| list_add(&vmx->local_vcpus_link, |
| &per_cpu(vcpus_on_cpu, cpu)); |
| local_irq_enable(); |
| } |
| |
| if (per_cpu(current_vmcs, cpu) != vmx->vmcs) { |
| u8 error; |
| |
| per_cpu(current_vmcs, cpu) = vmx->vmcs; |
| asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0" |
| : "=g"(error) : "a"(&phys_addr), "m"(phys_addr) |
| : "cc"); |
| if (error) |
| printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n", |
| vmx->vmcs, phys_addr); |
| } |
| |
| if (vcpu->cpu != cpu) { |
| struct descriptor_table dt; |
| unsigned long sysenter_esp; |
| |
| vcpu->cpu = cpu; |
| /* |
| * Linux uses per-cpu TSS and GDT, so set these when switching |
| * processors. |
| */ |
| vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */ |
| kvm_get_gdt(&dt); |
| vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */ |
| |
| rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); |
| vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ |
| |
| /* |
| * Make sure the time stamp counter is monotonous. |
| */ |
| rdtscll(tsc_this); |
| if (tsc_this < vcpu->arch.host_tsc) { |
| delta = vcpu->arch.host_tsc - tsc_this; |
| new_offset = vmcs_read64(TSC_OFFSET) + delta; |
| vmcs_write64(TSC_OFFSET, new_offset); |
| } |
| } |
| } |
| |
| static void vmx_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| __vmx_load_host_state(to_vmx(vcpu)); |
| } |
| |
| static void vmx_fpu_activate(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->fpu_active) |
| return; |
| vcpu->fpu_active = 1; |
| vmcs_clear_bits(GUEST_CR0, X86_CR0_TS); |
| if (vcpu->arch.cr0 & X86_CR0_TS) |
| vmcs_set_bits(GUEST_CR0, X86_CR0_TS); |
| update_exception_bitmap(vcpu); |
| } |
| |
| static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu->fpu_active) |
| return; |
| vcpu->fpu_active = 0; |
| vmcs_set_bits(GUEST_CR0, X86_CR0_TS); |
| update_exception_bitmap(vcpu); |
| } |
| |
| static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) |
| { |
| unsigned long rflags; |
| |
| rflags = vmcs_readl(GUEST_RFLAGS); |
| if (to_vmx(vcpu)->rmode.vm86_active) |
| rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM); |
| return rflags; |
| } |
| |
| static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| { |
| if (to_vmx(vcpu)->rmode.vm86_active) |
| rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; |
| vmcs_writel(GUEST_RFLAGS, rflags); |
| } |
| |
| static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) |
| { |
| u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); |
| int ret = 0; |
| |
| if (interruptibility & GUEST_INTR_STATE_STI) |
| ret |= X86_SHADOW_INT_STI; |
| if (interruptibility & GUEST_INTR_STATE_MOV_SS) |
| ret |= X86_SHADOW_INT_MOV_SS; |
| |
| return ret & mask; |
| } |
| |
| static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) |
| { |
| u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); |
| u32 interruptibility = interruptibility_old; |
| |
| interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); |
| |
| if (mask & X86_SHADOW_INT_MOV_SS) |
| interruptibility |= GUEST_INTR_STATE_MOV_SS; |
| if (mask & X86_SHADOW_INT_STI) |
| interruptibility |= GUEST_INTR_STATE_STI; |
| |
| if ((interruptibility != interruptibility_old)) |
| vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); |
| } |
| |
| static void skip_emulated_instruction(struct kvm_vcpu *vcpu) |
| { |
| unsigned long rip; |
| |
| rip = kvm_rip_read(vcpu); |
| rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| kvm_rip_write(vcpu, rip); |
| |
| /* skipping an emulated instruction also counts */ |
| vmx_set_interrupt_shadow(vcpu, 0); |
| } |
| |
| static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr, |
| bool has_error_code, u32 error_code) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 intr_info = nr | INTR_INFO_VALID_MASK; |
| |
| if (has_error_code) { |
| vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); |
| intr_info |= INTR_INFO_DELIVER_CODE_MASK; |
| } |
| |
| if (vmx->rmode.vm86_active) { |
| vmx->rmode.irq.pending = true; |
| vmx->rmode.irq.vector = nr; |
| vmx->rmode.irq.rip = kvm_rip_read(vcpu); |
| if (kvm_exception_is_soft(nr)) |
| vmx->rmode.irq.rip += |
| vmx->vcpu.arch.event_exit_inst_len; |
| intr_info |= INTR_TYPE_SOFT_INTR; |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); |
| vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1); |
| kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1); |
| return; |
| } |
| |
| if (kvm_exception_is_soft(nr)) { |
| vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, |
| vmx->vcpu.arch.event_exit_inst_len); |
| intr_info |= INTR_TYPE_SOFT_EXCEPTION; |
| } else |
| intr_info |= INTR_TYPE_HARD_EXCEPTION; |
| |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); |
| } |
| |
| /* |
| * Swap MSR entry in host/guest MSR entry array. |
| */ |
| #ifdef CONFIG_X86_64 |
| static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) |
| { |
| struct kvm_msr_entry tmp; |
| |
| tmp = vmx->guest_msrs[to]; |
| vmx->guest_msrs[to] = vmx->guest_msrs[from]; |
| vmx->guest_msrs[from] = tmp; |
| tmp = vmx->host_msrs[to]; |
| vmx->host_msrs[to] = vmx->host_msrs[from]; |
| vmx->host_msrs[from] = tmp; |
| } |
| #endif |
| |
| /* |
| * Set up the vmcs to automatically save and restore system |
| * msrs. Don't touch the 64-bit msrs if the guest is in legacy |
| * mode, as fiddling with msrs is very expensive. |
| */ |
| static void setup_msrs(struct vcpu_vmx *vmx) |
| { |
| int save_nmsrs; |
| unsigned long *msr_bitmap; |
| |
| vmx_load_host_state(vmx); |
| save_nmsrs = 0; |
| #ifdef CONFIG_X86_64 |
| if (is_long_mode(&vmx->vcpu)) { |
| int index; |
| |
| index = __find_msr_index(vmx, MSR_SYSCALL_MASK); |
| if (index >= 0) |
| move_msr_up(vmx, index, save_nmsrs++); |
| index = __find_msr_index(vmx, MSR_LSTAR); |
| if (index >= 0) |
| move_msr_up(vmx, index, save_nmsrs++); |
| index = __find_msr_index(vmx, MSR_CSTAR); |
| if (index >= 0) |
| move_msr_up(vmx, index, save_nmsrs++); |
| index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE); |
| if (index >= 0) |
| move_msr_up(vmx, index, save_nmsrs++); |
| /* |
| * MSR_K6_STAR is only needed on long mode guests, and only |
| * if efer.sce is enabled. |
| */ |
| index = __find_msr_index(vmx, MSR_K6_STAR); |
| if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE)) |
| move_msr_up(vmx, index, save_nmsrs++); |
| } |
| #endif |
| vmx->save_nmsrs = save_nmsrs; |
| |
| #ifdef CONFIG_X86_64 |
| vmx->msr_offset_kernel_gs_base = |
| __find_msr_index(vmx, MSR_KERNEL_GS_BASE); |
| #endif |
| vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER); |
| |
| if (cpu_has_vmx_msr_bitmap()) { |
| if (is_long_mode(&vmx->vcpu)) |
| msr_bitmap = vmx_msr_bitmap_longmode; |
| else |
| msr_bitmap = vmx_msr_bitmap_legacy; |
| |
| vmcs_write64(MSR_BITMAP, __pa(msr_bitmap)); |
| } |
| } |
| |
| /* |
| * reads and returns guest's timestamp counter "register" |
| * guest_tsc = host_tsc + tsc_offset -- 21.3 |
| */ |
| static u64 guest_read_tsc(void) |
| { |
| u64 host_tsc, tsc_offset; |
| |
| rdtscll(host_tsc); |
| tsc_offset = vmcs_read64(TSC_OFFSET); |
| return host_tsc + tsc_offset; |
| } |
| |
| /* |
| * writes 'guest_tsc' into guest's timestamp counter "register" |
| * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc |
| */ |
| static void guest_write_tsc(u64 guest_tsc, u64 host_tsc) |
| { |
| vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc); |
| } |
| |
| /* |
| * Reads an msr value (of 'msr_index') into 'pdata'. |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) |
| { |
| u64 data; |
| struct kvm_msr_entry *msr; |
| |
| if (!pdata) { |
| printk(KERN_ERR "BUG: get_msr called with NULL pdata\n"); |
| return -EINVAL; |
| } |
| |
| switch (msr_index) { |
| #ifdef CONFIG_X86_64 |
| case MSR_FS_BASE: |
| data = vmcs_readl(GUEST_FS_BASE); |
| break; |
| case MSR_GS_BASE: |
| data = vmcs_readl(GUEST_GS_BASE); |
| break; |
| case MSR_EFER: |
| return kvm_get_msr_common(vcpu, msr_index, pdata); |
| #endif |
| case MSR_IA32_TSC: |
| data = guest_read_tsc(); |
| break; |
| case MSR_IA32_SYSENTER_CS: |
| data = vmcs_read32(GUEST_SYSENTER_CS); |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| data = vmcs_readl(GUEST_SYSENTER_EIP); |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| data = vmcs_readl(GUEST_SYSENTER_ESP); |
| break; |
| default: |
| msr = find_msr_entry(to_vmx(vcpu), msr_index); |
| if (msr) { |
| vmx_load_host_state(to_vmx(vcpu)); |
| data = msr->data; |
| break; |
| } |
| return kvm_get_msr_common(vcpu, msr_index, pdata); |
| } |
| |
| *pdata = data; |
| return 0; |
| } |
| |
| /* |
| * Writes msr value into into the appropriate "register". |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct kvm_msr_entry *msr; |
| u64 host_tsc; |
| int ret = 0; |
| |
| switch (msr_index) { |
| case MSR_EFER: |
| vmx_load_host_state(vmx); |
| ret = kvm_set_msr_common(vcpu, msr_index, data); |
| break; |
| #ifdef CONFIG_X86_64 |
| case MSR_FS_BASE: |
| vmcs_writel(GUEST_FS_BASE, data); |
| break; |
| case MSR_GS_BASE: |
| vmcs_writel(GUEST_GS_BASE, data); |
| break; |
| #endif |
| case MSR_IA32_SYSENTER_CS: |
| vmcs_write32(GUEST_SYSENTER_CS, data); |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| vmcs_writel(GUEST_SYSENTER_EIP, data); |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| vmcs_writel(GUEST_SYSENTER_ESP, data); |
| break; |
| case MSR_IA32_TSC: |
| rdtscll(host_tsc); |
| guest_write_tsc(data, host_tsc); |
| break; |
| case MSR_IA32_CR_PAT: |
| if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { |
| vmcs_write64(GUEST_IA32_PAT, data); |
| vcpu->arch.pat = data; |
| break; |
| } |
| /* Otherwise falls through to kvm_set_msr_common */ |
| default: |
| msr = find_msr_entry(vmx, msr_index); |
| if (msr) { |
| vmx_load_host_state(vmx); |
| msr->data = data; |
| break; |
| } |
| ret = kvm_set_msr_common(vcpu, msr_index, data); |
| } |
| |
| return ret; |
| } |
| |
| static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) |
| { |
| __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); |
| switch (reg) { |
| case VCPU_REGS_RSP: |
| vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); |
| break; |
| case VCPU_REGS_RIP: |
| vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); |
| break; |
| case VCPU_EXREG_PDPTR: |
| if (enable_ept) |
| ept_save_pdptrs(vcpu); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) |
| { |
| int old_debug = vcpu->guest_debug; |
| unsigned long flags; |
| |
| vcpu->guest_debug = dbg->control; |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) |
| vcpu->guest_debug = 0; |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
| vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]); |
| else |
| vmcs_writel(GUEST_DR7, vcpu->arch.dr7); |
| |
| flags = vmcs_readl(GUEST_RFLAGS); |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
| flags |= X86_EFLAGS_TF | X86_EFLAGS_RF; |
| else if (old_debug & KVM_GUESTDBG_SINGLESTEP) |
| flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); |
| vmcs_writel(GUEST_RFLAGS, flags); |
| |
| update_exception_bitmap(vcpu); |
| |
| return 0; |
| } |
| |
| static __init int cpu_has_kvm_support(void) |
| { |
| return cpu_has_vmx(); |
| } |
| |
| static __init int vmx_disabled_by_bios(void) |
| { |
| u64 msr; |
| |
| rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); |
| return (msr & (FEATURE_CONTROL_LOCKED | |
| FEATURE_CONTROL_VMXON_ENABLED)) |
| == FEATURE_CONTROL_LOCKED; |
| /* locked but not enabled */ |
| } |
| |
| static void hardware_enable(void *garbage) |
| { |
| int cpu = raw_smp_processor_id(); |
| u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); |
| u64 old; |
| |
| INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu)); |
| rdmsrl(MSR_IA32_FEATURE_CONTROL, old); |
| if ((old & (FEATURE_CONTROL_LOCKED | |
| FEATURE_CONTROL_VMXON_ENABLED)) |
| != (FEATURE_CONTROL_LOCKED | |
| FEATURE_CONTROL_VMXON_ENABLED)) |
| /* enable and lock */ |
