| /* |
| * linux/arch/cris/arch-v10/kernel/time.c |
| * |
| * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| * Copyright (C) 1999-2002 Axis Communications AB |
| * |
| */ |
| |
| #include <linux/timex.h> |
| #include <linux/time.h> |
| #include <linux/jiffies.h> |
| #include <linux/interrupt.h> |
| #include <linux/swap.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <arch/svinto.h> |
| #include <asm/types.h> |
| #include <asm/signal.h> |
| #include <asm/io.h> |
| #include <asm/delay.h> |
| #include <asm/rtc.h> |
| #include <asm/irq_regs.h> |
| |
| /* define this if you need to use print_timestamp */ |
| /* it will make jiffies at 96 hz instead of 100 hz though */ |
| #undef USE_CASCADE_TIMERS |
| |
| extern void update_xtime_from_cmos(void); |
| extern int set_rtc_mmss(unsigned long nowtime); |
| extern int have_rtc; |
| |
| unsigned long get_ns_in_jiffie(void) |
| { |
| unsigned char timer_count, t1; |
| unsigned short presc_count; |
| unsigned long ns; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| timer_count = *R_TIMER0_DATA; |
| presc_count = *R_TIM_PRESC_STATUS; |
| /* presc_count might be wrapped */ |
| t1 = *R_TIMER0_DATA; |
| |
| if (timer_count != t1){ |
| /* it wrapped, read prescaler again... */ |
| presc_count = *R_TIM_PRESC_STATUS; |
| timer_count = t1; |
| } |
| local_irq_restore(flags); |
| if (presc_count >= PRESCALE_VALUE/2 ){ |
| presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2; |
| } else { |
| presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2; |
| } |
| |
| ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) + |
| ( (presc_count) * (1000000000/PRESCALE_FREQ)); |
| return ns; |
| } |
| |
| unsigned long do_slow_gettimeoffset(void) |
| { |
| unsigned long count, t1; |
| unsigned long usec_count = 0; |
| unsigned short presc_count; |
| |
| static unsigned long count_p = TIMER0_DIV;/* for the first call after boot */ |
| static unsigned long jiffies_p = 0; |
| |
| /* |
| * cache volatile jiffies temporarily; we have IRQs turned off. |
| */ |
| unsigned long jiffies_t; |
| |
| /* The timer interrupt comes from Etrax timer 0. In order to get |
| * better precision, we check the current value. It might have |
| * underflowed already though. |
| */ |
| |
| #ifndef CONFIG_SVINTO_SIM |
| /* Not available in the xsim simulator. */ |
| count = *R_TIMER0_DATA; |
| presc_count = *R_TIM_PRESC_STATUS; |
| /* presc_count might be wrapped */ |
| t1 = *R_TIMER0_DATA; |
| if (count != t1){ |
| /* it wrapped, read prescaler again... */ |
| presc_count = *R_TIM_PRESC_STATUS; |
| count = t1; |
| } |
| #else |
| count = 0; |
| presc_count = 0; |
| #endif |
| |
| jiffies_t = jiffies; |
| |
| /* |
| * avoiding timer inconsistencies (they are rare, but they happen)... |
| * there are one problem that must be avoided here: |
| * 1. the timer counter underflows |
| */ |
| if( jiffies_t == jiffies_p ) { |
| if( count > count_p ) { |
| /* Timer wrapped, use new count and prescale |
| * increase the time corresponding to one jiffie |
| */ |
| usec_count = 1000000/HZ; |
| } |
| } else |
| jiffies_p = jiffies_t; |
| count_p = count; |
| if (presc_count >= PRESCALE_VALUE/2 ){ |
| presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2; |
| } else { |
| presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2; |
| } |
| /* Convert timer value to usec */ |
| usec_count += ( (TIMER0_DIV - count) * (1000000/HZ)/TIMER0_DIV ) + |
| (( (presc_count) * (1000000000/PRESCALE_FREQ))/1000); |
| |
| return usec_count; |
| } |
| |
| /* Excerpt from the Etrax100 HSDD about the built-in watchdog: |
| * |
| * 3.10.4 Watchdog timer |
| |
| * When the watchdog timer is started, it generates an NMI if the watchdog |
| * isn't restarted or stopped within 0.1 s. If it still isn't restarted or |
| * stopped after an additional 3.3 ms, the watchdog resets the chip. |
| * The watchdog timer is stopped after reset. The watchdog timer is controlled |
| * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit |
| * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is |
| * described in the table below: |
| * |
| * Watchdog Value written: |
| * state: To enable: To key: Operation: |
| * -------- ---------- ------- ---------- |
| * stopped 0 X No effect. |
| * stopped 1 key_val Start watchdog with key = key_val. |
| * started 0 ~key Stop watchdog |
| * started 1 ~key Restart watchdog with key = ~key. |
| * started X new_key_val Change key to new_key_val. |
| * |
| * Note: '~' is the bitwise NOT operator. |
| * |
| */ |
| |
| /* right now, starting the watchdog is the same as resetting it */ |
| #define start_watchdog reset_watchdog |
| |
| #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) |
| static int watchdog_key = 0; /* arbitrary number */ |
| #endif |
| |
| /* number of pages to consider "out of memory". it is normal that the memory |
| * is used though, so put this really low. |
| */ |
| |
| #define WATCHDOG_MIN_FREE_PAGES 8 |
| |
| void |
| reset_watchdog(void) |
| { |
| #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) |
| /* only keep watchdog happy as long as we have memory left! */ |
| if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) { |
| /* reset the watchdog with the inverse of the old key */ |
| watchdog_key ^= 0x7; /* invert key, which is 3 bits */ |
| *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) | |
| IO_STATE(R_WATCHDOG, enable, start); |
| } |
| #endif |
| } |
| |
| /* stop the watchdog - we still need the correct key */ |
| |
| void |
| stop_watchdog(void) |
| { |
| #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) |
| watchdog_key ^= 0x7; /* invert key, which is 3 bits */ |
| *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) | |
| IO_STATE(R_WATCHDOG, enable, stop); |
| #endif |
| } |
| |
| /* last time the cmos clock got updated */ |
| static long last_rtc_update = 0; |
| |
| /* |
| * timer_interrupt() needs to keep up the real-time clock, |
| * as well as call the "do_timer()" routine every clocktick |
| */ |
| |
| //static unsigned short myjiff; /* used by our debug routine print_timestamp */ |
| |
| extern void cris_do_profile(struct pt_regs *regs); |
| |
| static inline irqreturn_t |
| timer_interrupt(int irq, void *dev_id) |
| { |
| struct pt_regs *regs = get_irq_regs(); |
| /* acknowledge the timer irq */ |
| |
| #ifdef USE_CASCADE_TIMERS |
| *R_TIMER_CTRL = |
| IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | |
| IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | |
| IO_STATE( R_TIMER_CTRL, i1, clr) | |
| IO_STATE( R_TIMER_CTRL, tm1, run) | |
| IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | |
| IO_STATE( R_TIMER_CTRL, i0, clr) | |
| IO_STATE( R_TIMER_CTRL, tm0, run) | |
| IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz); |
| #else |
| *R_TIMER_CTRL = r_timer_ctrl_shadow | |
| IO_STATE(R_TIMER_CTRL, i0, clr); |
| #endif |
| |
| /* reset watchdog otherwise it resets us! */ |
| reset_watchdog(); |
| |
| /* Update statistics. */ |
| update_process_times(user_mode(regs)); |
| |
| /* call the real timer interrupt handler */ |
| |
| do_timer(1); |
| |
| cris_do_profile(regs); /* Save profiling information */ |
| |
| /* |
| * If we have an externally synchronized Linux clock, then update |
| * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be |
| * called as close as possible to 500 ms before the new second starts. |
| * |
| * The division here is not time critical since it will run once in |
| * 11 minutes |
| */ |
| if (ntp_synced() && |
| xtime.tv_sec > last_rtc_update + 660 && |
| (xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 && |
| (xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) { |
| if (set_rtc_mmss(xtime.tv_sec) == 0) |
| last_rtc_update = xtime.tv_sec; |
| else |
| last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain |
| * it needs to be IRQF_DISABLED to make the jiffies update work properly |
| */ |
| |
| static struct irqaction irq2 = { |
| .handler = timer_interrupt, |
