| /* |
| * include/asm-xtensa/elf.h |
| * |
| * ELF register definitions |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2001 - 2005 Tensilica Inc. |
| */ |
| |
| #ifndef _XTENSA_ELF_H |
| #define _XTENSA_ELF_H |
| |
| #include <asm/ptrace.h> |
| |
| /* Xtensa processor ELF architecture-magic number */ |
| |
| #define EM_XTENSA 94 |
| #define EM_XTENSA_OLD 0xABC7 |
| |
| /* ELF register definitions. This is needed for core dump support. */ |
| |
| /* |
| * elf_gregset_t contains the application-level state in the following order: |
| * Processor info: config_version, cpuxy |
| * Processor state: pc, ps, exccause, excvaddr, wb, ws, |
| * lbeg, lend, lcount, sar |
| * GP regs: ar0 - arXX |
| */ |
| |
| typedef unsigned long elf_greg_t; |
| |
| typedef struct { |
| elf_greg_t xchal_config_id0; |
| elf_greg_t xchal_config_id1; |
| elf_greg_t cpux; |
| elf_greg_t cpuy; |
| elf_greg_t pc; |
| elf_greg_t ps; |
| elf_greg_t exccause; |
| elf_greg_t excvaddr; |
| elf_greg_t windowbase; |
| elf_greg_t windowstart; |
| elf_greg_t lbeg; |
| elf_greg_t lend; |
| elf_greg_t lcount; |
| elf_greg_t sar; |
| elf_greg_t syscall; |
| elf_greg_t ar[64]; |
| } xtensa_gregset_t; |
| |
| #define ELF_NGREG (sizeof(xtensa_gregset_t) / sizeof(elf_greg_t)) |
| |
| typedef elf_greg_t elf_gregset_t[ELF_NGREG]; |
| |
| /* |
| * Compute the size of the coprocessor and extra state layout (register info) |
| * table (in bytes). |
| * This is actually the maximum size of the table, as opposed to the size, |
| * which is available from the _xtensa_reginfo_table_size global variable. |
| * |
| * (See also arch/xtensa/kernel/coprocessor.S) |
| * |
| */ |
| |
| #ifndef XCHAL_EXTRA_SA_CONTENTS_LIBDB_NUM |
| # define XTENSA_CPE_LTABLE_SIZE 0 |
| #else |
| # define XTENSA_CPE_SEGMENT(num) (num ? (1+num) : 0) |
| # define XTENSA_CPE_LTABLE_ENTRIES \ |
| ( XTENSA_CPE_SEGMENT(XCHAL_EXTRA_SA_CONTENTS_LIBDB_NUM) \ |
| + XTENSA_CPE_SEGMENT(XCHAL_CP0_SA_CONTENTS_LIBDB_NUM) \ |
| + XTENSA_CPE_SEGMENT(XCHAL_CP1_SA_CONTENTS_LIBDB_NUM) \ |
| + XTENSA_CPE_SEGMENT(XCHAL_CP2_SA_CONTENTS_LIBDB_NUM) \ |
| + XTENSA_CPE_SEGMENT(XCHAL_CP3_SA_CONTENTS_LIBDB_NUM) \ |
| + XTENSA_CPE_SEGMENT(XCHAL_CP4_SA_CONTENTS_LIBDB_NUM) \ |
| + XTENSA_CPE_SEGMENT(XCHAL_CP5_SA_CONTENTS_LIBDB_NUM) \ |
| + XTENSA_CPE_SEGMENT(XCHAL_CP6_SA_CONTENTS_LIBDB_NUM) \ |
| + XTENSA_CPE_SEGMENT(XCHAL_CP7_SA_CONTENTS_LIBDB_NUM) \ |
| + 1 /* final entry */ \ |
| ) |
| # define XTENSA_CPE_LTABLE_SIZE (XTENSA_CPE_LTABLE_ENTRIES * 8) |
| #endif |
| |
| |
| /* |
| * Instantiations of the elf_fpregset_t type contain, in most |
| * architectures, the floating point (FPU) register set. |
| * For Xtensa, this type is extended to contain all custom state, |
| * ie. coprocessor and "extra" (non-coprocessor) state (including, |
| * for example, TIE-defined states and register files; as well |
| * as other optional processor state). |
| * This includes FPU state if a floating-point coprocessor happens |
| * to have been configured within the Xtensa processor. |
| * |
| * TOTAL_FPREGS_SIZE is the required size (without rounding) |
| * of elf_fpregset_t. It provides space for the following: |
| * |
| * a) 32-bit mask of active coprocessors for this task (similar |
| * to CPENABLE in single-threaded Xtensa processor systems) |
| * |
| * b) table describing the layout of custom states (ie. of |
| * individual registers, etc) within the save areas |
| * |
| * c) save areas for each coprocessor and for non-coprocessor |
| * ("extra") state |
| * |
| * Note that save areas may require up to 16-byte alignment when |
| * accessed by save/restore sequences. We do not need to ensure |
| * such alignment in an elf_fpregset_t structure because custom |
| * state is not directly loaded/stored into it; rather, save area |
| * contents are copied to elf_fpregset_t from the active save areas |