| wrmsrl(MSR_IA32_FEATURE_CONTROL, old | |
| FEATURE_CONTROL_LOCKED | |
| FEATURE_CONTROL_VMXON_ENABLED); |
| write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */ |
| asm volatile (ASM_VMX_VMXON_RAX |
| : : "a"(&phys_addr), "m"(phys_addr) |
| : "memory", "cc"); |
| } |
| |
| static void vmclear_local_vcpus(void) |
| { |
| int cpu = raw_smp_processor_id(); |
| struct vcpu_vmx *vmx, *n; |
| |
| list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu), |
| local_vcpus_link) |
| __vcpu_clear(vmx); |
| } |
| |
| |
| /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() |
| * tricks. |
| */ |
| static void kvm_cpu_vmxoff(void) |
| { |
| asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc"); |
| write_cr4(read_cr4() & ~X86_CR4_VMXE); |
| } |
| |
| static void hardware_disable(void *garbage) |
| { |
| vmclear_local_vcpus(); |
| kvm_cpu_vmxoff(); |
| } |
| |
| static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, |
| u32 msr, u32 *result) |
| { |
| u32 vmx_msr_low, vmx_msr_high; |
| u32 ctl = ctl_min | ctl_opt; |
| |
| rdmsr(msr, vmx_msr_low, vmx_msr_high); |
| |
| ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ |
| ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ |
| |
| /* Ensure minimum (required) set of control bits are supported. */ |
| if (ctl_min & ~ctl) |
| return -EIO; |
| |
| *result = ctl; |
| return 0; |
| } |
| |
| static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf) |
| { |
| u32 vmx_msr_low, vmx_msr_high; |
| u32 min, opt, min2, opt2; |
| u32 _pin_based_exec_control = 0; |
| u32 _cpu_based_exec_control = 0; |
| u32 _cpu_based_2nd_exec_control = 0; |
| u32 _vmexit_control = 0; |
| u32 _vmentry_control = 0; |
| |
| min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; |
| opt = PIN_BASED_VIRTUAL_NMIS; |
| if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, |
| &_pin_based_exec_control) < 0) |
| return -EIO; |
| |
| min = CPU_BASED_HLT_EXITING | |
| #ifdef CONFIG_X86_64 |
| CPU_BASED_CR8_LOAD_EXITING | |
| CPU_BASED_CR8_STORE_EXITING | |
| #endif |
| CPU_BASED_CR3_LOAD_EXITING | |
| CPU_BASED_CR3_STORE_EXITING | |
| CPU_BASED_USE_IO_BITMAPS | |
| CPU_BASED_MOV_DR_EXITING | |
| CPU_BASED_USE_TSC_OFFSETING | |
| CPU_BASED_INVLPG_EXITING; |
| opt = CPU_BASED_TPR_SHADOW | |
| CPU_BASED_USE_MSR_BITMAPS | |
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; |
| if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, |
| &_cpu_based_exec_control) < 0) |
| return -EIO; |
| #ifdef CONFIG_X86_64 |
| if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) |
| _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & |
| ~CPU_BASED_CR8_STORE_EXITING; |
| #endif |
| if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { |
| min2 = 0; |
| opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | |
| SECONDARY_EXEC_WBINVD_EXITING | |
| SECONDARY_EXEC_ENABLE_VPID | |
| SECONDARY_EXEC_ENABLE_EPT | |
| SECONDARY_EXEC_UNRESTRICTED_GUEST; |
| if (adjust_vmx_controls(min2, opt2, |
| MSR_IA32_VMX_PROCBASED_CTLS2, |
| &_cpu_based_2nd_exec_control) < 0) |
| return -EIO; |
| } |
| #ifndef CONFIG_X86_64 |
| if (!(_cpu_based_2nd_exec_control & |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) |
| _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; |
| #endif |
| if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { |
| /* CR3 accesses and invlpg don't need to cause VM Exits when EPT |
| enabled */ |
| _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | |
| CPU_BASED_CR3_STORE_EXITING | |
| CPU_BASED_INVLPG_EXITING); |
| rdmsr(MSR_IA32_VMX_EPT_VPID_CAP, |
| vmx_capability.ept, vmx_capability.vpid); |
| } |
| |
| min = 0; |
| #ifdef CONFIG_X86_64 |
| min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; |
| #endif |
| opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT; |
| if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, |
| &_vmexit_control) < 0) |
| return -EIO; |
| |
| min = 0; |
| opt = VM_ENTRY_LOAD_IA32_PAT; |
| if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, |
| &_vmentry_control) < 0) |
| return -EIO; |
| |
| rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); |
| |
| /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ |
| if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) |
| return -EIO; |
| |
| #ifdef CONFIG_X86_64 |
| /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ |
| if (vmx_msr_high & (1u<<16)) |
| return -EIO; |
| #endif |
| |
| /* Require Write-Back (WB) memory type for VMCS accesses. */ |
| if (((vmx_msr_high >> 18) & 15) != 6) |
| return -EIO; |
| |
| vmcs_conf->size = vmx_msr_high & 0x1fff; |
| vmcs_conf->order = get_order(vmcs_config.size); |
| vmcs_conf->revision_id = vmx_msr_low; |
| |
| vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; |
| vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; |
| vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; |
| vmcs_conf->vmexit_ctrl = _vmexit_control; |
| vmcs_conf->vmentry_ctrl = _vmentry_control; |
| |
| return 0; |
| } |
| |
| static struct vmcs *alloc_vmcs_cpu(int cpu) |
| { |
| int node = cpu_to_node(cpu); |
| struct page *pages; |
| struct vmcs *vmcs; |
| |
| pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order); |
| if (!pages) |
| return NULL; |
| vmcs = page_address(pages); |
| memset(vmcs, 0, vmcs_config.size); |
| vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */ |
| return vmcs; |
| } |
| |
| static struct vmcs *alloc_vmcs(void) |
| { |
| return alloc_vmcs_cpu(raw_smp_processor_id()); |
| } |
| |
| static void free_vmcs(struct vmcs *vmcs) |
| { |
| free_pages((unsigned long)vmcs, vmcs_config.order); |
| } |
| |
| static void free_kvm_area(void) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) |
| free_vmcs(per_cpu(vmxarea, cpu)); |
| } |
| |
| static __init int alloc_kvm_area(void) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) { |
| struct vmcs *vmcs; |
| |
| vmcs = alloc_vmcs_cpu(cpu); |
| if (!vmcs) { |
| free_kvm_area(); |
| return -ENOMEM; |
| } |
| |
| per_cpu(vmxarea, cpu) = vmcs; |
| } |
| return 0; |
| } |
| |
| static __init int hardware_setup(void) |
| { |
| if (setup_vmcs_config(&vmcs_config) < 0) |
| return -EIO; |
| |
| if (boot_cpu_has(X86_FEATURE_NX)) |
| kvm_enable_efer_bits(EFER_NX); |
| |
| if (!cpu_has_vmx_vpid()) |
| enable_vpid = 0; |
| |
| if (!cpu_has_vmx_ept()) { |
| enable_ept = 0; |
| enable_unrestricted_guest = 0; |
| } |
| |
| if (!cpu_has_vmx_unrestricted_guest()) |
| enable_unrestricted_guest = 0; |
| |
| if (!cpu_has_vmx_flexpriority()) |
| flexpriority_enabled = 0; |
| |
| if (!cpu_has_vmx_tpr_shadow()) |
| kvm_x86_ops->update_cr8_intercept = NULL; |
| |
| if (enable_ept && !cpu_has_vmx_ept_2m_page()) |
| kvm_disable_largepages(); |
| |
| return alloc_kvm_area(); |
| } |
| |
| static __exit void hardware_unsetup(void) |
| { |
| free_kvm_area(); |
| } |
| |
| static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save) |
| { |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| |
| if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) { |
| vmcs_write16(sf->selector, save->selector); |
| vmcs_writel(sf->base, save->base); |
| vmcs_write32(sf->limit, save->limit); |
| vmcs_write32(sf->ar_bytes, save->ar); |
| } else { |
| u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK) |
| << AR_DPL_SHIFT; |
| vmcs_write32(sf->ar_bytes, 0x93 | dpl); |
| } |
| } |
| |
| static void enter_pmode(struct kvm_vcpu *vcpu) |
| { |
| unsigned long flags; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| vmx->emulation_required = 1; |
| vmx->rmode.vm86_active = 0; |
| |
| vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base); |
| vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit); |
| vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar); |
| |
| flags = vmcs_readl(GUEST_RFLAGS); |
| flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM); |
| flags |= (vmx->rmode.save_iopl << IOPL_SHIFT); |
| vmcs_writel(GUEST_RFLAGS, flags); |
| |
| vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | |
| (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); |
| |
| update_exception_bitmap(vcpu); |
| |
| if (emulate_invalid_guest_state) |
| return; |
| |
| fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es); |
| fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds); |
| fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs); |
| fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs); |
| |
| vmcs_write16(GUEST_SS_SELECTOR, 0); |
| vmcs_write32(GUEST_SS_AR_BYTES, 0x93); |
| |
| vmcs_write16(GUEST_CS_SELECTOR, |
| vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK); |
| vmcs_write32(GUEST_CS_AR_BYTES, 0x9b); |
| } |
| |
| static gva_t rmode_tss_base(struct kvm *kvm) |
| { |
| if (!kvm->arch.tss_addr) { |
| gfn_t base_gfn = kvm->memslots[0].base_gfn + |
| kvm->memslots[0].npages - 3; |
| return base_gfn << PAGE_SHIFT; |
| } |
| return kvm->arch.tss_addr; |
| } |
| |
| static void fix_rmode_seg(int seg, struct kvm_save_segment *save) |
| { |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| |
| save->selector = vmcs_read16(sf->selector); |
| save->base = vmcs_readl(sf->base); |
| save->limit = vmcs_read32(sf->limit); |
| save->ar = vmcs_read32(sf->ar_bytes); |
| vmcs_write16(sf->selector, save->base >> 4); |
| vmcs_write32(sf->base, save->base & 0xfffff); |
| vmcs_write32(sf->limit, 0xffff); |
| vmcs_write32(sf->ar_bytes, 0xf3); |
| } |
| |
| static void enter_rmode(struct kvm_vcpu *vcpu) |
| { |
| unsigned long flags; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (enable_unrestricted_guest) |
| return; |
| |
| vmx->emulation_required = 1; |
| vmx->rmode.vm86_active = 1; |
| |
| vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE); |
| vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm)); |
| |
| vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT); |
| vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); |
| |
| vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES); |
| vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); |
| |
| flags = vmcs_readl(GUEST_RFLAGS); |
| vmx->rmode.save_iopl |
| = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT; |
| |
| flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; |
| |
| vmcs_writel(GUEST_RFLAGS, flags); |
| vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); |
| update_exception_bitmap(vcpu); |
| |
| if (emulate_invalid_guest_state) |
| goto continue_rmode; |
| |
| vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4); |
| vmcs_write32(GUEST_SS_LIMIT, 0xffff); |
| vmcs_write32(GUEST_SS_AR_BYTES, 0xf3); |
| |
| vmcs_write32(GUEST_CS_AR_BYTES, 0xf3); |
| vmcs_write32(GUEST_CS_LIMIT, 0xffff); |
| if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000) |
| vmcs_writel(GUEST_CS_BASE, 0xf0000); |
| vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4); |
| |
| fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es); |
| fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds); |
| fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs); |
| fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs); |
| |
| continue_rmode: |
| kvm_mmu_reset_context(vcpu); |
| init_rmode(vcpu->kvm); |
| } |
| |
| static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); |
| |
| vcpu->arch.shadow_efer = efer; |
| if (!msr) |
| return; |
| if (efer & EFER_LMA) { |
| vmcs_write32(VM_ENTRY_CONTROLS, |
| vmcs_read32(VM_ENTRY_CONTROLS) | |
| VM_ENTRY_IA32E_MODE); |
| msr->data = efer; |
| } else { |
| vmcs_write32(VM_ENTRY_CONTROLS, |
| vmcs_read32(VM_ENTRY_CONTROLS) & |
| ~VM_ENTRY_IA32E_MODE); |
| |
| msr->data = efer & ~EFER_LME; |
| } |
| setup_msrs(vmx); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| |
| static void enter_lmode(struct kvm_vcpu *vcpu) |
| { |
| u32 guest_tr_ar; |
| |
| guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); |
| if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) { |