| .flags = IRQF_SHARED | IRQF_DISABLED, |
| .name = "timer", |
| }; |
| |
| void __init |
| time_init(void) |
| { |
| /* probe for the RTC and read it if it exists |
| * Before the RTC can be probed the loops_per_usec variable needs |
| * to be initialized to make usleep work. A better value for |
| * loops_per_usec is calculated by the kernel later once the |
| * clock has started. |
| */ |
| loops_per_usec = 50; |
| |
| if(RTC_INIT() < 0) { |
| /* no RTC, start at 1980 */ |
| xtime.tv_sec = 0; |
| xtime.tv_nsec = 0; |
| have_rtc = 0; |
| } else { |
| /* get the current time */ |
| have_rtc = 1; |
| update_xtime_from_cmos(); |
| } |
| |
| /* |
| * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the |
| * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC). |
| */ |
| set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); |
| |
| /* Setup the etrax timers |
| * Base frequency is 25000 hz, divider 250 -> 100 HZ |
| * In normal mode, we use timer0, so timer1 is free. In cascade |
| * mode (which we sometimes use for debugging) both timers are used. |
| * Remember that linux/timex.h contains #defines that rely on the |
| * timer settings below (hz and divide factor) !!! |
| */ |
| |
| #ifdef USE_CASCADE_TIMERS |
| *R_TIMER_CTRL = |
| IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | |
| IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | |
| IO_STATE( R_TIMER_CTRL, i1, nop) | |
| IO_STATE( R_TIMER_CTRL, tm1, stop_ld) | |
| IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | |
| IO_STATE( R_TIMER_CTRL, i0, nop) | |
| IO_STATE( R_TIMER_CTRL, tm0, stop_ld) | |
| IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz); |
| |
| *R_TIMER_CTRL = r_timer_ctrl_shadow = |
| IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | |
| IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | |
| IO_STATE( R_TIMER_CTRL, i1, nop) | |
| IO_STATE( R_TIMER_CTRL, tm1, run) | |
| IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | |
| IO_STATE( R_TIMER_CTRL, i0, nop) | |
| IO_STATE( R_TIMER_CTRL, tm0, run) | |
| IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz); |
| #else |
| *R_TIMER_CTRL = |
| IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) | |
| IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) | |
| IO_STATE(R_TIMER_CTRL, i1, nop) | |
| IO_STATE(R_TIMER_CTRL, tm1, stop_ld) | |
| IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) | |
| IO_STATE(R_TIMER_CTRL, i0, nop) | |
| IO_STATE(R_TIMER_CTRL, tm0, stop_ld) | |
| IO_STATE(R_TIMER_CTRL, clksel0, flexible); |
| |
| *R_TIMER_CTRL = r_timer_ctrl_shadow = |
| IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) | |
| IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) | |
| IO_STATE(R_TIMER_CTRL, i1, nop) | |
| IO_STATE(R_TIMER_CTRL, tm1, run) | |
| IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) | |
| IO_STATE(R_TIMER_CTRL, i0, nop) | |
| IO_STATE(R_TIMER_CTRL, tm0, run) | |
| IO_STATE(R_TIMER_CTRL, clksel0, flexible); |
| |
| *R_TIMER_PRESCALE = PRESCALE_VALUE; |
| #endif |
| |
| *R_IRQ_MASK0_SET = |
| IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */ |
| |
| /* now actually register the timer irq handler that calls timer_interrupt() */ |
| |
| setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */ |
| |
| /* enable watchdog if we should use one */ |
| |
| #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) |
| printk("Enabling watchdog...\n"); |
| start_watchdog(); |
| |
| /* If we use the hardware watchdog, we want to trap it as an NMI |
| and dump registers before it resets us. For this to happen, we |
| must set the "m" NMI enable flag (which once set, is unset only |
| when an NMI is taken). |
| |
| The same goes for the external NMI, but that doesn't have any |
| driver or infrastructure support yet. */ |
| asm ("setf m"); |
| |
| *R_IRQ_MASK0_SET = |
| IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set); |
| *R_VECT_MASK_SET = |
| IO_STATE(R_VECT_MASK_SET, nmi, set); |
| #endif |
| } |