| * (see 'struct task_struct' definition in processor.h for that) |
| * using memcpy(). But we do allow space for such alignment, |
| * to allow optimizations of layout and copying. |
| */ |
| #if 0 |
| #define TOTAL_FPREGS_SIZE \ |
| (4 + XTENSA_CPE_LTABLE_SIZE + XTENSA_CP_EXTRA_SIZE) |
| #define ELF_NFPREG \ |
| ((TOTAL_FPREGS_SIZE + sizeof(elf_fpreg_t) - 1) / sizeof(elf_fpreg_t)) |
| #else |
| #define TOTAL_FPREGS_SIZE 0 |
| #define ELF_NFPREG 0 |
| #endif |
| |
| typedef unsigned int elf_fpreg_t; |
| typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG]; |
| |
| #define ELF_CORE_COPY_REGS(_eregs, _pregs) \ |
| xtensa_elf_core_copy_regs (&_eregs, _pregs); |
| |
| extern void xtensa_elf_core_copy_regs (xtensa_gregset_t *, struct pt_regs *); |
| |
| /* |
| * This is used to ensure we don't load something for the wrong architecture. |
| */ |
| |
| #define elf_check_arch(x) ( ( (x)->e_machine == EM_XTENSA ) || \ |
| ( (x)->e_machine == EM_XTENSA_OLD ) ) |
| |
| /* |
| * These are used to set parameters in the core dumps. |
| */ |
| |
| #ifdef __XTENSA_EL__ |
| # define ELF_DATA ELFDATA2LSB |
| #elif defined(__XTENSA_EB__) |
| # define ELF_DATA ELFDATA2MSB |
| #else |
| # error processor byte order undefined! |
| #endif |
| |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_ARCH EM_XTENSA |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE PAGE_SIZE |
| |
| /* |
| * This is the location that an ET_DYN program is loaded if exec'ed. Typical |
| * use of this is to invoke "./ld.so someprog" to test out a new version of |
| * the loader. We need to make sure that it is out of the way of the program |
| * that it will "exec", and that there is sufficient room for the brk. |
| */ |
| |
| #define ELF_ET_DYN_BASE (2 * TASK_SIZE / 3) |
| |
| /* |
| * This yields a mask that user programs can use to figure out what |
| * instruction set this CPU supports. This could be done in user space, |
| * but it's not easy, and we've already done it here. |
| */ |
| |
| #define ELF_HWCAP (0) |
| |
| /* |
| * This yields a string that ld.so will use to load implementation |
| * specific libraries for optimization. This is more specific in |
| * intent than poking at uname or /proc/cpuinfo. |
| * For the moment, we have only optimizations for the Intel generations, |
| * but that could change... |
| */ |
| |
| #define ELF_PLATFORM (NULL) |
| |
| /* |
| * The Xtensa processor ABI says that when the program starts, a2 |
| * contains a pointer to a function which might be registered using |
| * `atexit'. This provides a mean for the dynamic linker to call |
| * DT_FINI functions for shared libraries that have been loaded before |
| * the code runs. |
| * |
| * A value of 0 tells we have no such handler. |
| * |
| * We might as well make sure everything else is cleared too (except |
| * for the stack pointer in a1), just to make things more |
| * deterministic. Also, clearing a0 terminates debugger backtraces. |
| */ |
| |
| #define ELF_PLAT_INIT(_r, load_addr) \ |
| do { _r->areg[0]=0; /*_r->areg[1]=0;*/ _r->areg[2]=0; _r->areg[3]=0; \ |
| _r->areg[4]=0; _r->areg[5]=0; _r->areg[6]=0; _r->areg[7]=0; \ |
| _r->areg[8]=0; _r->areg[9]=0; _r->areg[10]=0; _r->areg[11]=0; \ |
| _r->areg[12]=0; _r->areg[13]=0; _r->areg[14]=0; _r->areg[15]=0; \ |
| } while (0) |
| |
| #ifdef __KERNEL__ |
| |
| #define SET_PERSONALITY(ex, ibcs2) set_personality(PER_LINUX_32BIT) |
| |
| struct task_struct; |
| |
| extern void do_copy_regs (xtensa_gregset_t*, struct pt_regs*, |
| struct task_struct*); |
| extern void do_restore_regs (xtensa_gregset_t*, struct pt_regs*, |
| struct task_struct*); |
| extern void do_save_fpregs (elf_fpregset_t*, struct pt_regs*, |
| struct task_struct*); |
| extern int do_restore_fpregs (elf_fpregset_t*, struct pt_regs*, |
| struct task_struct*); |
| |
| #endif /* __KERNEL__ */ |
| #endif /* _XTENSA_ELF_H */ |