| printk(KERN_DEBUG "%s: tss fixup for long mode. \n", |
| __func__); |
| vmcs_write32(GUEST_TR_AR_BYTES, |
| (guest_tr_ar & ~AR_TYPE_MASK) |
| | AR_TYPE_BUSY_64_TSS); |
| } |
| vcpu->arch.shadow_efer |= EFER_LMA; |
| vmx_set_efer(vcpu, vcpu->arch.shadow_efer); |
| } |
| |
| static void exit_lmode(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.shadow_efer &= ~EFER_LMA; |
| |
| vmcs_write32(VM_ENTRY_CONTROLS, |
| vmcs_read32(VM_ENTRY_CONTROLS) |
| & ~VM_ENTRY_IA32E_MODE); |
| } |
| |
| #endif |
| |
| static void vmx_flush_tlb(struct kvm_vcpu *vcpu) |
| { |
| vpid_sync_vcpu_all(to_vmx(vcpu)); |
| if (enable_ept) |
| ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa)); |
| } |
| |
| static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK; |
| vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK; |
| } |
| |
| static void ept_load_pdptrs(struct kvm_vcpu *vcpu) |
| { |
| if (!test_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_dirty)) |
| return; |
| |
| if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { |
| vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]); |
| vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]); |
| vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]); |
| vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]); |
| } |
| } |
| |
| static void ept_save_pdptrs(struct kvm_vcpu *vcpu) |
| { |
| if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { |
| vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0); |
| vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1); |
| vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2); |
| vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3); |
| } |
| |
| __set_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_avail); |
| __set_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_dirty); |
| } |
| |
| static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); |
| |
| static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, |
| unsigned long cr0, |
| struct kvm_vcpu *vcpu) |
| { |
| if (!(cr0 & X86_CR0_PG)) { |
| /* From paging/starting to nonpaging */ |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, |
| vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | |
| (CPU_BASED_CR3_LOAD_EXITING | |
| CPU_BASED_CR3_STORE_EXITING)); |
| vcpu->arch.cr0 = cr0; |
| vmx_set_cr4(vcpu, vcpu->arch.cr4); |
| } else if (!is_paging(vcpu)) { |
| /* From nonpaging to paging */ |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, |
| vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & |
| ~(CPU_BASED_CR3_LOAD_EXITING | |
| CPU_BASED_CR3_STORE_EXITING)); |
| vcpu->arch.cr0 = cr0; |
| vmx_set_cr4(vcpu, vcpu->arch.cr4); |
| } |
| |
| if (!(cr0 & X86_CR0_WP)) |
| *hw_cr0 &= ~X86_CR0_WP; |
| } |
| |
| static void ept_update_paging_mode_cr4(unsigned long *hw_cr4, |
| struct kvm_vcpu *vcpu) |
| { |
| if (!is_paging(vcpu)) { |
| *hw_cr4 &= ~X86_CR4_PAE; |
| *hw_cr4 |= X86_CR4_PSE; |
| } else if (!(vcpu->arch.cr4 & X86_CR4_PAE)) |
| *hw_cr4 &= ~X86_CR4_PAE; |
| } |
| |
| static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long hw_cr0; |
| |
| if (enable_unrestricted_guest) |
| hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST) |
| | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; |
| else |
| hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON; |
| |
| vmx_fpu_deactivate(vcpu); |
| |
| if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) |
| enter_pmode(vcpu); |
| |
| if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) |
| enter_rmode(vcpu); |
| |
| #ifdef CONFIG_X86_64 |
| if (vcpu->arch.shadow_efer & EFER_LME) { |
| if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) |
| enter_lmode(vcpu); |
| if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) |
| exit_lmode(vcpu); |
| } |
| #endif |
| |
| if (enable_ept) |
| ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); |
| |
| vmcs_writel(CR0_READ_SHADOW, cr0); |
| vmcs_writel(GUEST_CR0, hw_cr0); |
| vcpu->arch.cr0 = cr0; |
| |
| if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE)) |
| vmx_fpu_activate(vcpu); |
| } |
| |
| static u64 construct_eptp(unsigned long root_hpa) |
| { |
| u64 eptp; |
| |
| /* TODO write the value reading from MSR */ |
| eptp = VMX_EPT_DEFAULT_MT | |
| VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT; |
| eptp |= (root_hpa & PAGE_MASK); |
| |
| return eptp; |
| } |
| |
| static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
| { |
| unsigned long guest_cr3; |
| u64 eptp; |
| |
| guest_cr3 = cr3; |
| if (enable_ept) { |
| eptp = construct_eptp(cr3); |
| vmcs_write64(EPT_POINTER, eptp); |
| guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 : |
| vcpu->kvm->arch.ept_identity_map_addr; |
| } |
| |
| vmx_flush_tlb(vcpu); |
| vmcs_writel(GUEST_CR3, guest_cr3); |
| if (vcpu->arch.cr0 & X86_CR0_PE) |
| vmx_fpu_deactivate(vcpu); |
| } |
| |
| static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ? |
| KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON); |
| |
| vcpu->arch.cr4 = cr4; |
| if (enable_ept) |
| ept_update_paging_mode_cr4(&hw_cr4, vcpu); |
| |
| vmcs_writel(CR4_READ_SHADOW, cr4); |
| vmcs_writel(GUEST_CR4, hw_cr4); |
| } |
| |
| static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| |
| return vmcs_readl(sf->base); |
| } |
| |
| static void vmx_get_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| u32 ar; |
| |
| var->base = vmcs_readl(sf->base); |
| var->limit = vmcs_read32(sf->limit); |
| var->selector = vmcs_read16(sf->selector); |
| ar = vmcs_read32(sf->ar_bytes); |
| if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state) |
| ar = 0; |
| var->type = ar & 15; |
| var->s = (ar >> 4) & 1; |
| var->dpl = (ar >> 5) & 3; |
| var->present = (ar >> 7) & 1; |
| var->avl = (ar >> 12) & 1; |
| var->l = (ar >> 13) & 1; |
| var->db = (ar >> 14) & 1; |
| var->g = (ar >> 15) & 1; |
| var->unusable = (ar >> 16) & 1; |
| } |
| |
| static int vmx_get_cpl(struct kvm_vcpu *vcpu) |
| { |
| if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */ |
| return 0; |
| |
| if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */ |
| return 3; |
| |
| return vmcs_read16(GUEST_CS_SELECTOR) & 3; |
| } |
| |
| static u32 vmx_segment_access_rights(struct kvm_segment *var) |
| { |
| u32 ar; |
| |
| if (var->unusable) |
| ar = 1 << 16; |
| else { |
| ar = var->type & 15; |
| ar |= (var->s & 1) << 4; |
| ar |= (var->dpl & 3) << 5; |
| ar |= (var->present & 1) << 7; |
| ar |= (var->avl & 1) << 12; |
| ar |= (var->l & 1) << 13; |
| ar |= (var->db & 1) << 14; |
| ar |= (var->g & 1) << 15; |
| } |
| if (ar == 0) /* a 0 value means unusable */ |
| ar = AR_UNUSABLE_MASK; |
| |
| return ar; |
| } |
| |
| static void vmx_set_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| u32 ar; |
| |
| if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) { |
| vmx->rmode.tr.selector = var->selector; |
| vmx->rmode.tr.base = var->base; |
| vmx->rmode.tr.limit = var->limit; |
| vmx->rmode.tr.ar = vmx_segment_access_rights(var); |
| return; |
| } |
| vmcs_writel(sf->base, var->base); |
| vmcs_write32(sf->limit, var->limit); |
| vmcs_write16(sf->selector, var->selector); |
| if (vmx->rmode.vm86_active && var->s) { |
| /* |
| * Hack real-mode segments into vm86 compatibility. |
| */ |
| if (var->base == 0xffff0000 && var->selector == 0xf000) |
| vmcs_writel(sf->base, 0xf0000); |
| ar = 0xf3; |
| } else |
| ar = vmx_segment_access_rights(var); |
| |
| /* |
| * Fix the "Accessed" bit in AR field of segment registers for older |
| * qemu binaries. |
| * IA32 arch specifies that at the time of processor reset the |
| * "Accessed" bit in the AR field of segment registers is 1. And qemu |
| * is setting it to 0 in the usedland code. This causes invalid guest |
| * state vmexit when "unrestricted guest" mode is turned on. |
| * Fix for this setup issue in cpu_reset is being pushed in the qemu |
| * tree. Newer qemu binaries with that qemu fix would not need this |
| * kvm hack. |
| */ |
| if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) |
| ar |= 0x1; /* Accessed */ |
| |
| vmcs_write32(sf->ar_bytes, ar); |
| } |
| |
| static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
| { |
| u32 ar = vmcs_read32(GUEST_CS_AR_BYTES); |
| |
| *db = (ar >> 14) & 1; |
| *l = (ar >> 13) & 1; |
| } |
| |
| static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) |
| { |
| dt->limit = vmcs_read32(GUEST_IDTR_LIMIT); |
| dt->base = vmcs_readl(GUEST_IDTR_BASE); |
| } |
| |
| static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) |
| { |
| vmcs_write32(GUEST_IDTR_LIMIT, dt->limit); |
| vmcs_writel(GUEST_IDTR_BASE, dt->base); |
| } |
| |
| static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) |
| { |
| dt->limit = vmcs_read32(GUEST_GDTR_LIMIT); |
| dt->base = vmcs_readl(GUEST_GDTR_BASE); |
| } |
| |
| static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) |
| { |
| vmcs_write32(GUEST_GDTR_LIMIT, dt->limit); |
| vmcs_writel(GUEST_GDTR_BASE, dt->base); |
| } |
| |
| static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct kvm_segment var; |
| u32 ar; |
| |
| vmx_get_segment(vcpu, &var, seg); |
| ar = vmx_segment_access_rights(&var); |
| |
| if (var.base != (var.selector << 4)) |
| return false; |
| if (var.limit != 0xffff) |
| return false; |
| if (ar != 0xf3) |
| return false; |
| |
| return true; |
| } |
| |
| static bool code_segment_valid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment cs; |
| unsigned int cs_rpl; |
| |
| vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| cs_rpl = cs.selector & SELECTOR_RPL_MASK; |
| |
| if (cs.unusable) |
| return false; |
| if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK)) |
| return false; |
| if (!cs.s) |
| return false; |
| if (cs.type & AR_TYPE_WRITEABLE_MASK) { |
| if (cs.dpl > cs_rpl) |
| return false; |
| } else { |
| if (cs.dpl != cs_rpl) |
| return false; |
| } |
| if (!cs.present) |
| return false; |
| |
| /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ |
| return true; |
| } |
| |
| static bool stack_segment_valid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment ss; |
| unsigned int ss_rpl; |
| |
| vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); |
| ss_rpl = ss.selector & SELECTOR_RPL_MASK; |
| |
| if (ss.unusable) |
| return true; |
| if (ss.type != 3 && ss.type != 7) |
| return false; |
| if (!ss.s) |
| return false; |
| if (ss.dpl != ss_rpl) /* DPL != RPL */ |
| return false; |
| if (!ss.present) |
| return false; |
| |
| return true; |
| } |
| |
| static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct kvm_segment var; |
| unsigned int rpl; |
| |
| vmx_get_segment(vcpu, &var, seg); |
| rpl = var.selector & SELECTOR_RPL_MASK; |
| |
| if (var.unusable) |
| return true; |
| if (!var.s) |
| return false; |
| if (!var.present) |
| return false; |
| if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) { |
| if (var.dpl < rpl) /* DPL < RPL */ |
| return false; |
| } |
| |
| /* TODO: Add other members to kvm_segment_field to allow checking for other access |
| * rights flags |
| */ |
| return true; |
| } |
| |
| static bool tr_valid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment tr; |
| |
| vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); |
| |
| if (tr.unusable) |
| return false; |
| if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */ |
| return false; |
| if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ |
| return false; |
| if (!tr.present) |
| return false; |
| |
| return true; |
| } |
| |
| static bool ldtr_valid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment ldtr; |
| |
| vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); |
| |
| if (ldtr.unusable) |
| return true; |
| if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */ |
| return false; |
| if (ldtr.type != 2) |
| return false; |
| if (!ldtr.present) |
| return false; |
| |
| return true; |
| } |
| |
| static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment cs, ss; |
| |
| vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); |
| |
| return ((cs.selector & SELECTOR_RPL_MASK) == |
| (ss.selector & SELECTOR_RPL_MASK)); |
| } |
| |
| /* |
| * Check if guest state is valid. Returns true if valid, false if |
| * not. |
| * We assume that registers are always usable |
| */ |
| static bool guest_state_valid(struct kvm_vcpu *vcpu) |
| { |
| /* real mode guest state checks */ |
| if (!(vcpu->arch.cr0 & X86_CR0_PE)) { |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) |
| return false; |
| } else { |
| /* protected mode guest state checks */ |
| if (!cs_ss_rpl_check(vcpu)) |
| return false; |
| if (!code_segment_valid(vcpu)) |
| return false; |
| if (!stack_segment_valid(vcpu)) |
| return false; |
| if (!data_segment_valid(vcpu, VCPU_SREG_DS)) |
| return false; |
| if (!data_segment_valid(vcpu, VCPU_SREG_ES)) |
| return false; |
| if (!data_segment_valid(vcpu, VCPU_SREG_FS)) |
| return false; |
| if (!data_segment_valid(vcpu, VCPU_SREG_GS)) |
| return false; |
| if (!tr_valid(vcpu)) |
| return false; |
| if (!ldtr_valid(vcpu)) |
| return false; |
| } |
| /* TODO: |
| * - Add checks on RIP |
| * - Add checks on RFLAGS |
| */ |
| |
| return true; |
| } |
| |
| static int init_rmode_tss(struct kvm *kvm) |
| { |
| gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT; |
| u16 data = 0; |
| int ret = 0; |
| int r; |
| |
| r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); |
| if (r < 0) |
| goto out; |
| data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; |
| r = kvm_write_guest_page(kvm, fn++, &data, |
| TSS_IOPB_BASE_OFFSET, sizeof(u16)); |
| if (r < 0) |
| goto out; |
| r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); |
| if (r < 0) |
| goto out; |
| r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); |
| if (r < 0) |
| goto out; |
| data = ~0; |
| r = kvm_write_guest_page(kvm, fn, &data, |
| RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, |
| sizeof(u8)); |
| if (r < 0) |
| goto out; |
| |
| ret = 1; |
| out: |
| return ret; |
| } |
| |
| static int init_rmode_identity_map(struct kvm *kvm) |
| { |
| int i, r, ret; |
| pfn_t identity_map_pfn; |
| u32 tmp; |
| |
| if (!enable_ept) |
| return 1; |
| if (unlikely(!kvm->arch.ept_identity_pagetable)) { |
| printk(KERN_ERR "EPT: identity-mapping pagetable " |
| "haven't been allocated!\n"); |
| return 0; |
| } |
| if (likely(kvm->arch.ept_identity_pagetable_done)) |
| return 1; |
| ret = 0; |
| identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT; |
| r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); |
| if (r < 0) |
| goto out; |
| /* Set up identity-mapping pagetable for EPT in real mode */ |
| for (i = 0; i < PT32_ENT_PER_PAGE; i++) { |
| tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | |
| _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); |
| r = kvm_write_guest_page(kvm, identity_map_pfn, |
| &tmp, i * sizeof(tmp), sizeof(tmp)); |
| if (r < 0) |
| goto out; |
| } |
| kvm->arch.ept_identity_pagetable_done = true; |
| ret = 1; |
| out: |
| return ret; |
| } |
| |
| static void seg_setup(int seg) |
| { |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| unsigned int ar; |
| |
| vmcs_write16(sf->selector, 0); |
| vmcs_writel(sf->base, 0); |
| vmcs_write32(sf->limit, 0xffff); |
| if (enable_unrestricted_guest) { |
| ar = 0x93; |
| if (seg == VCPU_SREG_CS) |
| ar |= 0x08; /* code segment */ |
| } else |
| ar = 0xf3; |
| |
| vmcs_write32(sf->ar_bytes, ar); |
| } |
| |
| static int alloc_apic_access_page(struct kvm *kvm) |
| { |
| struct kvm_userspace_memory_region kvm_userspace_mem; |
| int r = 0; |
| |
| down_write(&kvm->slots_lock); |
| if (kvm->arch.apic_access_page) |
| goto out; |
| kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; |
| kvm_userspace_mem.flags = 0; |
| kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL; |
| kvm_userspace_mem.memory_size = PAGE_SIZE; |
| r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0); |
| if (r) |
| goto out; |
| |
| kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00); |
| out: |
| up_write(&kvm->slots_lock); |
| return r; |
| } |
| |
| static int alloc_identity_pagetable(struct kvm *kvm) |
| { |
| struct kvm_userspace_memory_region kvm_userspace_mem; |
| int r = 0; |
| |
| down_write(&kvm->slots_lock); |
| if (kvm->arch.ept_identity_pagetable) |
| goto out; |
| kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; |
| kvm_userspace_mem.flags = 0; |
| kvm_userspace_mem.guest_phys_addr = |
| kvm->arch.ept_identity_map_addr; |
| kvm_userspace_mem.memory_size = PAGE_SIZE; |
| r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0); |
| if (r) |
| goto out; |
| |
| kvm->arch.ept_identity_pagetable = gfn_to_page(kvm, |
| kvm->arch.ept_identity_map_addr >> PAGE_SHIFT); |
| out: |
| up_write(&kvm->slots_lock); |
| return r; |
| } |
| |
| static void allocate_vpid(struct vcpu_vmx *vmx) |
| { |
| int vpid; |
| |
| vmx->vpid = 0; |
| if (!enable_vpid) |
| return; |
| spin_lock(&vmx_vpid_lock); |
| vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); |
| if (vpid < VMX_NR_VPIDS) { |
| vmx->vpid = vpid; |
| __set_bit(vpid, vmx_vpid_bitmap); |
| } |
| spin_unlock(&vmx_vpid_lock); |
| } |
| |
| static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr) |
| { |
| int f = sizeof(unsigned long); |
| |
| if (!cpu_has_vmx_msr_bitmap()) |
| return; |
| |
| /* |
| * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals |
| * have the write-low and read-high bitmap offsets the wrong way round. |
| * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. |
| */ |
| if (msr <= 0x1fff) { |
| __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */ |
| __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */ |
| } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { |
| msr &= 0x1fff; |
| __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */ |
| __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */ |
| } |
| } |
| |
| static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only) |
| { |
| if (!longmode_only) |
| __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr); |
| __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr); |
| } |
| |
| /* |
| * Sets up the vmcs for emulated real mode. |
| */ |
| static int vmx_vcpu_setup(struct vcpu_vmx *vmx) |
| { |
| u32 host_sysenter_cs, msr_low, msr_high; |
| u32 junk; |
| u64 host_pat, tsc_this, tsc_base; |
| unsigned long a; |
| struct descriptor_table dt; |
| int i; |
| unsigned long kvm_vmx_return; |
| u32 exec_control; |
| |
| /* I/O */ |
| vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a)); |
| vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b)); |
| |
| if (cpu_has_vmx_msr_bitmap()) |
| vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy)); |
| |
| vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ |
| |
| /* Control */ |
| vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, |
| vmcs_config.pin_based_exec_ctrl); |
| |
| exec_control = vmcs_config.cpu_based_exec_ctrl; |
| if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) { |
| exec_control &= ~CPU_BASED_TPR_SHADOW; |
| #ifdef CONFIG_X86_64 |
| exec_control |= CPU_BASED_CR8_STORE_EXITING | |
| CPU_BASED_CR8_LOAD_EXITING; |
| #endif |
| } |
| if (!enable_ept) |
| exec_control |= CPU_BASED_CR3_STORE_EXITING | |
| CPU_BASED_CR3_LOAD_EXITING | |
| CPU_BASED_INVLPG_EXITING; |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); |
| |
| if (cpu_has_secondary_exec_ctrls()) { |
| exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; |
| if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) |
| exec_control &= |
| ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| if (vmx->vpid == 0) |
| exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; |
| if (!enable_ept) |
| exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; |
| if (!enable_unrestricted_guest) |
| exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; |
| vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); |
| } |
| |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf); |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf); |
| vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ |
| |
| vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */ |
| vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */ |
| vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */ |
| |
| vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ |
| vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */ |
| vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */ |
| vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| #ifdef CONFIG_X86_64 |
| rdmsrl(MSR_FS_BASE, a); |
| vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */ |
| rdmsrl(MSR_GS_BASE, a); |
| vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */ |
| #else |
| vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ |
| vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ |
| #endif |
| |
| vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ |
| |
| kvm_get_idt(&dt); |
| vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */ |
| |
| asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return)); |
| vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */ |
| vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); |
| |
| rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk); |
| vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs); |
| rdmsrl(MSR_IA32_SYSENTER_ESP, a); |
| vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */ |
| rdmsrl(MSR_IA32_SYSENTER_EIP, a); |
| vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */ |
| |
| if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { |
| rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high); |
| host_pat = msr_low | ((u64) msr_high << 32); |
| vmcs_write64(HOST_IA32_PAT, host_pat); |
| } |
| if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { |
| rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high); |
| host_pat = msr_low | ((u64) msr_high << 32); |
| /* Write the default value follow host pat */ |
| vmcs_write64(GUEST_IA32_PAT, host_pat); |
| /* Keep arch.pat sync with GUEST_IA32_PAT */ |
| vmx->vcpu.arch.pat = host_pat; |
| } |
| |
| for (i = 0; i < NR_VMX_MSR; ++i) { |
| u32 index = vmx_msr_index[i]; |
| u32 data_low, data_high; |
| u64 data; |
| int j = vmx->nmsrs; |
| |
| if (rdmsr_safe(index, &data_low, &data_high) < 0) |
| continue; |
| if (wrmsr_safe(index, data_low, data_high) < 0) |
| continue; |
| data = data_low | ((u64)data_high << 32); |
| vmx->host_msrs[j].index = index; |
| vmx->host_msrs[j].reserved = 0; |
| vmx->host_msrs[j].data = data; |
| vmx->guest_msrs[j] = vmx->host_msrs[j]; |
| ++vmx->nmsrs; |
| } |
| |
| vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl); |
| |
| /* 22.2.1, 20.8.1 */ |
| vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl); |
| |
| vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL); |
| vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK); |
| |
| tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc; |
| rdtscll(tsc_this); |
| if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc) |
| tsc_base = tsc_this; |
| |
| guest_write_tsc(0, tsc_base); |
| |
| return 0; |
| } |
| |
| static int init_rmode(struct kvm *kvm) |
| { |
| if (!init_rmode_tss(kvm)) |
| return 0; |
| if (!init_rmode_identity_map(kvm)) |
| return 0; |
| return 1; |
| } |
| |
| static int vmx_vcpu_reset(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u64 msr; |
| int ret; |
| |
| vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)); |
| down_read(&vcpu->kvm->slots_lock); |
| if (!init_rmode(vmx->vcpu.kvm)) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| vmx->rmode.vm86_active = 0; |
| |
| vmx->soft_vnmi_blocked = 0; |
| |
| vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); |
| kvm_set_cr8(&vmx->vcpu, 0); |
| msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE; |
| if (kvm_vcpu_is_bsp(&vmx->vcpu)) |
| msr |= MSR_IA32_APICBASE_BSP; |
| kvm_set_apic_base(&vmx->vcpu, msr); |
| |
| fx_init(&vmx->vcpu); |
| |
| seg_setup(VCPU_SREG_CS); |
| /* |
| * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode |
| * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh. |
| */ |
| if (kvm_vcpu_is_bsp(&vmx->vcpu)) { |
| vmcs_write16(GUEST_CS_SELECTOR, 0xf000); |
| vmcs_writel(GUEST_CS_BASE, 0x000f0000); |
| } else { |
| vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8); |
| vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12); |
| } |
| |
| seg_setup(VCPU_SREG_DS); |
| seg_setup(VCPU_SREG_ES); |
| seg_setup(VCPU_SREG_FS); |
| seg_setup(VCPU_SREG_GS); |
| seg_setup(VCPU_SREG_SS); |
| |
| vmcs_write16(GUEST_TR_SELECTOR, 0); |
| vmcs_writel(GUEST_TR_BASE, 0); |
| vmcs_write32(GUEST_TR_LIMIT, 0xffff); |
| vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); |
| |
| vmcs_write16(GUEST_LDTR_SELECTOR, 0); |
| vmcs_writel(GUEST_LDTR_BASE, 0); |
| vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); |
| vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); |
| |
| vmcs_write32(GUEST_SYSENTER_CS, 0); |
| vmcs_writel(GUEST_SYSENTER_ESP, 0); |
| vmcs_writel(GUEST_SYSENTER_EIP, 0); |
| |
| vmcs_writel(GUEST_RFLAGS, 0x02); |
| if (kvm_vcpu_is_bsp(&vmx->vcpu)) |
| kvm_rip_write(vcpu, 0xfff0); |
| else |
| kvm_rip_write(vcpu, 0); |
| kvm_register_write(vcpu, VCPU_REGS_RSP, 0); |
| |
| vmcs_writel(GUEST_DR7, 0x400); |
| |
| vmcs_writel(GUEST_GDTR_BASE, 0); |
| vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); |
| |
| vmcs_writel(GUEST_IDTR_BASE, 0); |
| vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); |
| |
| vmcs_write32(GUEST_ACTIVITY_STATE, 0); |
| vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); |
| vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0); |
| |
| /* Special registers */ |
| vmcs_write64(GUEST_IA32_DEBUGCTL, 0); |
| |
| setup_msrs(vmx); |
| |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ |
| |
| if (cpu_has_vmx_tpr_shadow()) { |
| vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); |
| if (vm_need_tpr_shadow(vmx->vcpu.kvm)) |
| vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, |
| page_to_phys(vmx->vcpu.arch.apic->regs_page)); |
| vmcs_write32(TPR_THRESHOLD, 0); |
| } |
| |
| if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) |
| vmcs_write64(APIC_ACCESS_ADDR, |
| page_to_phys(vmx->vcpu.kvm->arch.apic_access_page)); |
| |
| if (vmx->vpid != 0) |
| vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); |
| |
| vmx->vcpu.arch.cr0 = 0x60000010; |
| vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */ |
| vmx_set_cr4(&vmx->vcpu, 0); |
| vmx_set_efer(&vmx->vcpu, 0); |
| vmx_fpu_activate(&vmx->vcpu); |
| update_exception_bitmap(&vmx->vcpu); |
| |
| vpid_sync_vcpu_all(vmx); |
| |
| ret = 0; |
| |
| /* HACK: Don't enable emulation on guest boot/reset */ |
| vmx->emulation_required = 0; |
| |
| out: |
| up_read(&vcpu->kvm->slots_lock); |
| return ret; |
| } |
| |
| static void enable_irq_window(struct kvm_vcpu *vcpu) |
| { |
| u32 cpu_based_vm_exec_control; |
| |
| cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING; |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); |
| } |
| |
| static void enable_nmi_window(struct kvm_vcpu *vcpu) |
| { |
| u32 cpu_based_vm_exec_control; |
| |
| if (!cpu_has_virtual_nmis()) { |
| enable_irq_window(vcpu); |
| return; |
| } |
| |
| cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING; |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); |
| } |
| |
| static void vmx_inject_irq(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| uint32_t intr; |
| int irq = vcpu->arch.interrupt.nr; |
| |
| trace_kvm_inj_virq(irq); |
| |
| ++vcpu->stat.irq_injections; |
| if (vmx->rmode.vm86_active) { |
| vmx->rmode.irq.pending = true; |
| vmx->rmode.irq.vector = irq; |
| vmx->rmode.irq.rip = kvm_rip_read(vcpu); |
| if (vcpu->arch.interrupt.soft) |
| vmx->rmode.irq.rip += |
| vmx->vcpu.arch.event_exit_inst_len; |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK); |
| vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1); |
| kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1); |
| return; |
| } |
| intr = irq | INTR_INFO_VALID_MASK; |
| if (vcpu->arch.interrupt.soft) { |
| intr |= INTR_TYPE_SOFT_INTR; |
| vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, |
| vmx->vcpu.arch.event_exit_inst_len); |
| } else |
| intr |= INTR_TYPE_EXT_INTR; |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); |
| } |
| |
| static void vmx_inject_nmi(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!cpu_has_virtual_nmis()) { |
| /* |
| * Tracking the NMI-blocked state in software is built upon |
| * finding the next open IRQ window. This, in turn, depends on |
| * well-behaving guests: They have to keep IRQs disabled at |
| * least as long as the NMI handler runs. Otherwise we may |
| * cause NMI nesting, maybe breaking the guest. But as this is |
| * highly unlikely, we can live with the residual risk. |
| */ |
| vmx->soft_vnmi_blocked = 1; |
| vmx->vnmi_blocked_time = 0; |
| } |
| |
| ++vcpu->stat.nmi_injections; |
| if (vmx->rmode.vm86_active) { |
| vmx->rmode.irq.pending = true; |
| vmx->rmode.irq.vector = NMI_VECTOR; |
| vmx->rmode.irq.rip = kvm_rip_read(vcpu); |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| NMI_VECTOR | INTR_TYPE_SOFT_INTR | |
| INTR_INFO_VALID_MASK); |
| vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1); |
| kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1); |
| return; |
| } |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); |
| } |
| |
| static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) |
| { |
| if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked) |
| return 0; |
| |
| return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & |
| (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS | |
| GUEST_INTR_STATE_NMI)); |
| } |
| |
| static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) |
| { |
| return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && |
| !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & |
| (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); |
| } |
| |
| static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) |
| { |
| int ret; |
| struct kvm_userspace_memory_region tss_mem = { |
| .slot = TSS_PRIVATE_MEMSLOT, |
| .guest_phys_addr = addr, |
| .memory_size = PAGE_SIZE * 3, |
| .flags = 0, |
| }; |
| |
| ret = kvm_set_memory_region(kvm, &tss_mem, 0); |
| if (ret) |
| return ret; |
| kvm->arch.tss_addr = addr; |
| return 0; |
| } |
| |
| static int handle_rmode_exception(struct kvm_vcpu *vcpu, |
| int vec, u32 err_code) |
| { |
| /* |
| * Instruction with address size override prefix opcode 0x67 |
| * Cause the #SS fault with 0 error code in VM86 mode. |
| */ |
| if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) |
| if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE) |
| return 1; |
| /* |
| * Forward all other exceptions that are valid in real mode. |
| * FIXME: Breaks guest debugging in real mode, needs to be fixed with |
| * the required debugging infrastructure rework. |
| */ |
| switch (vec) { |
| case DB_VECTOR: |
| if (vcpu->guest_debug & |
| (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) |
| return 0; |
| kvm_queue_exception(vcpu, vec); |
| return 1; |
| case BP_VECTOR: |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) |
| return 0; |
| /* fall through */ |
| case DE_VECTOR: |
| case OF_VECTOR: |
| case BR_VECTOR: |
| case UD_VECTOR: |
| case DF_VECTOR: |
| case SS_VECTOR: |
| case GP_VECTOR: |
| case MF_VECTOR: |
| kvm_queue_exception(vcpu, vec); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Trigger machine check on the host. We assume all the MSRs are already set up |
| * by the CPU and that we still run on the same CPU as the MCE occurred on. |
| * We pass a fake environment to the machine check handler because we want |
| * the guest to be always treated like user space, no matter what context |
| * it used internally. |
| */ |
| static void kvm_machine_check(void) |
| { |
| #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) |
| struct pt_regs regs = { |
| .cs = 3, /* Fake ring 3 no matter what the guest ran on */ |
| .flags = X86_EFLAGS_IF, |
| }; |
| |
| do_machine_check(®s, 0); |
| #endif |
| } |
| |
| static int handle_machine_check(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| /* already handled by vcpu_run */ |
| return 1; |
| } |
| |
| static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 intr_info, ex_no, error_code; |
| unsigned long cr2, rip, dr6; |
| u32 vect_info; |
| enum emulation_result er; |
| |
| vect_info = vmx->idt_vectoring_info; |
| intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| |
| if (is_machine_check(intr_info)) |
| return handle_machine_check(vcpu, kvm_run); |
| |
| if ((vect_info & VECTORING_INFO_VALID_MASK) && |
| !is_page_fault(intr_info)) |
| printk(KERN_ERR "%s: unexpected, vectoring info 0x%x " |
| "intr info 0x%x\n", __func__, vect_info, intr_info); |
| |
| if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR) |
| return 1; /* already handled by vmx_vcpu_run() */ |
| |
| if (is_no_device(intr_info)) { |
| vmx_fpu_activate(vcpu); |
| return 1; |
| } |
| |
| if (is_invalid_opcode(intr_info)) { |
| er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD); |
| if (er != EMULATE_DONE) |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| error_code = 0; |
| rip = kvm_rip_read(vcpu); |
| if (intr_info & INTR_INFO_DELIVER_CODE_MASK) |
| error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); |
| if (is_page_fault(intr_info)) { |
| /* EPT won't cause page fault directly */ |
| if (enable_ept) |
| BUG(); |
| cr2 = vmcs_readl(EXIT_QUALIFICATION); |
| trace_kvm_page_fault(cr2, error_code); |
| |
| if (kvm_event_needs_reinjection(vcpu)) |
| kvm_mmu_unprotect_page_virt(vcpu, cr2); |
| return kvm_mmu_page_fault(vcpu, cr2, error_code); |
| } |
| |
| if (vmx->rmode.vm86_active && |
| handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK, |
| error_code)) { |
| if (vcpu->arch.halt_request) { |
| vcpu->arch.halt_request = 0; |
| return kvm_emulate_halt(vcpu); |
| } |
| return 1; |
| } |
| |
| ex_no = intr_info & INTR_INFO_VECTOR_MASK; |
| switch (ex_no) { |
| case DB_VECTOR: |
| dr6 = vmcs_readl(EXIT_QUALIFICATION); |
| if (!(vcpu->guest_debug & |
| (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { |
| vcpu->arch.dr6 = dr6 | DR6_FIXED_1; |
| kvm_queue_exception(vcpu, DB_VECTOR); |
| return 1; |
| } |
| kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; |
| kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); |
| /* fall through */ |
| case BP_VECTOR: |
| kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; |
| kvm_run->debug.arch.exception = ex_no; |
| break; |
| default: |
| kvm_run->exit_reason = KVM_EXIT_EXCEPTION; |
| kvm_run->ex.exception = ex_no; |
| kvm_run->ex.error_code = error_code; |
| break; |
| } |
| return 0; |
| } |
| |
| static int handle_external_interrupt(struct kvm_vcpu *vcpu, |
| struct kvm_run *kvm_run) |
| { |
| ++vcpu->stat.irq_exits; |
| return 1; |
| } |
| |
| static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; |
| return 0; |
| } |
| |
| static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| unsigned long exit_qualification; |
| int size, in, string; |
| unsigned port; |
| |
| ++vcpu->stat.io_exits; |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| string = (exit_qualification & 16) != 0; |
| |
| if (string) { |
| if (emulate_instruction(vcpu, |
| kvm_run, 0, 0, 0) == EMULATE_DO_MMIO) |
| return 0; |
| return 1; |
| } |
| |
| size = (exit_qualification & 7) + 1; |
| in = (exit_qualification & 8) != 0; |
| port = exit_qualification >> 16; |
| |
| skip_emulated_instruction(vcpu); |
| return kvm_emulate_pio(vcpu, kvm_run, in, size, port); |
| } |
| |
| static void |
| vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) |
| { |
| /* |
| * Patch in the VMCALL instruction: |
| */ |
| hypercall[0] = 0x0f; |
| hypercall[1] = 0x01; |
| hypercall[2] = 0xc1; |
| } |
| |
| static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| unsigned long exit_qualification, val; |
| int cr; |
| int reg; |
| |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| cr = exit_qualification & 15; |
| reg = (exit_qualification >> 8) & 15; |
| switch ((exit_qualification >> 4) & 3) { |
| case 0: /* mov to cr */ |
| val = kvm_register_read(vcpu, reg); |
| trace_kvm_cr_write(cr, val); |
| switch (cr) { |
| case 0: |
| kvm_set_cr0(vcpu, val); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| case 3: |
| kvm_set_cr3(vcpu, val); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| case 4: |
| kvm_set_cr4(vcpu, val); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| case 8: { |
| u8 cr8_prev = kvm_get_cr8(vcpu); |
| u8 cr8 = kvm_register_read(vcpu, reg); |
| kvm_set_cr8(vcpu, cr8); |
| skip_emulated_instruction(vcpu); |
| if (irqchip_in_kernel(vcpu->kvm)) |
| return 1; |
| if (cr8_prev <= cr8) |
| return 1; |
| kvm_run->exit_reason = KVM_EXIT_SET_TPR; |
| return 0; |
| } |
| }; |
| break; |
| case 2: /* clts */ |
| vmx_fpu_deactivate(vcpu); |
| vcpu->arch.cr0 &= ~X86_CR0_TS; |
| vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0); |
| vmx_fpu_activate(vcpu); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| case 1: /*mov from cr*/ |
| switch (cr) { |
| case 3: |
| kvm_register_write(vcpu, reg, vcpu->arch.cr3); |
| trace_kvm_cr_read(cr, vcpu->arch.cr3); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| case 8: |
| val = kvm_get_cr8(vcpu); |
| kvm_register_write(vcpu, reg, val); |
| trace_kvm_cr_read(cr, val); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| break; |
| case 3: /* lmsw */ |
| kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f); |
| |
| skip_emulated_instruction(vcpu); |
| return 1; |
| default: |
| break; |
| } |
| kvm_run->exit_reason = 0; |
| pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n", |
| (int)(exit_qualification >> 4) & 3, cr); |
| return 0; |
| } |
| |
| static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| unsigned long exit_qualification; |
| unsigned long val; |
| int dr, reg; |
| |
| if (!kvm_require_cpl(vcpu, 0)) |
| return 1; |
| dr = vmcs_readl(GUEST_DR7); |
| if (dr & DR7_GD) { |
| /* |
| * As the vm-exit takes precedence over the debug trap, we |
| * need to emulate the latter, either for the host or the |
| * guest debugging itself. |
| */ |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { |
| kvm_run->debug.arch.dr6 = vcpu->arch.dr6; |
| kvm_run->debug.arch.dr7 = dr; |
| kvm_run->debug.arch.pc = |
| vmcs_readl(GUEST_CS_BASE) + |
| vmcs_readl(GUEST_RIP); |
| kvm_run->debug.arch.exception = DB_VECTOR; |
| kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| return 0; |
| } else { |
| vcpu->arch.dr7 &= ~DR7_GD; |
| vcpu->arch.dr6 |= DR6_BD; |
| vmcs_writel(GUEST_DR7, vcpu->arch.dr7); |
| kvm_queue_exception(vcpu, DB_VECTOR); |
| return 1; |
| } |
| } |
| |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| dr = exit_qualification & DEBUG_REG_ACCESS_NUM; |
| reg = DEBUG_REG_ACCESS_REG(exit_qualification); |
| if (exit_qualification & TYPE_MOV_FROM_DR) { |
| switch (dr) { |
| case 0 ... 3: |
| val = vcpu->arch.db[dr]; |
| break; |
| case 6: |
| val = vcpu->arch.dr6; |
| break; |
| case 7: |
| val = vcpu->arch.dr7; |
| break; |
| default: |
| val = 0; |
| } |
| kvm_register_write(vcpu, reg, val); |
| } else { |
| val = vcpu->arch.regs[reg]; |
| switch (dr) { |
| case 0 ... 3: |
| vcpu->arch.db[dr] = val; |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) |
| vcpu->arch.eff_db[dr] = val; |
| break; |
| case 4 ... 5: |
| if (vcpu->arch.cr4 & X86_CR4_DE) |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| break; |
| case 6: |
| if (val & 0xffffffff00000000ULL) { |
| kvm_queue_exception(vcpu, GP_VECTOR); |
| break; |
| } |
| vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; |
| break; |
| case 7: |
| if (val & 0xffffffff00000000ULL) { |
| kvm_queue_exception(vcpu, GP_VECTOR); |
| break; |
| } |
| vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { |
| vmcs_writel(GUEST_DR7, vcpu->arch.dr7); |
| vcpu->arch.switch_db_regs = |
| (val & DR7_BP_EN_MASK); |
| } |
| break; |
| } |
| } |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| kvm_emulate_cpuid(vcpu); |
| return 1; |
| } |
| |
| static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; |
| u64 data; |
| |
| if (vmx_get_msr(vcpu, ecx, &data)) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| trace_kvm_msr_read(ecx, data); |
| |
| /* FIXME: handling of bits 32:63 of rax, rdx */ |
| vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u; |
| vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u; |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; |
| u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) |
| | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); |
| |
| trace_kvm_msr_write(ecx, data); |
| |
| if (vmx_set_msr(vcpu, ecx, data) != 0) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu, |
| struct kvm_run *kvm_run) |
| { |
| return 1; |
| } |
| |
| static int handle_interrupt_window(struct kvm_vcpu *vcpu, |
| struct kvm_run *kvm_run) |
| { |
| u32 cpu_based_vm_exec_control; |
| |
| /* clear pending irq */ |
| cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); |
| |
| ++vcpu->stat.irq_window_exits; |
| |
| /* |
| * If the user space waits to inject interrupts, exit as soon as |
| * possible |
| */ |
| if (!irqchip_in_kernel(vcpu->kvm) && |
| kvm_run->request_interrupt_window && |
| !kvm_cpu_has_interrupt(vcpu)) { |
| kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| skip_emulated_instruction(vcpu); |
| return kvm_emulate_halt(vcpu); |
| } |
| |
| static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| skip_emulated_instruction(vcpu); |
| kvm_emulate_hypercall(vcpu); |
| return 1; |
| } |
| |
| static int handle_vmx_insn(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| |
| kvm_mmu_invlpg(vcpu, exit_qualification); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| skip_emulated_instruction(vcpu); |
| /* TODO: Add support for VT-d/pass-through device */ |
| return 1; |
| } |
| |
| static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| unsigned long exit_qualification; |
| enum emulation_result er; |
| unsigned long offset; |
| |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| offset = exit_qualification & 0xffful; |
| |
| er = emulate_instruction(vcpu, kvm_run, 0, 0, 0); |
| |
| if (er != EMULATE_DONE) { |
| printk(KERN_ERR |
| "Fail to handle apic access vmexit! Offset is 0x%lx\n", |
| offset); |
| return -ENOEXEC; |
| } |
| return 1; |
| } |
| |
| static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long exit_qualification; |
| u16 tss_selector; |
| int reason, type, idt_v; |
| |
| idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); |
| type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); |
| |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| |
| reason = (u32)exit_qualification >> 30; |
| if (reason == TASK_SWITCH_GATE && idt_v) { |
| switch (type) { |
| case INTR_TYPE_NMI_INTR: |
| vcpu->arch.nmi_injected = false; |
| if (cpu_has_virtual_nmis()) |
| vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, |
| GUEST_INTR_STATE_NMI); |
| break; |
| case INTR_TYPE_EXT_INTR: |
| case INTR_TYPE_SOFT_INTR: |
| kvm_clear_interrupt_queue(vcpu); |
| break; |
| case INTR_TYPE_HARD_EXCEPTION: |
| case INTR_TYPE_SOFT_EXCEPTION: |
| kvm_clear_exception_queue(vcpu); |
| break; |
| default: |
| break; |
| } |
| } |
| tss_selector = exit_qualification; |
| |
| if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && |
| type != INTR_TYPE_EXT_INTR && |
| type != INTR_TYPE_NMI_INTR)) |
| skip_emulated_instruction(vcpu); |
| |
| if (!kvm_task_switch(vcpu, tss_selector, reason)) |
| return 0; |
| |
| /* clear all local breakpoint enable flags */ |
| vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55); |
| |
| /* |
| * TODO: What about debug traps on tss switch? |
| * Are we supposed to inject them and update dr6? |
| */ |
| |
| return 1; |
| } |
| |
| static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| unsigned long exit_qualification; |
| gpa_t gpa; |
| int gla_validity; |
| |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| |
| if (exit_qualification & (1 << 6)) { |
| printk(KERN_ERR "EPT: GPA exceeds GAW!\n"); |
| return -EINVAL; |
| } |
| |
| gla_validity = (exit_qualification >> 7) & 0x3; |
| if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) { |
| printk(KERN_ERR "EPT: Handling EPT violation failed!\n"); |
| printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n", |
| (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS), |
| vmcs_readl(GUEST_LINEAR_ADDRESS)); |
| printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n", |
| (long unsigned int)exit_qualification); |
| kvm_run->exit_reason = KVM_EXIT_UNKNOWN; |
| kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION; |
| return 0; |
| } |
| |
| gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); |
| trace_kvm_page_fault(gpa, exit_qualification); |
| return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0); |
| } |
| |
| static u64 ept_rsvd_mask(u64 spte, int level) |
| { |
| int i; |
| u64 mask = 0; |
| |
| for (i = 51; i > boot_cpu_data.x86_phys_bits; i--) |
| mask |= (1ULL << i); |
| |
| if (level > 2) |
| /* bits 7:3 reserved */ |
| mask |= 0xf8; |
| else if (level == 2) { |
| if (spte & (1ULL << 7)) |
| /* 2MB ref, bits 20:12 reserved */ |
| mask |= 0x1ff000; |
| else |
| /* bits 6:3 reserved */ |
| mask |= 0x78; |
| } |
| |
| return mask; |
| } |
| |
| static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte, |
| int level) |
| { |
| printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level); |
| |
| /* 010b (write-only) */ |
| WARN_ON((spte & 0x7) == 0x2); |
| |
| /* 110b (write/execute) */ |
| WARN_ON((spte & 0x7) == 0x6); |
| |
| /* 100b (execute-only) and value not supported by logical processor */ |
| if (!cpu_has_vmx_ept_execute_only()) |
| WARN_ON((spte & 0x7) == 0x4); |
| |
| /* not 000b */ |
| if ((spte & 0x7)) { |
| u64 rsvd_bits = spte & ept_rsvd_mask(spte, level); |
| |
| if (rsvd_bits != 0) { |
| printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n", |
| __func__, rsvd_bits); |
| WARN_ON(1); |
| } |
| |
| if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) { |
| u64 ept_mem_type = (spte & 0x38) >> 3; |
| |
| if (ept_mem_type == 2 || ept_mem_type == 3 || |
| ept_mem_type == 7) { |
| printk(KERN_ERR "%s: ept_mem_type=0x%llx\n", |
| __func__, ept_mem_type); |
| WARN_ON(1); |
| } |
| } |
| } |
| } |
| |
| static int handle_ept_misconfig(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| u64 sptes[4]; |
| int nr_sptes, i; |
| gpa_t gpa; |
| |
| gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); |
| |
| printk(KERN_ERR "EPT: Misconfiguration.\n"); |
| printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa); |
| |
| nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes); |
| |
| for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i) |
| ept_misconfig_inspect_spte(vcpu, sptes[i-1], i); |
| |
| kvm_run->exit_reason = KVM_EXIT_UNKNOWN; |
| kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG; |
| |
| return 0; |
| } |
| |
| static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| u32 cpu_based_vm_exec_control; |
| |
| /* clear pending NMI */ |
| cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); |
| ++vcpu->stat.nmi_window_exits; |
| |
| return 1; |
| } |
| |
| static void handle_invalid_guest_state(struct kvm_vcpu *vcpu, |
| struct kvm_run *kvm_run) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| enum emulation_result err = EMULATE_DONE; |
| |
| local_irq_enable(); |
| preempt_enable(); |
| |
| while (!guest_state_valid(vcpu)) { |
| err = emulate_instruction(vcpu, kvm_run, 0, 0, 0); |
| |
| if (err == EMULATE_DO_MMIO) |
| break; |
| |
| if (err != EMULATE_DONE) { |
| kvm_report_emulation_failure(vcpu, "emulation failure"); |
| break; |
| } |
| |
| if (signal_pending(current)) |
| break; |
| if (need_resched()) |
| schedule(); |
| } |
| |
| preempt_disable(); |
| local_irq_disable(); |
| |
| vmx->invalid_state_emulation_result = err; |
| } |
| |
| /* |
| * The exit handlers return 1 if the exit was handled fully and guest execution |
| * may resume. Otherwise they set the kvm_run parameter to indicate what needs |
| * to be done to userspace and return 0. |
| */ |
| static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu, |
| struct kvm_run *kvm_run) = { |
| [EXIT_REASON_EXCEPTION_NMI] = handle_exception, |
| [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, |
| [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, |
| [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, |
| [EXIT_REASON_IO_INSTRUCTION] = handle_io, |
| [EXIT_REASON_CR_ACCESS] = handle_cr, |
| [EXIT_REASON_DR_ACCESS] = handle_dr, |
| [EXIT_REASON_CPUID] = handle_cpuid, |
| [EXIT_REASON_MSR_READ] = handle_rdmsr, |
| [EXIT_REASON_MSR_WRITE] = handle_wrmsr, |
| [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, |
| [EXIT_REASON_HLT] = handle_halt, |
| [EXIT_REASON_INVLPG] = handle_invlpg, |
| [EXIT_REASON_VMCALL] = handle_vmcall, |
| [EXIT_REASON_VMCLEAR] = handle_vmx_insn, |
| [EXIT_REASON_VMLAUNCH] = handle_vmx_insn, |
| [EXIT_REASON_VMPTRLD] = handle_vmx_insn, |
| [EXIT_REASON_VMPTRST] = handle_vmx_insn, |
| [EXIT_REASON_VMREAD] = handle_vmx_insn, |
| [EXIT_REASON_VMRESUME] = handle_vmx_insn, |
| [EXIT_REASON_VMWRITE] = handle_vmx_insn, |
| [EXIT_REASON_VMOFF] = handle_vmx_insn, |
| [EXIT_REASON_VMON] = handle_vmx_insn, |
| [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, |
| [EXIT_REASON_APIC_ACCESS] = handle_apic_access, |
| [EXIT_REASON_WBINVD] = handle_wbinvd, |
| [EXIT_REASON_TASK_SWITCH] = handle_task_switch, |
| [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, |
| [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, |
| [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, |
| }; |
| |
| static const int kvm_vmx_max_exit_handlers = |
| ARRAY_SIZE(kvm_vmx_exit_handlers); |
| |
| /* |
| * The guest has exited. See if we can fix it or if we need userspace |
| * assistance. |
| */ |
| static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 exit_reason = vmx->exit_reason; |
| u32 vectoring_info = vmx->idt_vectoring_info; |
| |
| trace_kvm_exit(exit_reason, kvm_rip_read(vcpu)); |
| |
| /* If we need to emulate an MMIO from handle_invalid_guest_state |
| * we just return 0 */ |
| if (vmx->emulation_required && emulate_invalid_guest_state) { |
| if (guest_state_valid(vcpu)) |
| vmx->emulation_required = 0; |
| return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO; |
| } |
| |
| /* Access CR3 don't cause VMExit in paging mode, so we need |
| * to sync with guest real CR3. */ |
| if (enable_ept && is_paging(vcpu)) |
| vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); |
| |
| if (unlikely(vmx->fail)) { |
| kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| kvm_run->fail_entry.hardware_entry_failure_reason |
| = vmcs_read32(VM_INSTRUCTION_ERROR); |
| return 0; |
| } |
| |
| if ((vectoring_info & VECTORING_INFO_VALID_MASK) && |
| (exit_reason != EXIT_REASON_EXCEPTION_NMI && |
| exit_reason != EXIT_REASON_EPT_VIOLATION && |
| exit_reason != EXIT_REASON_TASK_SWITCH)) |
| printk(KERN_WARNING "%s: unexpected, valid vectoring info " |
| "(0x%x) and exit reason is 0x%x\n", |
| __func__, vectoring_info, exit_reason); |
| |
| if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) { |
| if (vmx_interrupt_allowed(vcpu)) { |
| vmx->soft_vnmi_blocked = 0; |
| } else if (vmx->vnmi_blocked_time > 1000000000LL && |
| vcpu->arch.nmi_pending) { |
| /* |
| * This CPU don't support us in finding the end of an |
| * NMI-blocked window if the guest runs with IRQs |
| * disabled. So we pull the trigger after 1 s of |
| * futile waiting, but inform the user about this. |
| */ |
| printk(KERN_WARNING "%s: Breaking out of NMI-blocked " |
| "state on VCPU %d after 1 s timeout\n", |
| __func__, vcpu->vcpu_id); |
| vmx->soft_vnmi_blocked = 0; |
| } |
| } |
| |
| if (exit_reason < kvm_vmx_max_exit_handlers |
| && kvm_vmx_exit_handlers[exit_reason]) |
| return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run); |
| else { |
| kvm_run->exit_reason = KVM_EXIT_UNKNOWN; |
| kvm_run->hw.hardware_exit_reason = exit_reason; |
| } |
| return 0; |
| } |
| |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) |
| { |
| if (irr == -1 || tpr < irr) { |
| vmcs_write32(TPR_THRESHOLD, 0); |
| return; |
| } |
| |
| vmcs_write32(TPR_THRESHOLD, irr); |
| } |
| |
| static void vmx_complete_interrupts(struct vcpu_vmx *vmx) |
| { |
| u32 exit_intr_info; |
| u32 idt_vectoring_info = vmx->idt_vectoring_info; |
| bool unblock_nmi; |
| u8 vector; |
| int type; |
| bool idtv_info_valid; |
| |
| exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| |
| vmx->exit_reason = vmcs_read32(VM_EXIT_REASON); |
| |
| /* Handle machine checks before interrupts are enabled */ |
| if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY) |
| || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI |
| && is_machine_check(exit_intr_info))) |
| kvm_machine_check(); |
| |
| /* We need to handle NMIs before interrupts are enabled */ |
| if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR && |
| (exit_intr_info & INTR_INFO_VALID_MASK)) |
| asm("int $2"); |
| |
| idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; |
| |
| if (cpu_has_virtual_nmis()) { |
| unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; |
| vector = exit_intr_info & INTR_INFO_VECTOR_MASK; |
| /* |
| * SDM 3: 27.7.1.2 (September 2008) |
| * Re-set bit "block by NMI" before VM entry if vmexit caused by |
| * a guest IRET fault. |
| * SDM 3: 23.2.2 (September 2008) |
| * Bit 12 is undefined in any of the following cases: |
| * If the VM exit sets the valid bit in the IDT-vectoring |
| * information field. |
| * If the VM exit is due to a double fault. |
| */ |
| if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && |
| vector != DF_VECTOR && !idtv_info_valid) |
| vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, |
| GUEST_INTR_STATE_NMI); |
| } else if (unlikely(vmx->soft_vnmi_blocked)) |
| vmx->vnmi_blocked_time += |
| ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time)); |
| |
| vmx->vcpu.arch.nmi_injected = false; |
| kvm_clear_exception_queue(&vmx->vcpu); |
| kvm_clear_interrupt_queue(&vmx->vcpu); |
| |
| if (!idtv_info_valid) |
| return; |
| |
| vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; |
| type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; |
| |
| switch (type) { |
| case INTR_TYPE_NMI_INTR: |
| vmx->vcpu.arch.nmi_injected = true; |
| /* |
| * SDM 3: 27.7.1.2 (September 2008) |
| * Clear bit "block by NMI" before VM entry if a NMI |
| * delivery faulted. |
| */ |
| vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, |
| GUEST_INTR_STATE_NMI); |
| break; |
| case INTR_TYPE_SOFT_EXCEPTION: |
| vmx->vcpu.arch.event_exit_inst_len = |
| vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| /* fall through */ |
| case INTR_TYPE_HARD_EXCEPTION: |
| if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { |
| u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE); |
| kvm_queue_exception_e(&vmx->vcpu, vector, err); |
| } else |
| kvm_queue_exception(&vmx->vcpu, vector); |
| break; |
| case INTR_TYPE_SOFT_INTR: |
| vmx->vcpu.arch.event_exit_inst_len = |
| vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| /* fall through */ |
| case INTR_TYPE_EXT_INTR: |
| kvm_queue_interrupt(&vmx->vcpu, vector, |
| type == INTR_TYPE_SOFT_INTR); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * Failure to inject an interrupt should give us the information |
| * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs |
| * when fetching the interrupt redirection bitmap in the real-mode |
| * tss, this doesn't happen. So we do it ourselves. |
| */ |
| static void fixup_rmode_irq(struct vcpu_vmx *vmx) |
| { |
| vmx->rmode.irq.pending = 0; |
| if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip) |
| return; |
| kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip); |
| if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) { |
| vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK; |
| vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR; |
| return; |
| } |
| vmx->idt_vectoring_info = |
| VECTORING_INFO_VALID_MASK |
| | INTR_TYPE_EXT_INTR |
| | vmx->rmode.irq.vector; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| #define R "r" |
| #define Q "q" |
| #else |
| #define R "e" |
| #define Q "l" |
| #endif |
| |
| static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (enable_ept && is_paging(vcpu)) { |
| vmcs_writel(GUEST_CR3, vcpu->arch.cr3); |
| ept_load_pdptrs(vcpu); |
| } |
| /* Record the guest's net vcpu time for enforced NMI injections. */ |
| if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) |
| vmx->entry_time = ktime_get(); |
| |
| /* Handle invalid guest state instead of entering VMX */ |
| if (vmx->emulation_required && emulate_invalid_guest_state) { |
| handle_invalid_guest_state(vcpu, kvm_run); |
| return; |
| } |
| |
| if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) |
| vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); |
| if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) |
| vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); |
| |
| /* When single-stepping over STI and MOV SS, we must clear the |
| * corresponding interruptibility bits in the guest state. Otherwise |
| * vmentry fails as it then expects bit 14 (BS) in pending debug |
| * exceptions being set, but that's not correct for the guest debugging |
| * case. */ |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
| vmx_set_interrupt_shadow(vcpu, 0); |
| |
| /* |
| * Loading guest fpu may have cleared host cr0.ts |
| */ |
| vmcs_writel(HOST_CR0, read_cr0()); |
| |
| if (vcpu->arch.switch_db_regs) |
| set_debugreg(vcpu->arch.dr6, 6); |
| |
| asm( |
| /* Store host registers */ |
| "push %%"R"dx; push %%"R"bp;" |
| "push %%"R"cx \n\t" |
| "cmp %%"R"sp, %c[host_rsp](%0) \n\t" |
| "je 1f \n\t" |
| "mov %%"R"sp, %c[host_rsp](%0) \n\t" |
| __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t" |
| "1: \n\t" |
| /* Reload cr2 if changed */ |
| "mov %c[cr2](%0), %%"R"ax \n\t" |
| "mov %%cr2, %%"R"dx \n\t" |
| "cmp %%"R"ax, %%"R"dx \n\t" |
| "je 2f \n\t" |
| "mov %%"R"ax, %%cr2 \n\t" |
| "2: \n\t" |
| /* Check if vmlaunch of vmresume is needed */ |
| "cmpl $0, %c[launched](%0) \n\t" |
| /* Load guest registers. Don't clobber flags. */ |
| "mov %c[rax](%0), %%"R"ax \n\t" |
| "mov %c[rbx](%0), %%"R"bx \n\t" |
| "mov %c[rdx](%0), %%"R"dx \n\t" |
| "mov %c[rsi](%0), %%"R"si \n\t" |
| "mov %c[rdi](%0), %%"R"di \n\t" |
| "mov %c[rbp](%0), %%"R"bp \n\t" |
| #ifdef CONFIG_X86_64 |
| "mov %c[r8](%0), %%r8 \n\t" |
| "mov %c[r9](%0), %%r9 \n\t" |
| "mov %c[r10](%0), %%r10 \n\t" |
| "mov %c[r11](%0), %%r11 \n\t" |
| "mov %c[r12](%0), %%r12 \n\t" |
| "mov %c[r13](%0), %%r13 \n\t" |
| "mov %c[r14](%0), %%r14 \n\t" |
| "mov %c[r15](%0), %%r15 \n\t" |
| #endif |
| "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */ |
| |
| /* Enter guest mode */ |
| "jne .Llaunched \n\t" |
| __ex(ASM_VMX_VMLAUNCH) "\n\t" |
| "jmp .Lkvm_vmx_return \n\t" |
| ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t" |
| ".Lkvm_vmx_return: " |
| /* Save guest registers, load host registers, keep flags */ |
| "xchg %0, (%%"R"sp) \n\t" |
| "mov %%"R"ax, %c[rax](%0) \n\t" |
| "mov %%"R"bx, %c[rbx](%0) \n\t" |
| "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t" |
| "mov %%"R"dx, %c[rdx](%0) \n\t" |
| "mov %%"R"si, %c[rsi](%0) \n\t" |
| "mov %%"R"di, %c[rdi](%0) \n\t" |
| "mov %%"R"bp, %c[rbp](%0) \n\t" |
| #ifdef CONFIG_X86_64 |
| "mov %%r8, %c[r8](%0) \n\t" |
| "mov %%r9, %c[r9](%0) \n\t" |
| "mov %%r10, %c[r10](%0) \n\t" |
| "mov %%r11, %c[r11](%0) \n\t" |
| "mov %%r12, %c[r12](%0) \n\t" |
| "mov %%r13, %c[r13](%0) \n\t" |
| "mov %%r14, %c[r14](%0) \n\t" |
| "mov %%r15, %c[r15](%0) \n\t" |
| #endif |
| "mov %%cr2, %%"R"ax \n\t" |
| "mov %%"R"ax, %c[cr2](%0) \n\t" |
| |
| "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t" |
| "setbe %c[fail](%0) \n\t" |
| : : "c"(vmx), "d"((unsigned long)HOST_RSP), |
| [launched]"i"(offsetof(struct vcpu_vmx, launched)), |
| [fail]"i"(offsetof(struct vcpu_vmx, fail)), |
| [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), |
| [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])), |
| [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])), |
| [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])), |
| [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])), |
| [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])), |
| [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])), |
| [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])), |
| #ifdef CONFIG_X86_64 |
| [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])), |
| [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])), |
| [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])), |
| [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])), |
| [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])), |
| [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])), |
| [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])), |
| [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])), |
| #endif |
| [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)) |
| : "cc", "memory" |
| , R"bx", R"di", R"si" |
| #ifdef CONFIG_X86_64 |
| , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" |
| #endif |
| ); |
| |
| vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) |
| | (1 << VCPU_EXREG_PDPTR)); |
| vcpu->arch.regs_dirty = 0; |
| |
| if (vcpu->arch.switch_db_regs) |
| get_debugreg(vcpu->arch.dr6, 6); |
| |
| vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); |
| if (vmx->rmode.irq.pending) |
| fixup_rmode_irq(vmx); |
| |
| asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS)); |
| vmx->launched = 1; |
| |
| vmx_complete_interrupts(vmx); |
| } |
| |
| #undef R |
| #undef Q |
| |
| static void vmx_free_vmcs(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (vmx->vmcs) { |
| vcpu_clear(vmx); |
| free_vmcs(vmx->vmcs); |
| vmx->vmcs = NULL; |
| } |
| } |
| |
| static void vmx_free_vcpu(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| spin_lock(&vmx_vpid_lock); |
| if (vmx->vpid != 0) |
| __clear_bit(vmx->vpid, vmx_vpid_bitmap); |
| spin_unlock(&vmx_vpid_lock); |
| vmx_free_vmcs(vcpu); |
| kfree(vmx->host_msrs); |
| kfree(vmx->guest_msrs); |
| kvm_vcpu_uninit(vcpu); |
| kmem_cache_free(kvm_vcpu_cache, vmx); |
| } |
| |
| static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) |
| { |
| int err; |
| struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); |
| int cpu; |
| |
| if (!vmx) |
| return ERR_PTR(-ENOMEM); |
| |
| allocate_vpid(vmx); |
| |
| err = kvm_vcpu_init(&vmx->vcpu, kvm, id); |
| if (err) |
| goto free_vcpu; |
| |
| vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!vmx->guest_msrs) { |
| err = -ENOMEM; |
| goto uninit_vcpu; |
| } |
| |
| vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!vmx->host_msrs) |
| goto free_guest_msrs; |
| |
| vmx->vmcs = alloc_vmcs(); |
| if (!vmx->vmcs) |
| goto free_msrs; |
| |
| vmcs_clear(vmx->vmcs); |
| |
| cpu = get_cpu(); |
| vmx_vcpu_load(&vmx->vcpu, cpu); |
| err = vmx_vcpu_setup(vmx); |
| vmx_vcpu_put(&vmx->vcpu); |
| put_cpu(); |
| if (err) |
| goto free_vmcs; |
| if (vm_need_virtualize_apic_accesses(kvm)) |
| if (alloc_apic_access_page(kvm) != 0) |
| goto free_vmcs; |
| |
| if (enable_ept) { |
| if (!kvm->arch.ept_identity_map_addr) |
| kvm->arch.ept_identity_map_addr = |
| VMX_EPT_IDENTITY_PAGETABLE_ADDR; |
| if (alloc_identity_pagetable(kvm) != 0) |
| goto free_vmcs; |
| } |
| |
| return &vmx->vcpu; |
| |
| free_vmcs: |
| free_vmcs(vmx->vmcs); |
| free_msrs: |
| kfree(vmx->host_msrs); |
| free_guest_msrs: |
| kfree(vmx->guest_msrs); |
| uninit_vcpu: |
| kvm_vcpu_uninit(&vmx->vcpu); |
| free_vcpu: |
| kmem_cache_free(kvm_vcpu_cache, vmx); |
| return ERR_PTR(err); |
| } |
| |
| static void __init vmx_check_processor_compat(void *rtn) |
| { |
| struct vmcs_config vmcs_conf; |
| |
| *(int *)rtn = 0; |
| if (setup_vmcs_config(&vmcs_conf) < 0) |
| *(int *)rtn = -EIO; |
| if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { |
| printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", |
| smp_processor_id()); |
| *(int *)rtn = -EIO; |
| } |
| } |
| |
| static int get_ept_level(void) |
| { |
| return VMX_EPT_DEFAULT_GAW + 1; |
| } |
| |
| static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) |
| { |
| u64 ret; |
| |
| /* For VT-d and EPT combination |
| * 1. MMIO: always map as UC |
| * 2. EPT with VT-d: |
| * a. VT-d without snooping control feature: can't guarantee the |
| * result, try to trust guest. |
| * b. VT-d with snooping control feature: snooping control feature of |
| * VT-d engine can guarantee the cache correctness. Just set it |
| * to WB to keep consistent with host. So the same as item 3. |
| * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep |
| * consistent with host MTRR |
| */ |
| if (is_mmio) |
| ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; |
| else if (vcpu->kvm->arch.iommu_domain && |
| !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY)) |
| ret = kvm_get_guest_memory_type(vcpu, gfn) << |
| VMX_EPT_MT_EPTE_SHIFT; |
| else |
| ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) |
| | VMX_EPT_IGMT_BIT; |
| |
| return ret; |
| } |
| |
| static const struct trace_print_flags vmx_exit_reasons_str[] = { |
| { EXIT_REASON_EXCEPTION_NMI, "exception" }, |
| { EXIT_REASON_EXTERNAL_INTERRUPT, "ext_irq" }, |
| { EXIT_REASON_TRIPLE_FAULT, "triple_fault" }, |
| { EXIT_REASON_NMI_WINDOW, "nmi_window" }, |
| { EXIT_REASON_IO_INSTRUCTION, "io_instruction" }, |
| { EXIT_REASON_CR_ACCESS, "cr_access" }, |
| { EXIT_REASON_DR_ACCESS, "dr_access" }, |
| { EXIT_REASON_CPUID, "cpuid" }, |
| { EXIT_REASON_MSR_READ, "rdmsr" }, |
| { EXIT_REASON_MSR_WRITE, "wrmsr" }, |
| { EXIT_REASON_PENDING_INTERRUPT, "interrupt_window" }, |
| { EXIT_REASON_HLT, "halt" }, |
| { EXIT_REASON_INVLPG, "invlpg" }, |
| { EXIT_REASON_VMCALL, "hypercall" }, |
| { EXIT_REASON_TPR_BELOW_THRESHOLD, "tpr_below_thres" }, |
| { EXIT_REASON_APIC_ACCESS, "apic_access" }, |
| { EXIT_REASON_WBINVD, "wbinvd" }, |
| { EXIT_REASON_TASK_SWITCH, "task_switch" }, |
| { EXIT_REASON_EPT_VIOLATION, "ept_violation" }, |
| { -1, NULL } |
| }; |
| |
| static bool vmx_gb_page_enable(void) |
| { |
| return false; |
| } |
| |
| static struct kvm_x86_ops vmx_x86_ops = { |
| .cpu_has_kvm_support = cpu_has_kvm_support, |
| .disabled_by_bios = vmx_disabled_by_bios, |
| .hardware_setup = hardware_setup, |
| .hardware_unsetup = hardware_unsetup, |
| .check_processor_compatibility = vmx_check_processor_compat, |
| .hardware_enable = hardware_enable, |
| .hardware_disable = hardware_disable, |
| .cpu_has_accelerated_tpr = report_flexpriority, |
| |
| .vcpu_create = vmx_create_vcpu, |
| .vcpu_free = vmx_free_vcpu, |
| .vcpu_reset = vmx_vcpu_reset, |
| |
| .prepare_guest_switch = vmx_save_host_state, |
| .vcpu_load = vmx_vcpu_load, |
| .vcpu_put = vmx_vcpu_put, |
| |
| .set_guest_debug = set_guest_debug, |
| .get_msr = vmx_get_msr, |
| .set_msr = vmx_set_msr, |
| .get_segment_base = vmx_get_segment_base, |
| .get_segment = vmx_get_segment, |
| .set_segment = vmx_set_segment, |
| .get_cpl = vmx_get_cpl, |
| .get_cs_db_l_bits = vmx_get_cs_db_l_bits, |
| .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, |
| .set_cr0 = vmx_set_cr0, |
| .set_cr3 = vmx_set_cr3, |
| .set_cr4 = vmx_set_cr4, |
| .set_efer = vmx_set_efer, |
| .get_idt = vmx_get_idt, |
| .set_idt = vmx_set_idt, |
| .get_gdt = vmx_get_gdt, |
| .set_gdt = vmx_set_gdt, |
| .cache_reg = vmx_cache_reg, |
| .get_rflags = vmx_get_rflags, |
| .set_rflags = vmx_set_rflags, |
| |
| .tlb_flush = vmx_flush_tlb, |
| |
| .run = vmx_vcpu_run, |
| .handle_exit = vmx_handle_exit, |
| .skip_emulated_instruction = skip_emulated_instruction, |
| .set_interrupt_shadow = vmx_set_interrupt_shadow, |
| .get_interrupt_shadow = vmx_get_interrupt_shadow, |
| .patch_hypercall = vmx_patch_hypercall, |
| .set_irq = vmx_inject_irq, |
| .set_nmi = vmx_inject_nmi, |
| .queue_exception = vmx_queue_exception, |
| .interrupt_allowed = vmx_interrupt_allowed, |
| .nmi_allowed = vmx_nmi_allowed, |
| .enable_nmi_window = enable_nmi_window, |
| .enable_irq_window = enable_irq_window, |
| .update_cr8_intercept = update_cr8_intercept, |
| |
| .set_tss_addr = vmx_set_tss_addr, |
| .get_tdp_level = get_ept_level, |
| .get_mt_mask = vmx_get_mt_mask, |
| |
| .exit_reasons_str = vmx_exit_reasons_str, |
| .gb_page_enable = vmx_gb_page_enable, |
| }; |
| |
| static int __init vmx_init(void) |
| { |
| int r; |
| |
| vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL); |
| if (!vmx_io_bitmap_a) |
| return -ENOMEM; |
| |
| vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL); |
| if (!vmx_io_bitmap_b) { |
| r = -ENOMEM; |
| goto out; |
| } |
| |
| vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL); |
| if (!vmx_msr_bitmap_legacy) { |
| r = -ENOMEM; |
| goto out1; |
| } |
| |
| vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL); |
| if (!vmx_msr_bitmap_longmode) { |
| r = -ENOMEM; |
| goto out2; |
| } |
| |
| /* |
| * Allow direct access to the PC debug port (it is often used for I/O |
| * delays, but the vmexits simply slow things down). |
| */ |
| memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE); |
| clear_bit(0x80, vmx_io_bitmap_a); |
| |
| memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE); |
| |
| memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE); |
| memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE); |
| |
| set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ |
| |
| r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE); |
| if (r) |
| goto out3; |
| |
| vmx_disable_intercept_for_msr(MSR_FS_BASE, false); |
| vmx_disable_intercept_for_msr(MSR_GS_BASE, false); |
| vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true); |
| vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false); |
| vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false); |
| vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false); |
| |
| if (enable_ept) { |
| bypass_guest_pf = 0; |
| kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK | |
| VMX_EPT_WRITABLE_MASK); |
| kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull, |
| VMX_EPT_EXECUTABLE_MASK); |
| kvm_enable_tdp(); |
| } else |
| kvm_disable_tdp(); |
| |
| if (bypass_guest_pf) |
| kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull); |
| |
| ept_sync_global(); |
| |
| return 0; |
| |
| out3: |
| free_page((unsigned long)vmx_msr_bitmap_longmode); |
| out2: |
| free_page((unsigned long)vmx_msr_bitmap_legacy); |
| out1: |
| free_page((unsigned long)vmx_io_bitmap_b); |
| out: |
| free_page((unsigned long)vmx_io_bitmap_a); |
| return r; |
| } |
| |
| static void __exit vmx_exit(void) |
| { |
| free_page((unsigned long)vmx_msr_bitmap_legacy); |
| free_page((unsigned long)vmx_msr_bitmap_longmode); |
| free_page((unsigned long)vmx_io_bitmap_b); |
| free_page((unsigned long)vmx_io_bitmap_a); |
| |
| kvm_exit(); |
| } |
| |
| module_init(vmx_init) |
| module_exit(vmx_exit) |